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Abstract

We investigate the use of the inclusive value based approach for estimating dynamic discrete

choice models of demand with aggregate data. The inclusive value sufficiency (IVS) approach

approximates a multi-dimensional state space with a single “sufficient statistic” in order to

mitigate the curse of dimensionality and tractability estimate model primitives. Although

in widespread use, the conditions under which IVS is appropriate have not been examined.

Theoretically, we show that the estimator is biased and inconsistent. We then use Monte

Carlo simulations (of a simple model of dynamic durable goods adoption) to demonstrate the

degree of bias associated with the inclusive value approximation estimator under an array

of parameterizations and data generating processes. In our examination, we show that the

estimator performs better when the discount factor is smaller and/or when the price sensitivity

of the consumer is larger. Additionally, the Monte Carlo results illustrate that the IVS method

under estimates the true long-run own-price elasticities and over estimates the change in

profits as prices change. Theses findings highlight the importance of correctly specifying how

consumers form expectations. As a result, researchers should consider how to empirically

support their assumption for the underlying consumer belief structure.
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1 Introduction

Dynamic Discrete choice (DDC) models are commonly used in marketing and economics, where agents

(e.g. consumers) choose from among a limited set of mutually exclusive alternatives (e.g. products or

brands). Moreover, many of these papers employ aggregate data because it is typically more commonly

available from market research firms for a wide range of industries. Such data is specified as market shares

for products or brands over a number of time periods, and for a number of different markets.

With models of dynamic durable good adoption, estimation is typically computationally demanding,

as each product characteristic may span a continuous range, and the number of such observables may

grow very large– increasing in the number of products, the number of product characteristics, and the

number of markets. Most, if not all, models that use aggregate data have relied upon methods to reduce

the state space to overcome the curse of dimensionality through the selection of ad hoc important state

variables and markets with a small number of products, [Song and Chintagunta, 2003] or through the use

of a “sufficient statistic” to capture the relevant state.

The latter method developed in further detail in Melnikov [2013] and Gowrisankaran and Rysman

[2012] is widely used in the literature with aggregate data [Carranza, 2010, Schiraldi, 2011, Derdenger and

Kumar, 2013, Weiergraeber, 2017, Ho, 2015, to cite a few] as well as individual data [Hendel and Nevo,

2006]. The method tractably allows for the estimation of a high dimensional problem, but it also allows

the researcher a straight forward method to correct for price endogeneity–a widely accepted problem for

models with aggregate data. Specifically, in order to mitigate the computational demands of consumers

forming expectations of each product’s characteristic evolution over time, Gowrisankaran and Rysman

[2012] (G&R) assume consumers track the evolution of the inclusive value as the only state variable. The

idea of inclusive value [McFadden, 1974] is to represent the expected utility of purchasing an "inside"

good, i.e. excluding the no-purchase or outside option. This inclusive value captures in one variable all

the population level observable and unobservable elements that could potentially be present in the state

space. The underlying assumption of this approach is that consumers make choice decisions based upon

how this market level inclusive value evolves, rather than on individual product level attributes. Thus, the

inclusive value is treated as "sufficient" to capture the impact of all other variables. Despite its prevalence

in the marketing and economics literature and its computational simplicity, the accuracy of the inclusive

value assumption and how well it approximates the true underlying dynamics in which consumers track

all state variables individually has not been carefully examined.
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First, we theoretically show that the estimator is biased and inconsistent. We then use Monte Carlo

simulations (of a simple model of dynamic durable goods adoption) to demonstrate the degree of bias

associated with the inclusive value approximation estimator under an array of parameterizations and data

generating processes. In our examination, the IVS estimator performs better when the discount factor is

small (β = .8 vs β = .95) and/or when the price sensitivity of the consumer is large (αp = −.3vs αp = −.2).

We further analyze the bias the IVS generates with respect to short and long run elasticity measures.

Within our Monte Carlo environment, results illustrate that the IVS method under estimates the true

long-run own-price elasticities and over estimates the change in profits as prices change. These findings

highlight the importance of correctly specifying how consumers form expectations about the underlying

dynamics. We conclude that researchers should begin to empirically support their decisions about the

underlying consumer belief structure in order to affirm the reader about the validity of their results.

