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Rapid developments in artificial intelligence (AI) promise
improved diagnosis and care for patients, but raise ethical
issues.' " Over 6 months, in consultation with the American
Academy of Ophthalmology Committee on Aurtificial Intel-
ligence, we analyzed potential ethical concerns, with a focus
on applications of Al in ophthalmology that are deployed or
will be deployed in the near future. We identified 3
pressing issues: (1) transparency, paradigmatically through
the explanation or interpretation of Al models; (2)
attribution of responsibility issues for particular harms
arising from the use or misuse of Al; and (3) scalability of
use cases and screening infrastructure.

Transparency

The ability to understand why a
machine learning model has pro-
duced a particular result is an oft-
cited  ethical principle  for
AL*>771% We distinguish between AI models that are
interpretable, or governed by models that are directly un-
derstandable by humans, and Al models that are too com-
plex for any human to comprehend (sometimes called
“black box” models), requiring post hoc explainability for
how results are produced.” Recent work has shown that lack
of transparency is associated with decreased accuracy of Al
algorithms.'""'? Issues of transparency may arise, for
example, in diagnosing diabetic retinopathy, glaucoma, age-
related macular degeneration, and retinopathy of prematu-
rity (ROP).’

Transparency also may be important when an Al model
does not perform as expected or gives a false answer. Given
a novel image to analyze, for example, Al may misdiagnose
a patient based on an incomplete or inadequate training set.
Machine learning and especially deep learning platforms
need to be trained on large amounts of historical data (e.g.,
fundus photography) to learn which features of an image are
associated with a particular condition. When a novel image
is presented that is atypical, such as if a diabetic retinopathy
Al model is given an image harboring central retinal vein
occlusion, the AI model may provide false or even nonsense
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The setting in which medical Al
is implemented is a major
determinant of the risks and
benefits.

answers. Without transparency, it may be impossible to
explain why a particular failure occurred. Even if the general
explanation is that the training set is insufficiently broad,
what data are missing or needed may be opaque.

Transparency is arguably secondary to the capacity for
Al to improve patient outcomes and public health. Machine
learning systems in ophthalmology have been tested, but to
date only 1 trial has demonstrated improved patient out-
comes.'” Experiences in other specialties, such as a 2017
trial of using automated interpretation of cardiotocographs
in labor, have found no improvement in clinical outcomes
as a result of AL'* Thus, transparency may be insufficient
to justify the use of Al if it fails
to improve patient outcomes.

The degree to which trans-
parency is obligatory may also
depend on the medical specialty. In
some cases, accurate, empirically
verified results may be sufficient.
In infectious disease, for example, broad-spectrum antibi-
otics may be tried in the absence of detailed information of a
pathogen.® However, ophthalmology is highly explainable
in diagnostic terms, with strict definitions for most
diseases. Deferring to Al may present a significant
decrease in confidence in the diagnostic process,
especially when only modest increases in verifiability are
achieved. The degree to which this arises, and how this
trade-off between transparency and confidence varies by
specialty, needs further investigation.

Lack of sufficient transparency may exacerbate other
issues in the use of medical Al. Although human physicians
can reflect on and justify their actions to colleagues, an Al
model’s mistakes are predetermined through training. Errors
may propagate from a single point of failure if they become
the diagnostic standard across, say, an entire hospital
network. Patients may seek a second opinion, but if an al-
gorithm is widely distributed, the same system may be
performing the diagnosis at a separate clinic. Future Al
models may be able to revise their predictions in response to
new data, but this presents its own challenges, especially if
these revisions lack transparency. Excessive trust in AI may
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be worse for patient outcomes than if AI were approached
more skeptically.'”

Sometimes, the benefits of Al may outweigh transparency
concerns. Consider ROP, a leading cause of childhood
blindness worldwide. The clinical benefit of screening is well
established, but is hampered globally by cost and human labor
requirements.’ Artificial intelligence may provide a low-cost
screening option in resource-scarce settings, where even
modest improvements in testing and treatment could have a
significant impact, given the steep long-term costs of ROP.'°
Although challenges translating diagnosis to treatment in
low-income settings remain,'’ the large potential benefits
and low cost justify the use of AL

Explainable AI may obviate some of these transparency
concerns. However, Rudin® has noted that explainability
may be a misnomer. Instead, the focus should be on
creating models that are inherently interpretable, rather
than attempting to generate solutions for unexplainable Al
For the foreseeable future, then, a tension exists between
deploying black-boxed Al immediately or waiting for
explainable Al, where delays may come at the cost of im-
provements to patient outcomes.

