Artificial Intelligence Methods for Social Good M0-1: Introduction

08-537 (9-unit) and 08-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u> Wean Hall 4126

What is Al?

- Al in our daily lives
 - Web search (Google, Bing)
 - And...

- Al lead to transformation and evolution in domains and industries
 - Finance (Loan, Insurance)
 - And...

What is Al?

- Founders: "Intelligence can be so precisely described that a machine can be made to simulate it"
- What's your definition of AI?

Brief History of Al

- Early days
 - Founded in 1950s: Allen Newell (CMU), Herbert Simon (CMU), John McCarthy (Stanford), Marvin Minsky (MIT)
 - Single agent / deterministic
 - Play chess, prove theorems, solve puzzle
 - Logics and symbolic systems, heuristic reasoning, search
 - Integrated AI systems
 - ▶ Perception→learning/reasoning/planning→action
- Al winter (1990s)
 - ▶ Over-optimism→Over-persimissm
 - Interact with real world: uncertainty, multi-agent, real time
 - Easy for human, hard for AI: object recognition, understand speech
 - New tools from decision theory, optimization, game theory etc

New Era of AI

Why?

- Increasing computer power
- And...
- Success of AI
 - Image classification
 - And...

Branches of AI

- Machine learning
- And...

How AI impact Society

- Benefits of AI to society
 - Reduce human labor
 - And...

- Concerns of AI to society
 - Job loss
 - And...

Artificial Intelligence Methods for Social Good Module 0-2: Logistics

08-537 (9-unit) and 08-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u> Wean Hall 4126

Instructor and TA

- Instructor: Fei Fang (<u>feifang@cmu.edu</u>)
 - Office Hour: Tue/Thu Ipm-2pm or by appointment
 - Wean 4126
- TA: Chun Kai Ling (<u>chunkail@andrew.cmu.edu</u>)
 Office Hour:Wed/Fri 2pm-3pm or by appointment
 GHC 6507

Basic Info

- Some overlap with other AI courses (quick poll)
 15-381/781:AI; 15-780: Graduate AI
 - I0-701/15-781: Machine Learning; 10-715 Advanced Introduction to Machine Learning
 - 05-499/899: Computing for Good
 - I0-725/36-725: Convex Optimization; I0-703 Deep Reinforcement Learning or I0-707 Topics in Deep Learning; I0-708 Probabilistic Graphical Models

Basic Info

This course

- Broad coverage of AI methods
- Recent advances applied to address societal challenges
- In depth experience with one topic through course project

Pre-requisite

- (9 unit and 12 unit) Linear algebra, probability, calculus
- (12 unit) Programming experience, basic AI

Basic Info

- Al methods covered:
 - Optimization: mathematical programming, robust optimization, influence maximization
 - Game Theory and Mechanism Design: security games, human behavior modeling, auction and market equilibrium, citizen science
 - Machine Learning: classification, clustering, probabilistic graphical models, deep learning
 - Sequential Decision Making: Markov Decision Processes (MDPs), partially observable MDPs, online planning, reinforcement learning
- Societal challenges tackled:
 - Healthcare
 - Social welfare
 - Security and privacy
 - Environmental sustainability

Class Format

- Modules focused on AI methods
 - Concepts, basic algorithms
 - May use white board heavily (please take notes or pictures)
- Modules focused on applications
 - Advanced techniques applied to address societal challenges
 - 8 guest lectures by distinguished researchers
- Paper discussion

In-class quizzes (through Piazza)

Learning Objective

- Identify societal challenges, determine which AI methods can be applied
- Describe the AI methods: concepts, models, algorithms, implementation
- Model the societal challenges and propose how to apply Al techniques
- Describe evaluation criteria and methodologies of applying AI methods for social good
- Deliver written and oral presentation

Learning Objectives (Alternative Description)

- For lectures on methods:
 - Understand the part highlighted on the white board
 - Know where to find other useful information
- For lectures on applications:
 - Get a brief idea about the advanced techniques and the applications
- For course project:
 - Pick one topic and go in depth

Course Component	Weight	Expected Workload
Class participation	10%	3 hours/week
Paper Summaries	20%	2 hours/week
Written Answers Assignment	20%	l hour/week
Final Project	50%	3 hours/week for 08-537 6 hours/week for 08-737

