Coordinates for Tip-Semiconductor System in SEMITIP VERSION 3

In SEMITIP VERSION 3 and higher, a new set of coordinates in the vacuum is used that are a generalization of the usual prolate spheroidal coordinates. The new coordinates ξ and η in the vacuum are related to the cylindrical coordinates r and z by

$$
\begin{align*}
& \frac{r^{2}}{\xi^{2}-1}+\frac{(z-a c \eta)^{2}}{\xi^{2}}=a^{2}, \tag{1a}\\
& -\frac{r^{2}}{1-\eta^{2}}+\frac{(z-a c \eta)^{2}}{\eta^{2}}=a^{2} \tag{1b}
\end{align*}
$$

where $c \equiv z_{0} /\left(a \eta_{T}\right)$ with η_{T} being the η value defining the hyperboloid that corresponds to the boundary of the probe tip and z_{0} being the center point of this hyperboloid. The values of η thus run from 0 on the surface to η_{T} at the tip. The value of ξ is 1 on the central axis and increase with distance away from that axis. For $z_{0}=0$ these equations reduce to the standard definition of prolate spheroidal coordinates. With specified values for R, b, and s we have $\eta_{T}=1 / \sqrt{1+b^{-2}}, a=R b^{2} / \eta_{T}$, and $z_{0}=s-a \eta_{T}$. The inverse equations to (1a) and (1b) are

$$
\begin{align*}
& z=a \xi \eta+a c \eta=a(\xi+c) \eta, \tag{2a}\\
& r=a\left[\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)\right]^{1 / 2} . \tag{2b}
\end{align*}
$$

Laplace's equation for the electrostatic potential energy ϕ in the vacuum is found to be

$$
\begin{align*}
& f_{1}(\xi, \eta) \frac{\partial^{2} \phi}{\partial \xi^{2}}+f_{2}(\xi, \eta) \frac{\partial^{2} \phi}{\partial \eta^{2}}+f_{3}(\xi, \eta) \frac{\partial^{2} \phi}{\partial \theta^{2}}+ \tag{3a}\\
& \quad+f_{4}(\xi, \eta) \frac{\partial^{2} \phi}{\partial \xi \partial \eta}+f_{5}(\xi, \eta) \frac{\partial \phi}{\partial \xi}+f_{6}(\xi, \eta) \frac{\partial \phi}{\partial \eta}=0
\end{align*}
$$

where

$$
\begin{align*}
& f_{1}(\xi, \eta)=\frac{\left(\xi^{2}-1\right)\left[(\xi+c)^{2}-\eta^{2}\left(2 c \xi+c^{2}+1\right)\right]}{\xi(\xi+c)-\eta^{2}(c \xi+1)} \tag{3b}\\
& f_{2}(\xi, \eta)=\frac{\left(1-\eta^{2}\right)\left(\xi^{2}-\eta^{2}\right)}{\xi(\xi+c)-\eta^{2}(c \xi+1)} \tag{3c}\\
& f_{3}(\xi, \eta)=\frac{\xi(\xi+c)-\eta^{2}(c \xi+1)}{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \tag{3d}\\
& f_{4}(\xi, \eta)=\frac{-2 c \eta\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)}{\xi(\xi+c)-\eta^{2}(c \xi+1)} \tag{3e}\\
& f_{5}(\xi, \eta)=\frac{g_{5}(\xi, \eta)}{\left[\xi(\xi+c)-\eta^{2}(c \xi+1)\right]^{2}} \tag{3f}
\end{align*}
$$

and

$$
\begin{equation*}
f_{6}(\xi, \eta)=\frac{g_{6}(\xi, \eta)}{\left[\xi(\xi+c)-\eta^{2}(c \xi+1)\right]^{2}}, \tag{3g}
\end{equation*}
$$

with

$$
\begin{align*}
g_{5}(\xi, \eta)= & c^{3}+3 c^{2} \xi+c\left(2+c^{2}\right) \xi^{2}+3 c^{2} \xi^{3}+4 c \xi^{4}+2 \xi^{5}+ \\
& \eta^{4}\left[c^{3}+\left(2+3 c^{2}\right) \xi+c\left(6+c^{2}\right) \xi^{2}+3 c^{2} \xi^{3}\right]- \tag{3h}\\
& 2 \eta^{2}\left[c\left(c^{2}-1\right)+3 c^{2} \xi+c\left(6+c^{2}\right) \xi^{2}+\left(2+3 c^{2}\right) \xi^{3}+c \xi^{4}\right]
\end{align*}
$$

and

$$
\begin{gather*}
g_{6}(\xi, \eta)=-\eta\left\{c^{2}+4 c \xi+c^{2} \xi^{2}+2 \xi^{4}+\eta^{4}\left[2+c^{2}+4 c \xi+c^{2} \xi^{2}\right]-\right. \\
\left.2 \eta^{2}\left[c^{2}+4 c \xi+\left(2+c^{2}\right) \xi^{2}\right]\right\} \tag{3i}
\end{gather*}
$$

In VERSIONS 3, 4, and 5 there is not θ dependence, so the second derivative with respect to θ [third term of Eq. (3a)] is zero.

Grid points are labeled by (i, j) with i referring to the radial direction and j referring to the direction perpendicular to the surface. In the new coordinate system for the vacuum the grid points are given by $\left(\xi_{i}, \eta_{j}\right)$. The spacing between the η_{j} values is chosen to be simply $\Delta \eta=\eta_{T} / \mathrm{NV}$, so that $\eta_{j}=j\left(\eta_{T} / \mathrm{NV}\right)$. The ξ_{i} values can be obtained by noting that the radial grid values at the surface are matched between the vacuum and the grid. Thus, using the R_{i} values output by the program and with $j=0$ referring to the surface, we have $r_{i 0}=\mathrm{R}_{i}$. On the surface, $\eta=0$, so that $r_{i 0}=\mathrm{R}_{i}=a\left(\xi_{i}^{2}-1\right)^{1 / 2}$ so that $\xi_{i}=\left\{1+\left[\mathrm{R}_{i} / a\right]^{2}\right\}^{1 / 2}$. The particular values of $r_{i j}$ and $z_{i j}$ corresponding to the grid points can therefore be obtained by:
(i) for $z_{i j}$ we have $z_{i j}=a\left(\xi_{i}+c\right) \eta_{j}=\left(\left[a^{2}+\mathrm{R}_{i}^{2}\right]^{1 / 2}+a c\right) j \eta_{T} / \mathrm{NV}$. The program defines DELV_{i} as $\left(\left[a^{2}+\mathrm{R}\left(\mathrm{I}^{2}\right]^{1 / 2}+a c\right) \eta_{T} / \mathrm{NV}\right.$, so that $z_{i j}=j \times \operatorname{DELV}_{i}$.
(ii) for the $r_{i j}$ values, we again note that the radial values at the surface are $\mathrm{R}_{i}=a\left(\xi_{i}^{2}-1\right)^{1 / 2}$. Then, away from the surface we have $r_{i j}=a\left[\left(\xi_{i}^{2}-1\right)\left(1-\eta_{j}^{2}\right)\right]^{1 / 2}=$ $\mathrm{R}_{i}\left\{1-\left[j\left(\eta_{T} / N V\right)\right]^{2}\right\}^{1 / 2}$ with $\eta_{T}=1 / \sqrt{1+b^{-2}}$ and where b is the user specified shank slope.

