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The existence of magnetic order (also termed collective
magnetism) that is the orderly arrangement of the mag-
netic spins appearing in materials below an ordering
temperature (e.g., the Curle temperature, T, of a fer-
romagnet or the Neel temperature, Ty, of an antiferro-
magnet; see Magnetic Moment and Magnetization)
points to a class of physical phenomena that can be
described as magnetic phase transitions. The thermo-
dynamics of these phase transitions can be described by
energy functions (expressed in terms of intensive or
extensive variables), in terms of magnetization-tem-
perature (M-T) phase diagrams, or in terms of critical
exponents that describe the variation of thermodynamic
properties (as a function of the order parameter) as the
ordering temperature is approached. In this article, we
describe the thermodynamics of magnetic ordering tran-
sitions, the order of the transitions, critical exponents,
and thermodynamic variables. We further describe mag-
netic phase transitions within the framework of the
mean field Landau theory of phase transitions with
discussion of several magnetic equations of state.

The discussion of thermodynamic properties begins
with the definition of thermodynamic potential functions
and their derivatives. For simplicity, we can take pres-
sure and volume as being held constant and consider
only magnetic work terms. In this case the entropy (S)
and magnetization (M) are extensive variables, the
temperature (T) and field (H) are intensive variables,
and the different energy functions are the internal energy
(U(S, M), the enthalpy (E(S, H)) (many texts express
enthalpy as H, but E is used here to avoid confusion
with applied magnetic fields, H), the Helmholtz free
energy (F{T, M), and the Gibbs free energy (G(T, H)). The
differentials of each are

dU=TdS+HdM
dE = TdS—-MdH
dF = -SdT+ H dM
dG =-SdT-M dH

(1)

Two specific heats, Cyy and Cy, are defined as
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The adiabatic and isothermal susceptibilities are given,

respectively, by
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Phase transitions reflect discontinuities in certain deri-
vatives of the free energy functions. The order of a phase
transition is defined in terms of the smallest derivative of
the free energy function for which a discontinuity occurs
at the transition temperature. Figure 1a shows the func-
tional dependence of the Helmholtz free energy on M
and Figure 1b shows the same with the inclusion of a
field (Zeeman) energy term. Figure la shows a second-
order transition to occur when the parameter A (defined
below) is zero (A=0 at the Curie temperature) giving
rise to the temperature-dependent magnetization of
Figure lc. Figure 1b shows a first-order transition to
occur in a field, H, when the parameter A is zero.
The magnetization at constant temperature:
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inaferromagnetat equilibrium is discontinuous at H=0
for T<Te (Fig. 1d). At Te, M is continuous, but the
susceptibility is discontinuous between the ferromag-
netic and paramagnetic states. The Helmholtz free
energy (Fig. 1a) has a minimum only at M=0 for T> T¢.
For T< Tg, two minima occur at +M,, the value of the
spontaneous magnetization. The H=0 ferromagnetic
transition is second order (higher order), at T, while
for H+#£0 the transition is first order. The transition at
H=0 may be first order due to magnetostriction effects.
See below.

From the above discussion it is clear that the sponta-
neous magnetization, M, or the reduced magnetization,
m= M/M;(where M;is the saturation magnetization), will
serve as the order parameter in the ferromagnetic phase
transition. In antiferromagnetic, ferrimagnetic, or heli-
magnetic systems, m is not spatially uniform on the
atomic scale. The order parameter must therefore be
taken as a spatial function of the local reduced magne-
tization, m(n).

(4)

LANDAU THEORY OF MAGNETIC PHASE TRANSITIONS

In our discussion we will rely on the Landau theory of the
magnetic phase transitions. In the Landau theory, the
Helmholtz free energy is expanded in a Taylor series
where, for symmetry reasons (broken time inversion
symmetry in magnetic materials), only even powers of
the order parameter, M, are kept in the expansion. The
temperature dependence is described in terms of expan-
sion coefficients, of which A(T) is a function of temper-
ature. Near T, where the order parameter is small, only
a few terms need to be kept in the expansion. Consid-
ering such an expansion, truncated at two terms and
addinginaterm toreflect the Zeeman contributions (i.e.,
potential energy of the magnetization in the internal
field), the magnetic Helmholtz free energy (at constant
temperature) can be expressed as