Responsibility

Ethical frameworks may distinguish between the re-
sponsibility for ensuring Al performs in a certain way and
the moral or legal liability when harms occur. Herein, we
deal with only ethical responsibilities and not, for example,
legal liability, although these are related issues. In health
care, a responsibility gap arises when responsibility cannot
be easily attributed to 1 or more actors, including hospitals,
health and malpractice insurers, individual physicians and
nurses, and so on. In ophthalmology, 1 private company,
IDx, has accepted responsibility for errors in their Al plat-
form, effectively attempting to close the responsibility gap
through claiming responsibility for Al outcomes, enshrining
this in legal terms by purchasing liability and malpractice
insurance on behalf of the platform.’

Companies are responsible for ensuring that Al algo-
rithms function appropriately and safely when used as
indicated, but may not be for off-label uses. In their
consideration of the legal aspects of Al, for example, IDx
claims their principles require that creators “assume liability
for harm caused by the diagnostic output of the device when
used properly and on-label.”” Responsibility for ensuring
appropriate off-label use thus may seem to fall to the pro-
vider, but the fragile nature of these models means even
strong associations between patient outcomes and off-label
postmarket Al use may be undermined if subtle changes
in patient characteristics cause the algorithm to produce
flawed results.'”'® Whether providers can responsibly
determine appropriate use based on these unknown varia-
tions is unclear.

Responsibility issues may become more acute in future
adaptive Al that update their weightings of factors associ-
ated with a diagnosis in response to new data. Here, re-
sponsibility for appropriate use might include managing
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which data are retained by the system. For these adaptive
regimes, evaluating performance for on-label and off-label
conditions will require continuous postmarket monitoring,
rather than the current premarket approval approach for
pharmaceuticals or other devices.

Allocating responsibility at the level of governance and
regulation is an additional challenge. Others have argued
that regulation of Al should focus on continuous moni-
toring'” with a system view that sees new Al as part of a
larger network of actors and institutions and evaluates its
performance in the context of that network.”” The
obligation to promote benefits and reduce harms is held
jointly by, and distributed between, the creators and users
of an Al platform. However, implementing this in practice
would require overhauling the institutions that govern
medical innovation and practice.

One preliminary approach would require large, adaptive
clinical trials of human adjudication versus Al diagnosis.
This approach could validate Al performance in a variety of
contexts to improve outcomes, adapt to other potential uses,
and develop trust in the system. In 2018, engineers at
Google demonstrated that image adjudication by retinal
specialists improved algorithmic outcomes for the diagnosis
of diabetic retinopathy.”” In the same year, IDx reported that
their autonomous Al-based diagnostic platform exceeds
human reference standards.' Last year, 2 Al-assisted ROP
diagnosis packages were approved for use’' as part of
China’s developing medical AI landscape.'® When
specialist opinion can be linked to correct surrogate
outcomes or risk of poor outcomes, these trials become an
intermediate step toward demonstrating the efficacy of Al,
improving patient outcomes, enhancing trust, and
providing a broader context for Al use.

Scalability and Implementation

One promise of Al is to automate high-volume screening.
Consider a near-future hypothetical. In the United Kingdom,
the English National Health Service Diabetic Eye Screening
Program screened more than 2 million patients from 2015
through 2016 for diabetic retinopathy.””> We could imagine a
case in which this service incorporates Al diagnosis, an
implementation that could place most cases of diabetic
retinopathy in the country under a single algorithm.

