
1 
 

R. M. Feenstra 
5/19/25 

Finite Element Computations 

These lecture notes provide an introduction to the “finite element” method of solving differential 
equations, particularly equations such as Laplace’s equation or Poisson’s equation as encountered 
in electrostatics problems. The finite-element method is closely related to what is often call the 
“finite difference” method, with the two names sometimes used interchangeably. In some ways 
the latter method can be viewed as being just a simple version of the former. However, in practice 
(and for nonlinear problems in particular) there are some substantial distinctions between the two 
methods, as will be discussed here. 

     The basis of the finite-element method is easily seen by considering Laplace’s equation for the 
electrostatic potential 𝑉𝑉 in 1 dimension, 𝑑𝑑2𝑉𝑉 𝑑𝑑𝑥𝑥2⁄ = 0. This differential equation is written in a 
form for which the second derivative is evaluated numerically on a grid, 𝑥𝑥𝑖𝑖 = (𝑖𝑖 − 1)∆𝑥𝑥 with 𝑖𝑖 =
1,2, … ,𝑛𝑛, where ∆𝑥𝑥 is a finite (nonzero) difference that the derivative is evaluated over. Denoting 
𝑉𝑉(𝑥𝑥𝑖𝑖) by 𝑉𝑉𝑖𝑖, we have 

𝑉𝑉𝑖𝑖+1 − 2𝑉𝑉𝑖𝑖 + 𝑉𝑉𝑖𝑖−1
(∆𝑥𝑥)2 = 0  .                                                      (1) 

From this equation, it is clear that  

𝑉𝑉𝑖𝑖 =
𝑉𝑉𝑖𝑖+1 + 𝑉𝑉𝑖𝑖−1

2
                                                               (2) 

so that the potential at any given point is the average of the potential at surrounding points. 

     This same property of a solution to Laplace’s equation – that the potential is an average of the 
surrounding values – holds for any spatial dimension. The 1-dimensional case is trivial, since if 
we have a potential of, say, 0 V at some point and 1 V at another point, then the solution of Eq. 
(2) yields simply a linear variation in potential between those two points. However, for 2 or more 
dimensions then the solution is not so trivial.  Let’s consider 2 dimensions in particular, with a 
square region in space having specified potential energies along its boundaries, say, 0, 1, 2, and 3 
V as we go around the square. Then we would like to solve for the potential values in the interior 
of this square region (this type of finite-difference problem is considered in many electrostatics 
textbooks, e.g. [1]). Generalizing Eqs. (1) and (2) to this case, and assuming an equal grid spacing 
in both dimensions of the grid, it is easily shown that the potential 𝑉𝑉𝑖𝑖,𝑗𝑗 is given by 

𝑉𝑉𝑖𝑖,𝑗𝑗 =
𝑉𝑉𝑖𝑖+1,𝑗𝑗 + 𝑉𝑉𝑖𝑖−1,𝑗𝑗 + 𝑉𝑉𝑖𝑖,𝑗𝑗+1 + 𝑉𝑉𝑖𝑖,𝑗𝑗−1

4
    .                                      (3) 

Now, the solution of the electrostatics problem (on the grid, or on a continuous set of 𝑥𝑥,𝑦𝑦 values) 
is nontrivial. However, an iterative solution can easily be written down: denoting the potential at 
the 𝑘𝑘𝑡𝑡ℎ iteration by 𝑉𝑉𝑖𝑖,𝑗𝑗

(𝑘𝑘), a possible solution is given by 

𝑉𝑉𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) =

𝑉𝑉𝑖𝑖+1,𝑗𝑗
(𝑘𝑘) + 𝑉𝑉𝑖𝑖−1,𝑗𝑗

(𝑘𝑘) + 𝑉𝑉𝑖𝑖,𝑗𝑗+1
(𝑘𝑘) + 𝑉𝑉𝑖𝑖,𝑗𝑗−1

(𝑘𝑘)

4
    .                                  (4) 



2 
 

In general, an iterative solution in which we write 𝑉𝑉𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) to be a function of the 𝑉𝑉𝑖𝑖′,𝑗𝑗′

(𝑘𝑘)  values (for 
all 𝑖𝑖′ and 𝑗𝑗′) is not guaranteed to converge. The requirement for convergence is closely related to 
the well-known convergence properties of Newton’s method for finding roots of an equation [2]. 
For Laplace’s equation as illustrated here, convergence does in fact occur, although for Poisson’s 
equation as discussed below the situation is more complicated. 