Fy = lA(T)M2 + %B('I‘)M‘LHOMH

s (5)
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where A(T) and B(T) are the expansion coefficients in the
Landau theory, and B is positive for stability. An equa-
tion of state can be derived by minimizing the free energy
with respect to magnetization, the order parameter of the
ferromagnetic material:

OFy

_ 3_ _
g =AM+ B(T)M®—tgH = 0 (6)
From this equation we obtain:
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By invoking a microscopic model of the magnetization (of
which there are many), one can determine the specific
coefficients A(T) and B. For example, in the Stoner theory
of itinerant ferrromagnets, the magnetic equation of
state and coefficients are expressed by the following
equation (Gignoux, 1995):

(8)
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By equating coefficients of Equations 7 and 8, we get
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In this equation M(0, 0) is the magnetization when H=0
and T=0 and yg is the magnetic susceptibility at O K.
Notice that the Landau theory predicts a (Pauli) para-
magnetic state, M=0 (no spontaneous magnetization),
when the coefficient A(T) > 0. On the other hand, a stable
spontaneous magnetization is predicted for H=0 when
A(T) < 0. This spontaneous magnetization is
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Figure 1. (a) Helmhollz free energy functional dependence
on M and (b) the same with the inclusion of a field (Zeeman)
energy term. (e) Temperature, T, dependence of the
magnetization, M(T), in zero field and (d) fixed Tmagnetization
versus field response above and below the ordering
temperature, Tz. Adapted from Ausleos and Elliot (1983).

In the presence of a field, and for the case A(T) <0, this
model gives rise to a stable spontaneous magnetization,
which is described by the equation of state (see Equa-
tion 7). From Equation 8 we can see that plots of M*(H, T)
versus H/M(H, T) are linear and that plotting different
isotherms of M? versus H/ M allows for the determination
of A(T) and B(T). Moreover, since A(T¢) =0, that is, A(T)
vanishes at the Curie temperature, T¢, the Curie tem-
perature can be determined as the isotherm with O as its
intercept. Plots of M? versus H/M isotherms are called
Arrott plots and are one method of determining the
ferromagnetic ordering temperature from magnetization
measurements.

If the Landau expansion is extended to higher order,
another free energy minimum for M > 0 may exist, which
could give rise to a so-called metamagnetic state. If
A(T) <0 but small, a Pauli paramagnetic state may
transform into a ferromagnetic state with small M. How-
ever, if B(T) <0, it is possible to have an additional
minimum in the Helmholtz free energy at H#0, This
minimummay in factbe deeper than thatat M,.Insucha
case, application of a field causes the system to choose
the second minimum (at My), giving rise to an M(H) curve
as depicted in Figure 2 for this first-order metamagnetic
response. See Shimizu (1981).

Equation 5 can be expanded to include other order
parameters, specifically strain, es:
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Fy = §A(T}M2 + %B(T)M4

where / is the coupling parameter between the magne-
tization and strain, £s. By minimizing F,;with respect to
strain and substituting back into Equation 11, we
obtain:
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This shows that if the strain is large enough, the coeffi-
cient of the term M* can become negative, making the
magnetic transition thermodynamically first order.

CRITICAL EXPONENTS IN MAGNETIC PHASE TRANSITIONS

One of the goals of thermodynamic treatments of mag-
netic phase transitions is to determine critical exponents
associated with the phase transition. This involves
describing power law exponents for the temperature
dependence of thermodynamic quantities as the order-
ing transition is approached. Determination of critical
exponents and scaling laws allows for closed-form repre-
sentations of thermodynamic quantities with significant
usefulness in prediction and/or extrapolation of ther-
modynamic quantities (Callen, 1985). To describe such
scaling law behavior, the reduced temperature variance,
g, is defined as

(13)

& approaches 0 as T approaches T¢ from below or from
above. For T> Te and H=0, the specific heat (C, which
can be Cyyor Gy, see Equation 2) and isothermal sus-
ceptibility obey the scaling laws:

Cr~e™  gp~e™ (14)
For T< Tc, the specific heat, the magnetization, and the
isothermal susceptibility obey the scaling laws:
M~ (—¢)* (15)

Cr (=" (=07,

At T¢ the critical isotherm is described by
H ~ |M| (16)
Thermodynamic arguments, such as those of