2 Structural Model

Dynamic discrete choice models of demand assume consumers are forward looking, and weigh a trade-

off between making a purchase today versus the option value of waiting. Before entering the market,

consumers consider numerous product and market characteristics that may affect their current and future

purchase utilities, such as price, age of product, quality, etc.

The sequence of events is as follows: consumer i ∈ I considers whether or not to purchase any product

from the available set with 0 representing the outside option. Thus, the choice set is Jt ⊆ {0, 1, ...J}. In

each period t ∈ T, a consumer purchases or chooses not to purchase any product. Purchasing a product

is a terminal action in our model, and once a purchase is made, the consumer has no active role in the

market. The consumer decision process is thus equivalent to an optimal stopping problem with many

available choices.

2.1 Consumer Utility

Consumer i determines in period t whether or not to purchase any product j, by observing a vector of

individual-level state variables ϑi,t specific to the consumer and time period. The state can be described

as ϑi,t = (xt, ξt, εi,t), where xt is a matrix of observed market level states, ξt is a vector of the unobserved

product characteristics for each product (also called the unobserved population level states), and εi,t is the

vector of individual choice-specific idiosyncratic private shocks, which are not observable to the researcher.

Typically, in a product choice model, we include all the product variables in the state space, xt =
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(x1t, . . . , xJt) where xjt =
(
xcjt, pjt

)
, with xcjt denoting a vector of observable product characteristics and

pjt the price for choice j in period t. The unobservable states or “structural errors” in the model are

denoted:

ξt = (ξ1t, ξ2t, . . . , ξJt)

where ξj,t is a time-varying choice-specific variable that is unobservable (to the econometrician), typically

thought of as a measure of functional or design quality. If the consumer does not purchase in period t, he

receives a period utility of 0.

Denote the market-level states as Ωt = (xt, ξt), which includes both observable and unobservable

states. Thus, the vector of state variables ϑi,t = (xt, ξt, εi,t) = (Ωt, εit). When a consumer chooses to

purchase product j at time t he receives a net flow utility in each of the following periods τ ≥ t

fj,τ (xct , ξt) = αj + αxx
c
j,t + ξj,t.

Note that this flow utility in period τ is fixed at the time of purchase t and depends on the observable

and unobservable characteristics at t. Thus, when a consumer i purchases j at time t, his utility during

the purchase period t is:

uit(Ωt, εijt) = fj,t (xct , ξt) + αpi pjt + εijt (1)

where αpi is the consumer price coefficient.

2.2 Dynamic Decision Problem

The consumer makes a trade-off between buying in the current period t and waiting until next period to

make a purchase. The crucial inter-temporal trade-off is in the consumer’s expectation of how the state

variables xt evolve in the future. For example, if the product characteristics (or price) are expected to

improve over time, then the consumer has incentive to wait.

Consumer i in period t chooses from the set of choices Jt, which includes the option 0 to wait without

purchasing any product. However, if the consumer purchases, he exits the market immediately upon pur-

chase. A consumer’s purchase period utility is impacted by the observable state vector xt, the unobservable

ξt (both included in Ωt) as well as the idiosyncratic shocks as specified in (1).

For a consumer in the product market faced with a state Ωt in period t, we can write the Bellman
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equation in terms of the value function V (Ωt, εt) as follows:

Vi(Ωt, εt) = max

εi0t + β EΩt+1,εt+1|Ωt

[
Vi (Ωt+1, εt+1)

∣∣Ωt

]︸ ︷︷ ︸
No Purchase

, max
j∈Jt\{0}

vi,j (Ωt) + εijt︸ ︷︷ ︸
Purchase j




where the first term within brackets is the present discounted utility associated with the decision to not

purchase any product in period t. The choice of not purchasing in period t provides zero flow utility per

period, the realized value of an error term for option j = 0 in period t and a term that captures expected

future utility associated with choice j = 0 conditional on the current state being Ωt. This last term is

the option value of waiting to purchase. The second term within brackets indicates the value associated

with the purchase of a product. Given the fact that consumers exit the market after the purchase of any

product a consumer’s choice specific value function can be written as the sum of the current period t

utility and the stream of utilities in periods following purchase:1

vi,j (Ωt) =
1

1− β
fj,t (xct , ξt) + αpi pjt (2)

= 1
1−β [αj + αxxj,t + ξj,t] + αpi pjt. (3)

We write the ex-ante value function V , which represents the value of being in state Ωt before the value of

the shock εt is realized, as the expectation over the shocks:

Vi(Ωt)=
∫
Vi(Ωt, εt)φ(εt)dεt.

where φ is the multivariate distribution of idiosyncratic errors across the choice set.