     Returning to our problem with potential values on the boundaries of 0, 1, 2, and 3 V, the 
computation starts by initializing the potential matrix accordingly. That is, we assign the boundary 
values, which remain fixed for all iterations. (The corner values of the potential do not enter the 
computation in any way, although for plotting purposes it is convenient to have these initialized to 
be one or the other of the neighboring values on the boundary). The matrix of potential values in 
the interior of the grid is then initialized to some value, say, 𝑉𝑉𝑖𝑖,𝑗𝑗

(0) = 0 for 𝑖𝑖 and 𝑗𝑗 both ranging from 
2 to 𝑛𝑛 − 1. Actually, a better guess would be the average of the values on the boundaries, which 
would be 1.5 V for the problem we’re considering, or even better would be to use some sort of 
bilinear interpolation of the values at the boundaries. However, in the examples below we will use 
an initialization of 0 since in that case it’s easier to judge (just using inspection by eye) how well 
the solution is converged. 

     Below are some results obtained using Mathematica for this electrostatic problem, with an 
11×11 grid (that is, boundary values on all sides and an interior matrix of 9×9 values): 

Clear["Global`*"];  n=11; 

pot = Table[0, {i,n}, {j,n}]; 

Do [ pot[[i]] [[n]] = 1, {i,n} ]; 

Do [ pot[[n]] [[j]] = 2, {j,n} ]; 

Do [ pot[[i]] [[1]] = 3, {i,n} ]; 

For [ iter=1, iter<=1000, iter++, 

     For [ i=2, i<=n-1, i++, 

          For [ j=2, j<=n-1, j++, pot[[i]] [[j]] = N[ pot[[i-1]] [[j]] + pot[[i+1]] [[j]] + pot[[i]] [[j-1]]  
        + pot[[i]] [[j+1]] ] / 4 ]]]; 

ArrayPlot[pot, ColorFunction->”M10DefaultDensityGradient”, PlotRange->{0,3}] 

   
In the color plots above, high values of the potential are shown with light colors and low values 
with dark colors (using a plotting range of 0 to 3). The upper left-hand corner of the plot shows 

iter 
=10 

iter 
=100 

iter 
=1000 



3 
 

the result for the first row and first column of the matrix. Good convergence is apparent in these 
results after about 100 iterations (with the results for that number of iterations appearing very 
similar to what is obtained with 1000 iterations). It is interesting to also examine the same sort of 
computation on a denser, 101×101 grid, as shown below: 

 

These results are similar to what is obtained on the 11×11 grid, although for the denser grid many 
more iterations are required; it appears that about 10,000 iteration are required for good 
convergence. Thus, for an 𝑛𝑛 × 𝑛𝑛 grid, the number of iterations needed to achieve a given level of 
convergence appears to scale like 𝑛𝑛2. (Offhand, this result seems to make sense, with one factor 
of 𝑛𝑛 needed in order to have an iterative correction that spans over an entire row or column of the 
matrix, and a second factor needed since the iterative corrections get smaller as 𝑛𝑛 increases in 
accordance with 𝑛𝑛−1; however, a much more detailed analysis is needed in order to rigorously 
understand the convergence). In terms of run-time needed to obtain a converged solution, that 
scales like 𝑛𝑛4, i.e., 𝑛𝑛2 iterations needed for convergence, and 𝑛𝑛2 matrix elements which must be 
updated at each iteration step.  

     With the results above for the simple electrostatics problem on a square grid, we can now make 
a few comments concerning the distinction between “finite difference” and “finite element” 
computations. The above computation, with results computed on a simple, uniformly spaced grid 
of 𝑥𝑥 and 𝑦𝑦 values, is certainly a finite-difference one. Let us consider what would happen if we 
were solving a different sort of differential equation, such as analyzing elasticity equations to 
determine stress and strain that occurs in a structure (such as a bridge) under the effects of an 
applied load. In such applications, there can be much greater stress at certain points in the structure 
(e.g. near a bolt) than elsewhere; to understand potential failure of the structure, it is imperative to 
understand in detail the situation near these high-stress points. In principle one could use a very 
dense grid to handle that problem, but if this dense grid is used everywhere in the structure then 
the run-time for the computation can become unmanageably large. Hence, more sophisticated 
solutions are required, in which a variable sized grid is used throughout the structure. Additionally, 
the grid itself should not be a simple square or rectangular one, since for such grids as applied to 
elasticity problems there is a certain type of instability (associated with shear stress) that arises. 
Rather, grids containing all sorts of polygonal shapes (often with triangular faces) are employed. 
The techniques involved in forming these grids are an integral part of the “finite element” method.  

