PCM-BASED COOLING

Joseph Carlos
Elon Bauer
OUTLINE

• Motivation
• Literature Review
• Methodology
• Progress
• Milestones
MOTIVATION

- Current generation heat sinks are inefficient
- Require the use of active cooling to disperse heat
- Heat is output as waste into the environment
- PCMs undergo phase changes
 - Increased heat input does not increase heat output
- Could be used as an effective heat sink without active cooling
 - Thus reducing power consumption
MOTIVATION
LITERATURE REVIEW

• Wang & Baldea
 • Control theory regarding a PCM-based heat sink
 • Used with and without active cooling
 • Used mathematical models to get promising results

• Kandasamy, Wang, & Mujumdar
 • Researched paraffin wax
 • Developed numerical models using empirical data
LITERATURE REVIEW

• Rostamizadeh et al.
 • Theoretical model for PCM using first principals
 • Validated using calcium chloride hexahydrate

• None of these cover how different workloads might affect the PCM vs. conventional methods

• There is also little exploration into the different types of PCMs which are available
Methodology

• Consider different types of PCMs
 • Solid-liquid phase change is of greatest interest
 • Organic, inorganic, eutectic, hygroscopic
 • Tradeoffs in melting point and phase change duration

• Use HotSpot to create a thermal profile
 • Reduce the size of the heat sink and use PCM to fill the gap

• Consider which PCMs are best for which applications
• Attempts to simulate a PCM transfer function were thwarted by faulty math in papers

• Have a list of 100+ PCMs with melting points and specific heats

• Have preliminary function showing PCM temperature profile
PROGRESS
MILESTONES

• Generate temperature profiles using HotSpot

• Use PCM model to determine effectiveness of PCM-based cooling on various workloads

• Repeat for various different PCMs to determine desired characteristics under different workloads