With assuming that the idiosyncratic errors ε are distributed as Type I extreme value random variables

centered at zero, we can rewrite the Bellman equation in terms of the ex-ante value function as:

Vi (Ωt) = log

∑
j∈Jt

exp (vi,j (Ωt))

 = log

exp
[
β EΩt+1|Ωt

[
Vi (Ωt+1) |Ωt

]]
+

∑
j∈Jt\{0}

exp [vi,j (Ωt)]

 ,

which is obtained from the choice-specific value function of waiting, i.e. with v0 (Ωt) = β EΩt+1|Ωt

[
Vi (Ωt+1)

∣∣Ωt

]
.

The market shares si,j (Ωt) of choosing each j ∈ J given the state Ωt can then be written in closed form
1The below assumes a constant flow of utility after the purchase of a product, but this can be generalized to the case

were flow utilities are time-varying (e.g. in the presence of complementary products).
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as:

si,j(Ωt) =
exp (vi,j(Ωt))∑

j′∈Jt exp
(
vi,j′(Ωt)

) .
2.3 The Inclusive Value Sufficiency Assumption (IVS)

The idea of an inclusive value works as follows. First, define and compute the expected value of the

maximum of utilities from the purchase choice set (excluding the no-purchase option) as the inclusive

value. Second, it is assumed that the inclusive value is sufficient to capture all the dynamic factors into

one state variable. This assumption is termed inclusive value sufficiency [Gowrisankaran and Rysman,

2012], and implies that all states with the same inclusive value term have the same value for the expected

value function. Third, the inclusive value is modeled as evolving over time according to a specified process,

typically AR(1), and assumes consumers have rational expectations regarding its evolution.

This inclusive value simplification ensures that the state space is tractable by dramatically reducing

the state space to one dimension, defined as δi(Ωt):

δi(Ωt) = Eε

[
max
j∈J\0

vi,j(Ωt) + εjt

]
= log

∑
k∈Jt

exp (vi,k,t)

 .

The Bellman equation can consequently be expressed in terms of the inclusive value, δi,t:

Vi (δi,t) = log

exp (δi,t)︸ ︷︷ ︸
Purchase

+ exp
(
β E

[
Vi(δi,t+1)|δi,t

])︸ ︷︷ ︸
No Purchase

 .

The evolution of the inclusive value is specified as evolving according to an AR(1) process:

δi,t+1 = γ0,i + γ1,iδi,t + ζi,t

where ζi,t is normally distributed and is iid across consumers and time periods. The individual-specific

parameters γ0,i and γ1,i characterize the evolution of the inclusive value state, and yield a probability

distribution for the future state, conditional on the current state.

2.4 Implications of the Inclusive Value Sufficiency Assumption

Although the benefit of this method is that it reduces the computational burden of estimating the model

primitives, it comes with the cost that consumers are assumed to react identically to different types

of changes only through the inclusive value. Thus, a new product introduction or increased product

6



availability could have the same positive impact on the inclusive value as a price reduction. In the

smartphone market, for example, the model might view the following as equivalent since they each improve

the expected utility of the “best” choice option for consumers:

1. introduction of a new model of high-quality iPhone

2. introduction of multiple low-quality phones

3. price reduction for existing products on the market.

4. improvement in product characteristics of existing models (e.g. more memory capacity)

The problem with the approach is that a consumer’s decision might be quite different under each of the

above scenarios. We examine how accurately this assumption approximates the true data generating

process for estimation: when does this approximation method work best and when might it not?

3 Evaluating the Inclusive Value Assumption

We first present a theoretical analysis of the IVS estimator and follow with Monte Carlo simulations.

The Monte Carlo data generating process (DGP) is created to reflect the essential feature of dynamic

forward-looking models with consumers facing intertemporal tradeoffs between purchasing a product in

the current period, compared to waiting for better product characteristics or prices. We use a simple model

where there are no observable product characteristics and consumers value price and the unobservable

characteristic. Consumers exit the market following a purchase, and continue if they have not made a

purchase. It is important to note that the DGP (“true model”) differs significantly from the IVS method.