     Due to the fact that the grid is very much more complicated in a finite-element computation 
than a finite-difference one, the method of solution of the problem differs from what was described 
above in our example of the electrostatics problem on a square. Actually, there are two types of 
distinctions between what was described above and what is generally used in finite-element 

iter 
=100 

1000 10,000 100,000 



4 
 

computations. The first distinction is that, due to the more complicated grids used in finite-element 
computations, the set of equations that must be solved are correspondingly more complicated than 
for finite-difference analysis. An entire formalism exists for working out the values of the 
coefficients in these linear equations. The complications associated with complex grids are so large 
that, generally speaking, software code for performing finite-element computations using 
complicated polygonal elements are rarely developed by individual users; rather, large software 
packages such as COMSOL or ANSYS are generally used (as applied to many types of engineering 
analysis). In contrast, it is very easy to write code for a simple finite-difference computation, and 
such codes are routinely developed for specialized applications. 

     The second distinction between finite-difference and finite-element computations can be 
explained by returning to the examples above, which we solved using an iterative method. As an 
alternate method of solving the problem, we could have written a set of linear equations that relate 
the potential at one point to the potential at other points (including boundary points). Expressing 
those equations in matrix form, then in principle we could have performed a single matrix inversion 
operation (applied to the 11×11 or 101×101 respective grids) in order to exactly solve the problem. 
Now, for the 101×101 matrix, this sort of inversion might be somewhat time consuming. However, 
this matrix is rather sparse, and specialized methods exist for inverting such matrices. Of course, 
in all cases it is desirable to utilize a method of solution that requires the least amount of run time. 
Comparing an iterative solution of a finite-difference problem with what can be achieved using 
matrix inversion, it turns out that the latter method is faster whenever the matrix size is sufficiently 
large. This same sort of situation would also occur (in principle) for finite-element computations, 
but since the matrices in that case are nearly always quite large, then the matrix-inversion type of 
solution is always used (i.e. in commercial packages). In contrast, for finite-difference code, 
especially as developed for specialized applications, the iterative method of solution is sometimes 
used. This distinction in the method of solution has significant consequences when we furthermore 
consider solutions of differential equations that contain a nonlinear term, as we will now discuss. 

     Let us turn to consider solutions of Poisson’s equation, in particular as might occur in 
semiconductor materials in which the occupation of electrons in the conduction band (or holes in 
the valence band), as well as occupation of electrons or holes on dopant atoms, depends sensitively 
on the electrostatic potential in the material (e.g. in a pn-junction). In writing the relevant equations 
it is convenient to switch to using a potential energy, 𝑈𝑈, rather than just the potential 𝑉𝑉, with the 
energy (for an electron) given by 𝑈𝑈 = −𝑒𝑒𝑉𝑉 with 𝑒𝑒 = 1.602 × 10−19 C. Poisson’s equation is then 
given by 

∇2𝑈𝑈 =
𝑒𝑒
𝜅𝜅𝜀𝜀0

𝜌𝜌(𝑈𝑈)                                                                      (5) 

with 𝜌𝜌 being the charge density in the material, 𝜅𝜅 being the dielectric constant, and 𝜀𝜀0 being a 
constant (the permittivity of free space). As just mentioned, in semiconductors we have a situation 
where 𝜌𝜌 depends strongly on 𝑈𝑈, so that the term on the right-hand side of Eq. (5) introduces a 
substantial nonlinearity into the problem. 

     There are two methods for dealing with this sort of nonlinearity in a finite-difference or finite-
element computation. First, if we are employing an iterative solution of the form shown in Eq. (4) 



5 
 

(which in practice would only occur for a finite-difference computation), then it is straightforward 
to include a term such as on the right-hand side of Eq. (5), as we will illustrate below. Second, if 
we employ a matrix-inversion type of solution (which in practice is always used for finite-element 
computations), then the nonlinearity must be treated in an approximate way: The nonlinear term, 
which for matrix of a 𝑈𝑈𝑖𝑖,𝑗𝑗 values is itself a matrix of charge-density values, is generally attenuated 
down to zero, and then it is gradually turned in an iterative manner as a sequence of matrix-
inversion solutions are computed. That is, starting with the nonlinear term attenuated to zero, a 
matrix inversion is used to solve for 𝑈𝑈, then the nonlinear term is updated using these new 𝑈𝑈 values 
(but still using substantial attenuation). A further matrix inversion is then performed, a new 
evaluation of the nonlinear term is made (using less attenuation than previously), etc. Hence, we 
end up again with an iterative solution, but of a different sort than the one which would be 
employed in an iterative finite-difference computation which uses a local iterative solution (as in 
Eq. (4)) for every element of the matrix. This distinction in the type of solution utilized for 
nonlinear problems is another characteristic that distinguishes finite-element and finite-difference 
computations (i.e., the latter might utilize a local iterative method of solution, while in practice the 
former never does). With nonlinearity, determining which sort of approach minimizes the run time 
for a given type of problem now becomes a complicated issue. In any case, for semiconductor-
type problems, the finite-difference method using a local iterative solution throughout is found to 
achieve good performance at least in certain, specialized situations [3].  