Final Grade: Letter graded

Grading Criteria Overview

- Class participation
 - In-class quizzes (use Piazza or hand in on paper)
 - Asking and answering questions in class/on Canvas
 - Can skip up to 4 lectures
- Paper reading assignments
 - I4 assignments, No late days, Lowest score dropped
 - Submit: Summary + Questions + Brainstorming Ideas (peer reviewed)

Written Answers Assignment

- > 8 assignments, No late days, Lowest score dropped
- Submit: Answers (three attempts, auto-graded) + Explanations (peer reviewed)
- Bonus score for best explanations

17

Grading Criteria Overview

Final Project

In groups of I-3. Allow to have team members from both sessions. Grading follow criteria of 08-737 if any member is from 08-737

Due Dates

- Determine group members, due 2/1
- Project Proposal (5 points), due 2/15 (peer-reviewed)
- Project Progress Report (5 points), due 3/20 (peer-reviewed)
- Project Presentation (15 points), In class of 5/1 and 5/3
- Full Project Report (25 points), due 5/10

Resources

Course webpage

https://feifang.info/artificial-intelligence-methods-for-socialgood-spring-2018/

Canvas

- https://canvas.cmu.edu/
- Questions, discussion, homework, grade
- For all course content-related questions, please post on Canvas instead of writing emails to instructor/TA

Piazza

- Access through Canvas
- Or <u>https://piazza.com/class</u>
- Only for in-class quizzes

Textbook and Additional Reference

- No formal textbook
- List of additional resources will be provided (check Canvas and slides)

• We are trying our best to get everyone in!

Academic Integrity

- Be collaborative, give credits
 - If discuss with others, specify names and complete on your own
- Leverage resources
 - If use publicly available code packages, specify source
- If your complete submissions (including explanations) are the same, you will get zero score and the case will be reported
- Course project report should follow standard academic integrity policy. Plagiarism is not allowed.
- See CMU policy on academic integrity for general information
 - https://www.cmu.edu/student-affairs/ocsi/academicintegrity/index.html

Special Needs

- If you have a disability and require accommodations, please contact Catherine Getchell, Director of Disability Resources, 412-268-6121, <u>getchell@cmu.edu</u>
- If you have an accommodations letter from the Disability Resources office, discuss with me as early as possibly

- Start early! Avoid last-minute panic.
- CMU services are available, and treatment does work
- http://www.cmu.edu/counseling/
- 412-268-2922

Mobile Device Policy

- Mobile devices are allowed in class
- Cellphones should be in silent mode
- Students who use tablet in upright position and laptops will be asked to sit in the back rows of the classroom

Homework for today

Artificial Intelligence Methods for Social Good Module 0-3: Course Project Overview

08-537 (9-unit) and 08-737 (12-unit) Instructor: Fei Fang <u>feifang@cmu.edu</u> Wean Hall 4126

Expectations

- You are expected to get a deep understanding of one topic of AI through the course project
- You are expected to learn how to identify and model real-world challenges as problems that AI methods can apply
- You are expected to make your results public to benefit others (e.g., submit paper to workshops, make code package available on GitHub etc)
- You are not expected to build an app with user interface etc (although it is good to have for some projects)

Different Types of Projects

- 9-unit
 - Systematic literature review (no coding needed)
 - Application-centric
 - "Al Methods for Reducing Poverty"
 - Al method-centric
 - □ "Deep Learning for Social Good"
 - Al method + Application -centric
 - □ "Game Theory for Anti-Poaching"

Exploratory project

- Data-centric
 - "Detecting Mining Sites from Satellite Imagery Using Faster R-CNN"
- Model/algorithm-centric (no coding needed although encouraged)
 "Optimizing Inspection Strategy to Reduce Air Pollution"
- Solver/code package-centric
 - □ "A Python Package for Solving Security Games"

Different Types of Projects

- I2-unit
 - Research project
 - Data-centric
 - Model/algorithm-centric
 - For Ph.D. students: recommended to talk to your Ph.D. advisor and choose a project that is related to your research

- A list of suggested project topics is available (check Canvas, complete poll on Piazza)
- Can propose your own projects topics related to AI and Social Good, need consent from the instructor
- Even if you plan to work on a suggested project topic, try to propose one topic to enlighten other students (HW0)

Course Project Advisor

- Advisor
 - Faculty advisor is not required, will not be assigned
 - Encouraged to reach out to faculty members / senior students / domain experts, ask for feedback and advice (which papers to read, learn what happens in practice etc.)
 - May invite them to serve as faculty advisor or serve on the advisory board
 - For suggested course project topics A-L, I would like to provide guidance during office hours