Specifically, the underlying model assumes consumers track a multidimensional state variable to form

expectations, whereas the IVS method assumes that consumers track only the inclusive value. Thus, the

IVS method might not be unable to fully capture a consumer’s decision process due to this assumption.

4 Theoretical Properties of the Inclusive Value Approximation

In this subsection, we theoretically analyze the small and large sample properties of the IVS estimator.

Proposition 1. The IVS estimator is biased and inconsistent even when there is no price endogeneity.
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Proof. Assume the data generating process follows from above with homogeneous consumer preferences.

For sake of the proof, assume that the DGP value of EΩt+1|Ωt

[
V (Ωt+1) |Ωt

]
is known.2 Under this scenario

the complex dynamic discrete choice model can be transformed into a linear model, where ξ̃j,t =
ξjt

1−β and

α̃ = α
1−β and YΩ is known.

YΩ ≡ log
(
sjt
s0t

)
+ βEΩt+1|Ωt

[
V (Ωt+1) |Ωt

]
= α̃+ αppjt + ξ̃j,t.

Define the first-stage reduced form relationship between the instrument Z and endogenous variable p as

specified below with parameters ς and γ and reduced form error ν:

pjt = ς + γZjt + νjt

Denote the defined instrumental variable (IV) estimate of αp as

α̂p = Cov(Z,YΩ)
Cov(Z,p)

Similarly, the IVS estimator can be specified via the DGP of EΩt+1|Ωt

[
V (Ωt+1) |Ωt

]
and an approximation

error, η(δt) where η(δt) = EΩt+1|Ωt

[
V (Ωt+1) |Ωt

]
− Êδt+1|δt

[
V (δt+1)

∣∣δt] and Êδt+1|δt
[
V (δt+1)

∣∣δt] is the
IVS approximation-estimate of the expected value function. Under this setting, the model can be written

as:
log
(
sjt
s0t

)
= α̃IV S + αpIV Spjt + χ̃j,t − β Êδt+1|δt

[
V (δt+1)

∣∣δt]
YIV S = log

(
sjt
s0t

)
+ β Êδt+1|δt

[
V (δt+1)

∣∣δt] = α̃IV S + αpIV Spjt + χ̃j,t

Importantly, the structural error in this model is χj,t, which is different from the structural error in the

true model as it encompasses the approximation error of the IVS method from the true model. With

Êδt+1|δt
[
V (δt+1)

∣∣δt] = EΩt+1|Ωt

[
V (Ωt+1) |Ωt

]
− η(δt), the structural errors under the IVS estimator are

related as :

χ̃j,t = ξ̃j,t + βη(δt)

2This assumption is only for the sake of proving biasedness. However, note that if we were interested in proving unbi-
asedness, this argument would be problematic. We thank an anonymous reviewer for this point.
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The IVS estimate α̂pIV S then equals:

α̂pIV S = Cov(Z,YIV S)
Cov(Z,p) = Cov(Z,α̃0+αpp+χ̃)

Cov(Z,p)

α̂pIV S =
Cov(Z,α̃0+αpp+ξ̃j,t+βη(δt))

Cov(Z,p) = Cov(Z,YΩ)+Cov(Z,βη(δt))
Cov(Z,p)

α̂pIV S = α̂p + βCov(Z,η(δt))
Cov(Z,p)

E
[
α̂pIV S

]
= αp + β E

[
Cov (Z,η(δt))
Cov(Z, p)

]
︸ ︷︷ ︸

Bias

since E[α̂p] = αp

Thus, we find that α̂pIV S is biased above and beyond the small sample bias that may occur with an IV

estimator.3 The additional bias associated with this estimator is a function of Cov (Z,η(δt)) where Z

is an instrument for price given it is typically assumed that the Cov (p, ξ) 6= 0. However, we note that

we have not assumed above that price is actually endogenous. As the covariance between the instrument

and the approximation error increases in absolute value, the magnitude of that bias increases, holding all

other things constant.4

The IVS estimator is also inconsistent since plimN→∞N
−1
(
ZTη(δt)

)
6= 0.5 By Slutsky’s limit theorems,

we can write

plimN→∞
[
α̂pIV S

]
= αp +

plimN→∞N
−1(ZT ξ)

plimN→∞N−1(ZT p)
+ β

plimN→∞N
−1(ZTη(δt))

plimN→∞N−1(ZT p)

plimN→∞
[
α̂pIV S

]
= αp + β

plimN→∞N
−1(ZTη(δt))

plimN→∞N−1(ZT p)
.