     Let us consider a simple example of an iterative solution to Eq. (5). Writing that equation in a 
2-dimensional finite-difference form, we have for the (𝑘𝑘 + 1) iteration, 

𝑈𝑈𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) =

1
4
�𝑈𝑈𝑖𝑖+1,𝑗𝑗

(𝑘𝑘) + 𝑈𝑈𝑖𝑖−1,𝑗𝑗
(𝑘𝑘) + 𝑈𝑈𝑖𝑖,𝑗𝑗+1

(𝑘𝑘) + 𝑈𝑈𝑖𝑖,𝑗𝑗−1
(𝑘𝑘) −

(∆𝑥𝑥)2𝑒𝑒𝜌𝜌𝑖𝑖,𝑗𝑗
𝜅𝜅𝜀𝜀0

�                                   (6) 

where in general the charge density 𝜌𝜌𝑖𝑖,𝑗𝑗 will depend on the local value of the potential energy, 

𝜌𝜌𝑖𝑖,𝑗𝑗 = 𝜌𝜌�𝑈𝑈𝑖𝑖,𝑗𝑗
(𝑘𝑘)�. In the example we consider here, for the purpose of illustration, we will assume 

just a constant value of the charge density; we take this to be 0.5 𝜅𝜅𝜀𝜀0 𝑒𝑒(∆𝑥𝑥)2⁄  (the scale factors 
here ensure that our result is invariant with the grid size employed for the solution). We also use 
the same boundary conditions for the potential (but now measured in eV) as assumed in the 
examples above. A solution of Eq. (6) for this situation, using a 11×11 grid, appears as 

 

(with a plotting range of −2.3 to +3 used). We see that our assumed charge density leads to a 
parabolic variation in the potential, superimposed on what arises from the boundary values 
themselves. Most importantly, the method of solution is no more complicated than that for 

iter 
=10 

iter 
=100 

iter 
=1000 



6 
 

Laplace’s equation discussed above (and similarly even if the charge density is taken to be a 
function of the potential). As mentioned above, 𝜌𝜌 is often a strong function of 𝑈𝑈 in semiconductor 
problems, so that convergence of the iterative solution is not guaranteed. However, in practice, 
instabilities and/or nonconvergence are found not to be issues, at least for a certain class of 
problems that has been studied in detail [3].  

     Summarizing the distinctions between finite-difference and finite-element computations, the 
main one has to do with the grid that is utilized: the former employ a simple square or rectangular 
grid whereas the latter uses a grid containing complicated polygonal shapes (often with triangular 
faces, with the hypotenuses of the triangles which connect “nodes” in the grid structure being 
essential for ensuring stability in elasticity problems). Due to this difference in grids, the set of 
resulting linear equations that must be solved is very much more complicated for finite-element 
computations than for finite-difference ones. For linear problems, then in principle, both types of 
computations can be solved either by inversion of an entire matrix describing the problem or by a 
local iterative method in which the value (of potential, or strain, or whatever is being investigated) 
being sought is updated based upon surrounding values. However, in practice, matrix inversion is 
always used in finite-element computations (as in large commercial packages). For finite-
difference computations, again, either method of solution can be used, but the local iterative one 
offers some advantages for nonlinear problems.  

     Nonlinear problems can be handled using the finite-difference method in just the same manner 
as for linear problems, by updating a value being sought based upon surrounding values. In 
contrast, to solve a nonlinear problem by the finite-element method, a sequence of matrix-inversion 
solutions is employed, with the nonlinearity of the problem gradually turned on. In this regard, the 
finite-difference method can have a speed advantage over the finite-element one, since the latter 
ends up performing an exact solution of an approximate problem at each iterative step (with this 
exact solution at each step being more accurate than necessary), whereas the former is performing 
an approximate solution all the way along (finally converging to nearly an exact solution). One 
further distinction that hasn’t been mentioned thus far has to do with scaling of the grids, which is 
straightforward for finite-difference computations. One can start with a rather coarse grid, then 
after some given convergence criterion has been reached the size of the grid (in all dimensions) 
can easily be doubled, the solution then further iterated to some new convergence criterion, etc. 
For the case of finite-element computations, with their complicated (non-rectangular) grids, it is 
not at all straightforward to double a grid size, and hence that sort of procedure is generally not a 
standard one in the finite-element packages. 

 

References: 

[1] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).  
[2] http://en.wikipedia.org/wiki/Newton’s_method 
[3] R. M. Feenstra, Electrostatic Potential for a Hyperbolic Probe Tip near a Semiconductor, J. 
Vac. Sci. Technol. B 21, 2080 (2003); http://www.andrew.cmu.edu/user/feenstra/semitip_v6/ 