Rushbrooke (see Callen, 1985), allow us to place restric-
tions on the critical exponents. For example, defining

ity — (%’)H ~ () (17)
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Figure 2. (a and b) Magnetization curve showing a
metamagnetic response. M, is the magnetization when

H < Hg: M, is the magnetization in the metamagnetic state, for
H > Hg. Note the first-order character of the transition from M;
to M,. Adapted from Shimizu (1981).

and using thermodynamic Maxwell relations, it is pos-
sible to show that

1r(Cu—Cy) = Ty (18)
which implies
Tu
Gy ol (19)
‘T

This then requires that, as T approaches Ty from
below:

L2847 >2 (20)

See Stanley (1971).

Furthermore, if Cy;/Cy approaches a constant (not
equal to unity), then two more inequalities may be
expressed:

dEBLEO) 22, ¥ = PG-1) (21)
Scaling theory predicts that these inequalities can be
written as equalities.

In the Landau theory (mean field), it can be deter-
mined that

o =a=0, p= Y=y=1, §=3 (22)

For example, the critical exponent ffin the Landau theory
can be found as follows:

Il

A(T) = a{T-T¢)sinceitis > 0above Te and < 0below Te

Fy

It
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In zero field:

A 1 2,1 4

F = ga(T-Te)M*+BM

B = a(T—Tc)M -+ BM? =0 at equilibri

Y i c = equi um
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Thus:

Therefore:

Also, the critical exponent of the isotherm can be deter-
mined as follows:

Fir = %a(T—’I‘C)MQ s %BM‘L;cUHM

oF ”
W = C[(T*Tc)M‘P BM°—-H

Therefore, on the critical isotherm, T'="Te:
H
M3=—= and 6=3
B

Chikazumi (1997) has reported that the well-known
Ising model in 3D for two spins gives rise to the following
critical exponents:

o =0.063, o =0.125, f=0.313, y'= 131,

=125  6=52 (23)

These values that are predicted from models are not
always found experimentally. The values have been
found in the range:

—-02<u<02
-02<¢ <03
03<f<04
12<y<14
l<y< 12
4<6<b

See Callen (1985).

If we consider a vector magnetization, and allow for a
spatially varying local magnetization, then the Landau
theory must be extended to a more complicated form.
Further, it is often necessary to add terms ~(VM)? to the
energy functional. In such cases, Te = Te(k) and z = (k)
can be taken as reciprocal space expansions and
the spatial dependence of the susceptibility, z(r), can
be determined as the Fourier transform of y(k). In these
cases a correlation length, {, for the magnetic order
parameter is defined, which diverges at T.. Further

discussion of the spatial dependence of the order param-
eter is beyond the scope of this article.

APPLICATIONS

Of particular current interest in application of the the-
ory of magnetic phase transitions has been the devel-
opment of materials exhibiting large magnetocaloric
effects. The magnetocaloric effect (MCE) explains the
fact that magnetic materials heat when placed in a
magnetic field and cool on removal from the field.
This effect was first observed by Warburg (1881) in iron.
The magnitude of the effect in elemental ferromagnets,
Fe, is 0.5-2°C per Tesla.

Recently, Gd-Ge-Si alloys have been shown to have
much larger effects of ~3-4°C per T. The search for new
magnetocaloric effect materials is an active area of cur-
rent research. A large MCE is the figure of merit for the
efficacy of a magnetic refrigerant. With an increasing
field, the magnetic entropy decreases and heat is trans-
ferred from the magnetic system to the environment in
an isothermal process. With a decreasing field, the mag-
netic entropy increases and heat is absorbed from the
lattice system to the magnetic system in an adiabatic
process. The Arrott-Noakes (Arrott and Noakes, 1967)
equation of state, expressing scaling behavior in terms of
critical exponents, ff and .

HY = a(T—Tc)MU"‘ + M/ +(/B) (24)

has recently been used to scale magnetocaloric data for
the magnetic entropy change in the ferromagnetic to
paramagnetic phase transition for a variety of materials
onto a single master curve (Franco et al., 2007) allowing
for the comparison of materials for this application.

Equation 24 also shows that if /7 is plotted against
MU/ +{/E)| the result should be a straight line at the
Curie temperature. For mean field values this is the
Arrott plot, discussed above.
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