While plimN→∞N
−1
(
ZT ξ

)
= 0, the challenge for the IVS estimator is finding an instrument for price

(Z) that is uncorrelated with the structural errors (ξ) and the approximation error η(δt) such that

plimN→∞N
−1
(
ZTη(δt)

)
= 0.

Consider the case without endogeneity, i.e. price pj,t is not correlated with ξj,t. We can use pjt as

an instrument directly. In such a case, the term Cov (Pj,t,η(δt)) is not zero since the inclusive value δt

depends on price pj,t, implying the estimator is biased and inconsistent. This finding highlights that the

IVS estimator generates bias estimates for exogeneous (product characteristics) variables as well.

Proposition 2. In the case where there is an endogenous variable price present, there can be no valid
3Andrews and Armstrong [2017] illustrate that an IV estimator under certain conditions is an unbiased estimate of αp.

Thus,E[α̂p] = αp.
4In our Monte Carlos simulations below we find that Cov (Z,η(δt))<0 leading to a negative bias associated with α̂pIV S

given Cov(Z, p) > 0. Additionally, note in small samples E
[
Cov(Z,η(δt))
Cov(Z,p)

]
6= E[Cov(Z,η(δt))]

E[Cov(Z,p)]
. Thus, if the E[Cov (Z,η(δt))] =

0, the bias would still remain.
5In this case, we use the number of observations N = |J | × T .
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instrument that can provide an unbiased and consistent estimate.

Proof. We consider here the endogenous price case. For Z to be a potential instrument, it needs to be

correlated with price and uncorrelated with the structural error χj,t. Since χj,t = ξj,t + βη(δt(pt)), any

instrument Z that is correlated with price will also be correlated with the error given η(δt(pt)). However,

this leads to a problematic situation. We know from the model structure that any price instrument (Z)

that is correlated with pj will also be correlated with η(δt), since δ is a function of pj . This correlation

results in Cov (Z,η(δt)) 6= 0 in small samples and plimN→∞N
−1
(
ZTη(δt)

)
6= 0 in large sample, which

leads to α̂pIV S being a biased and inconsistent estimate of αp.

The above proof illustrates that the bias and inconsistency associated with the IVS estimator is a

function of the relationship between Z and the approximation error, η(δt) when the true data generating

process has consumers tracking each state variable. Our research is the first to theoretically highlight the

small and large sample properties of the IVS estimator. While we illustrate the theoretical properties of

the IVS estimator, we also want to understand their practical accuracy across different plausible scenarios.

It may be possible that while the IVS estimator is biased and inconsistent, its bias may be low in practice.

The above proposition motivates the use of Monte Carlo simulations to illustrate the degree of bias

associated with the IVS method under a variety of realistic parameterizations and conditions. Finally, we

should note the obvious in that as β → 0 any bias generated by the approximation method also tends

toward zero.

It is important to highlight that Andrews and Armstrong [2017] show that in the case of a single

instrument, their estimator for the price parameter αp is unbiased if the sign of γ is known and the errors

of the first and second stage equations are normally distributed. They further show the IV estimator

behaves equivalent to their unbiased estimator when the first stage instrument is strong. Note, the sign

of the relationship between price and the instrument, e.g. a BLP instrument, is a fairly weak assumption

in our context. Thus, they show that an instrumental variable estimate of αp is an unbiased when

Cov(Z, ξ) = 0, Cov(Z,p) 6= 0, the sign of γ is known, the instrument is strong, and the reduced form

errors of the first and second stage equations (ξ, ν) are normally distributed. This finding by Andrews

and Armstrong [2017] is important as it enables our Monte Carlo simulations in §5 to characterize the

bias attributed to the IVS approximation error.
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4.1 When might IVS not be biased / inconsistent?

It is worthwhile to understand the boundary conditions to examine the source of the error in IVS. We

consider two cases, first when we might have a measurement error and second when IVS is a behavioral

assumption.

1. Measurement Error: First, suppose that the approximation error η(δt) is truly a measurement

error, or if the approximation error merely added some noise to the expected value function. How-

ever, we note that the approximation error is due to the nonlinear mapping from a multidimensional

state-space to a single-dimensional state space. Therefore, in general it is likely to depend on the

state variables, including product characteristics and prices.