Two failure modes exist for mass Al-driven diagnostics.
First, standard errors in diagnostics matter at scale: a
sensitivity of 99.9% for a test that applies to a condition
affecting hundreds of millions of patients still entails hun-
dreds of thousands of false-negative results.” Importantly,
transitioning to Al could redistribute false-positive or
false-negative results in a population. This raises concerns
of justice if, for example, Al misdiagnoses disproportion-
ately impact disadvantaged groups, as has occurred with
pulse oximeters™ and radiograph datasets,”* resulting in a
form of health poverty in which individuals, groups, or
populations are unable to benefit from AI because of a
scarcity of representative data, and may even be harmed
by it at the population level.” The degree to which this
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may occur with ophthalmologic AI applications is an
empirical question. However, we do know that racial bias
in ophthalmologic clinical trials is an ongoing concern,”®
and this trend could continue into Al development if it
remains unchecked.

However, the distribution of harms using Al might be
traded against the distribution of services through the
deployment of Al, such that:

1. Some patients have worse outcomes than others
because of the distribution of risk by Al; yet
2. Those patients have better outcomes than they
would otherwise have had because
a. The AI model is ultimately less biased than
physician treatment alone or
b. The benefits of access to services outweigh the
potential harms of bias or
c. Both.

Consider the proliferation of telemedicine during the
COVID-19 pandemic, particularly for individuals who
otherwise may experience delayed diagnosis or treat-
ment.””** Artificial intelligence-assisted diagnostics could
make it easier to diagnose patients remotely and at local
points of care using, for example, new innovations such as
slit-lamp biomicroscopes used with smartphones” and Al-
based interpretation of results. A potential trade-off arises
between errors caused by Al when a physician cannot
directly access the patient and the benefits of receiving early
diagnosis. In rare or emergent cases (such as a pandemic)
where the risk of travel to a medical facility presents addi-
tional risk, Al may provide preliminary %uidance on
whether to seek care inside a clinical setting.”’ Moreover,
even if Al does produce worse outcomes than a physician
diagnosis, Al may be justified to the extent that delayed or
missed diagnosis is worse.

However, the social benefit of Al to telemedicine relies in
part on the extent to which inequalities of access to infor-
mation technology can be remedied. Telemedicine is un-
evenly adopted by providers, may not be supported by
insurers, and depends on reliable internet access. However,
smartphone penetration may be higher than access to
specialist medical care in some if not many areas, and thus
favorable tradeoffs may exist through local Al-driven so-
Iutions. Like other emerging technologies.

A second failure mode is a systemic failure that affects all
or most users simultaneously. These very low-probability,
very high-consequence events could arise, for example, in
the case of a continual learning Al system intended to improve
with additional data,31 but that, through sustained machine
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error, ultimately diverges radically from its original
parameters and begins assigning false results. Depending on
how submissions to the AI platform are structured,
adversarial uses could arise in which intentionally doctored
images are submitted to achieve the same effect.

Protection from systemic failures is unlikely to be ach-
ieved through self-governance and will require regulatory
action to guard against. Adding ongoing cyber security and
fault tree testing to the approval requirements is 1 solution,
but 2 challenges arise. First, premarket regulation typically
does entail continuous monitoring of the system; study of
results by human analysts and quality control tests against
the algorithm to prevent system failures may become
dysfunctional on a large scale. Second, the Food and Drug
Administration regulates only medical devices, of which
IDx is one, but some Al models (such as the Apple Watch
pulse oximeter [Apple, Inc]) may constitute a general
wellness product designed to be sold directly to con-
sumers.”” Addressing both challenges may reduce the
possibility of low-probability and high-consequence
events, but represent trade-offs in system efficiency and
resource use around Al in medicine.

In response, the Food and Drug Administration and
similar agencies in other countries may require reform to
accommodate the challenges presented by Al Alternatively,
the mismatch between the current regulatory structure and
the potential impacts of Al in medicine may mean that the
Food and Drug Administration is ultimately not well-suited
for regulating Al In the latter case, a new agency may be
required, or governance could occur through a different
mechanism entirely, for example, through government
payment choices in national health insurance schemes.

In conclusion, artificial intelligence presents a range of
novel opportunities to improve medical care and to make
health care more widely accessible to patients. However, the
use of Al raises many ethical concerns, even in cases where
it augments the capabilities of human physicians and tech-
nicians. These issues are in part endogenous to Al, and are
in part a function of the regulatory, social, and political
circumstances in which it is developed and implemented.
Realizing the full benefits of AI will require reaching a
consensus on which trade-offs are acceptable as this tech-
nology is implemented at scale.
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