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In SEMITIP VERSIONS 2 and higher, grids with variable spacing were used for the r , 
ξ , and z  coordinates. This variable spacing allowed the simulation to extend out to very 
large values of the coordinate, i.e. large enough so that the potential is essentially zero. 
Explicitly, the values of the grid points are assumed to be 
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(the spacing shown for jz  is the one used for VERSIONS 4.2 and higher, prior to that it 

followed the form ( ) ππ /)2/()1(tan2 SSj NjzNz −Δ−= , 1,,3,2,1 −= SNj K ).  
 
In VERSIONS 2 - 5, derivatives were calculated using the expressions 
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for coordinate x, with the ixΔ  values obtained by differentiation of Eqs. (1a) or 1(c), 
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While the expressions (2a) and (2b) are approximately correct, they can produce 
substantial errors when the ixΔ  values vary with i as in Eqs. (3a) or (3b). Hence, in 
VERSIONS 6 and beyond, better forms for the derivatives are used: 
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     Special considerations are required when i  equals 1. For the radial derivatives, we 
assume a parabolic form for the function (potential) around 0=r  so that at 0=r  we 
have 8/)9( 210 fff −=  and 00 =r . The situation for the ξ  derivatives is similar, 
although the value of ξ  when 0=r  is 1=ξ . We again take this to be our zeroth grid 
point, so that 10 =ξ  and again 8/)9( 210 fff −= . The case of 1=j  is handled without 
any special attention since 0=j  corresponds to the surface (similarly, for the η  
parameter which extends to a value of VN ,  the potential at 1+= VNη  is simply the tip 
potential). 
 
     Special considerations are also needed when RNi =  or SNj = . It should be noted 
that, in almost all cases, the value of the potential is naturally zero at these boundaries of 
the grid, since the distance to the boundaries is so large that the potential falls to zero as a 
consequence of Poisson's equation. However, in situations where this does not occur, 
then values of the potential at 1+= RNi  or 1+= SNj  are needed, and some 
assumption is needed to establish those values. The program allows for two choices of 
boundary conditions: Dirichlet, in which the potential at  1+= RNi  or 1+= SNj  is 
taken to be zero, or Von Neumann in which the potential is taken to have the same value 
as at  RNi =  or SNj =  (i.e. zero slope). This choice is controlled by the parameter IBC, 
which is set at the top of the semitip1.f, semitip2.f, or semitip3.f routine.. A value of 
IBC=0 corresponds to Dirichlet and IBC=1 to Von Neumann boundary conditions. The 
normal (default) setting is IBC=0. 
 
     The expressions for the derivatives in Eq. (4) have been compared to those of Eq. (2) 
for a two-dimensional test case of Laplace's equation 02 =∇ f  with azimuthal symmetry. 
The analytic solution is 21 ln)( crcrf += . Formulating a numerical solution using 
derivatives computed according to Eq. (4) yields results that agree exactly with this 
logarithmic dependence on r. However, with derivatives computed according to Eq. (2), 
the numerical solution deviates substantially from the logarithmic form (particularly for 
large r). Thus, the form of the derivatives given by Eq. (4) is found to be a substantial 
improvement for numerical solution of such problems. Similar agreement between 
theoretical expectation and computational results using the new form for the derivatives 
is found for 1-dimensional depletion, as discussed in example 2 of Uni1.f, and for a point 
charge on a surface, as discussed in example 6 of Uni2.f. 