2. Behavioral Assumption: Second, while the proposition does illustrate an associated bias and

inconsistency of the IVS estimator, it is important to highlight that our conclusion is based on the

true data generation process consisting of consumers forming expectations over all relevant state

variables. In practice, the econometrician is not informed with respect to what the true underlying

model is at the time of estimation, e.g. do consumers look to a sufficient statistic to track as an

aggregate measure of the state when the number of products and state space is large? Thus, in

order to unconditionally make a claim that the IVS estimator is inferior to the full solution method,

one needs a deeper analysis of these two setting with perhaps a test that determines which model of

dynamic product adoption is valid.6 Therefore, it is possible that the IVS estimation procedure may

perform better than the full solution if consumers do in fact form future expectations employing the

inclusive value statistic.

5 Monte Carlo Model and Results

The data generating process follows the above full state variable model. For simplicity, we only include

price and not product characteristics. The number of products varies as J ∈ {2, 3, 4, 5} . We parameterize

the DGP so that prices are decreasing over time, consistent with the durable goods adoption market

setting, and that the generated long term elasticity estimates are realistic (fall with in range of -1 and

-3). The state variables in our Monte Carlo model are (p,ξ) with parameters set at αj = α = 0.5. . We
6We thank the Editor for pushing us to clearly state under what conditions and assumptions these theoretical results

hold.
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consider two price parameterizations where αp ∈ {−0.2,−0.3} with two values of the consumers’ discount

factor (β = 0.80 and β = 0.95). Note, we vary β to illustrate numerically, that the bias shown in the

proof above does decreases when β → 0. We also allow the price processes to vary. In the first set of

simulations we restrict these processes to be identical across products. In the second set, we relax this

restriction and allow for differing price processes for each product.

We characterize the performance of the IVS estimator compared to that of a full solution method. Note

that this might not always be possible since in many cases, the full solution method is computationally

intractable. We present the results from a benchmark full-solution method in order to identify the relative

applicability of the IVS estimator over its full solution counterpart.

5.1 What Parameterizations Should be Chosen?

When generating our simulated data, it is important that the parameterization generates realistic data.

The measure we use to determine the realistic nature of the data is long run elasticity. Many empirical

IO and marketing papers using data from different industries generate own price elasticities within the

range of [1 to 3] (see for example Nair [2007]). For our simulations, the above parameterizations generate

long run elasticities in the above range. The actual elasticity depends upon several factors including the

number of products in the market place, the discount factor and the price coefficient.

In addition, we employ long run own-price elasticities and profits to inform the reader of the difference

between the data generating process and the results of the estimation methodologies, as both of these

measures are economically meaningful to researchers. Specifically, our measure of long run own-price

elasticity is the % change in total quantity for good j for the first 25 periods resulting from a 1% permanent

decrease in the price of good j.7 While we are are agnostic to the time interval of the 25 periods, they

can represent weeks, months or even quarters. At the quarterly interval an annualized discount factor

corresponding to β = 0.95 is slightly larger than what was found in Dubé et al. [2014] of 0.8. We determine

this measure for each good and average over the number of products as follows:

Ep = 100× 1

J

J∑
j=1

[∑t=25
t=1 (Qj,t(p

′
j,t)−Qj,t(pj,t)∑t=25

t=1 Qj,t(pj,t)

]

The profit measure is computed as the sum of discounted period profits and computed based on

prices, marginal costs and sales in each period. We then determine the percent change in profit from a
7In implementing the price change, we use changes from a generated price and marginal cost trajectory, and retain the

same error terms under the changed prices.
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1% decrease in price, assuming an initial market size of I = 10, 000, 000 consumers and a discount factor

of Υ = 0.975 for the firm. The “profit elasticity” is defined as:

Eπ = 100× 1

J

J∑
j=1

∑t=25
t=1 Υt

[(
p′j,t −MCj,t

)
Qj,t(p

′
j,t)− (pj,t −MCj,t)Qj,t(pj,t)

]
∑t=25

t=1 Υt (pj,t −MCj,t)Qj,t(pj,t)

)

5.2 Price Process: Identical Across Products

In this first set of simulation results we assume the data generating process is identical for all products.,

allowing us to focus on investigating how the estimation method performs as ᾱp, J and β vary. The price

process for all simulations is a function of marginal cost and an error term νj,t ∼ N(0, σ2
ν) with σν = 0.25

that is correlated with ξj,t. Such a formulation is motivated by the price endogeneity problem researchers

face when employing aggregate data, where firms can observe ξj,t and then set prices optimally. We use

a reduced form model to specify this dependence.:

pj,t = θ1 +MCj,t + νj,t

where θ1 = 3 and MCj,t, is uncorrelated with the current period unobserved product characteristic

(structural error) ξj,t ∼ N(0, σ2
ξ ) iid across J and T , with σξ = 0.005. Finally, the initial marginal cost

for each of the J products take the value MCj,0 = 9. Consumers are homogeneous in preferences, σp = 0.

Given that current prices are correlated with ξj,t, it is required that we have an excluded instrument

that is correlated with pj,t, but is uncorrelated with ξj,t. Absent product characteristics that could help

generate BLP-type instruments, the natural instrument here is the product’s marginal cost, which has a

decaying trajectory, consistent with a durable goods model:

MCj,t = 0.35 + 0.925 ∗MCj,t−1 + κj,t

where κj,t ∼ N(0, σ2
κ) and σκ = 0.25. Note that κj,t is uncorrelated with price or the structural error.

With three random variables associated with the data generating process, we summarize the distribu-

tional properties of νj,t, κj,t and ξj,t:

13




ξ

ν

κ

 ∼ N
(

0,
∑)

with
∑

=


σ2
ξ ρσξσν 0

ρσξσν σ2
ν 0

0 0 σ2
κ

 and ρ = 1

This specification is useful in generating sizeable correlation between the unobserved structural error and

price, as is typically the case with aggregate sales data.

In Figure 1, we present the corresponding market share for the outside option ( for J = 5 products)

for the two different price parameterizations along with the price paths for each of the five products (for

the simulation NS=1). As is evident, the outside option declines over time, and that its market share is

smallest under the parameterization of ᾱp = −0.2 and largest with ᾱp = −0.3. Furthermore, given the

underlying state transition process is identical across all products, the price paths for all five products are

similar, with differences only driven by the random noise in the marginal cost and price processes.

Table 1 below presents the estimation results of the IVS method and the full solution when the state

transition variables follow an identical transition process. Note that in estimating model parameters for

each method, we estimate the ex-ante expected value function. Table 2 includes the % difference in

the long run elasticity and profit from the data generating process values for each estimation method.

Within Table 1, the most notable fact is the difference in parameter estimates employing the IVS and full

solution methods. The IVS method demonstrates a larger bias and less precision for all price parameters,

number of products and discount factor. That said, the estimates do improve as the number of products J

increases, but at a diminishing rate. For example, with the discount factor set at β = 0.95 and ᾱp = −0.3

the marginal improvement from adding one more product changes from 0.09 (j = 2 to j = 3) to 0.02

(j = 3 to j = 4) and 0.01 for (j = 4 to j = 5). This same pattern is evident with ᾱp = −0.2 and with

β = 0.80.8

In order to translate the illustrated bias into economically meaningful terms, we characterize the long

term own-price elasticities from a permanent 1% decline in price as well as the percent change in profit

from this permanent price change. These measure are determined using the first 25 periods of data.

Like in the case of the parameter estimates, the full solution model dominates the IVS estimator when
8We do generate data associated with J=8 but we do not report these results given the computational time that is

required to form elasticity estimates given the DGP. With 8 products we must determine new equilibrium beliefs for each
measure of own-price elasticity for each NS simulation run. We have estimated the model using this data for both estimators
and have found that the IVS parameter estimates exhibit more bias than the setting of J=5 and in some cases J=2. Thus,
it appears the improvement of the IVS estimator is nonlinear and is eliminated when J is large (J=8).
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it comes to recovering each statistics. The IVS estimator is also found to under estimate the model’s

long term own-price elasticities whereas profits are over estimated. Additionally, note that the own-

price elasticity measures do improve as J increases, but the profit measure does not. It is important to

recognize why. With the own-price elasticity, the model only tracks the total number of units sold over

the first 25 periods, regardless of when they are sold. However, with respect to profit, what matters is

not simply quantity but the timing of which those quantities are sold, given prices decline with time and

discounting of future periods by definition. Thus, our Monte Carlo simulations illustrate that the IVS

procedure is better at recovering own-price elasticities than shifts in profits when price sensitivities are

large (αp = −.3 vs αp = −.2). and/or when the discount factor is small (β = .8 vs β = .95).

Figure 1: Outside Market Share and Prices
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In summary, we observe that the full solution estimates are almost identical to the true parameter

values as expected. The parameter estimates from the IVS method, on the other hand are significantly

different from the true values. Specifically, we find the following:

1. The price coefficient recovered through the IVS method is biased towards zero, thus implying that

consumers are less price sensitive than they actually are. We note that this has a strong impact

on elasticities, that we examine in detail below. The constant term also seems biased towards zero,

although in our parametrization the error seems relatively smaller for this terms compared to the

price coefficient.

2. The standard errors recovered from IVS are almost always higher than for the full solution model.

The confidence interval for the IVS parameter estimates in most cases does not include the true

parameter values.

3. As the number of products in the market J increases from 2 to 5, the error in both the price

coefficient and for the constant terms diminishes, although the rate of decrease is small.

4. When consumers are more price sensitive in reality, it increases the accuracy of the estimates from

the IVS method. The full solution method is accurate for both lower and higher price sensitivities.

5. For a lower discount factor β = 0.8 relative to β = 0.95, the error in estimating the price coefficient

is significantly diminished. This finding is consistent with the theory model, where the bias has β

as a proportional term.

From Table 2, we we make the following observations about the results of elasticities and profit changes

resulting from a small change in prices:

1. With a high discount factor of β = 0.95, the elasticities derived from the IVS model estimates are

between 35% and 47% different from the true elasticities. The profit changes with respect to the

price change also vary in the range of 20-30%.

2. With higher price sensitivity, the error in the price elasticities is lower, but the profit elasticities can

be higher. Thus, the range of parametrizations that IVS is suitable for might depend on what the

estimates are used for (profit or elasticity).

3. Again, similar to the parameter estimates, we find that with a lower discount factor, the error with

IVS is not as high.
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The elasticities and profit impact are directionally similar, however, the quantitative impact is different.

The profit measures are obtained from the sum of discounted profits. Observe that the elasticity measure

is only characterized by the aggregate quantity, whereas the profit measure depends on when products

are purchased, and how they are discounted. If price changes affect the intertemporal purchase patterns,

that will have more of an impact on profits but not on elasticities.

Above, we have detailed the main results when all products follow the same price process. Next, we

examine the parameter estimates and elasticities and profit impact when the products follow different

price processes respectively in Tables 3 and 4. We find very similar patterns of results as we had reported

above, with some quantitative differences. The error variation is directionally the same with respect to

the price sensitivity, discount factor and the number of products in the market when we have different

price processes across products. Again, the full solution method does not suffer from these inaccuracies,

but at the cost of higher computational complexity.

5.3 Price Process: Different Across Products

The next set of Monte Carlos simply expands on the simulations above by creating further heterogeneity

in the price process by increasing the range of ρj from [0.925] to [0.965, 0.895]. The marginal cost constant

also adjusts from 0.35 to a range of [0.21, 0.49] . Everything else remains identical to the above previously

discussed price process.

MCj,t = θmc,j + ρjMCj,t−1 + κj,t

ρj = [0.965;0.94;0.925;0.91;0.895]

θmc,j = [0.21; 0.28; 0.35; 0.42; 0.49].

Like above, we provide Figure 2 to illustrate the outside market share under each price parameteri-

zation and in sub-figure two the greater dispersion of price across all five products than presented above.

The results in Table 3 are very much similar to the results in Table 1–the IVS approximation has the

potential for substantial bias under all parameterizations relative to the full solution method and that its

performance also improves as the discount factor declines and/or when the consumers price sensitivity is

large (αp = −.3). There is also a similar trend with respect to the bias associated with the price parameter

estimate; it too improves as the number of products J increases, but again at a diminishing rate.
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Figure 2: Outside Market Share and Prices
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From the presented Monte Carlo simulations in Tables 1 and 3, we determine the performance of the

IVS estimator varies depending upon the setting. Given that we have discussed the results of the IVS

estimator under the two price processes separately, we limit our discussion to analyzing the similarities

and differences across these two settings. It is clear that when the underlying data generating process

of the relevant state variables becomes more differentiated across products, estimates of the parameters

improve, regardless of the consumer’s price sensitivity. The percent change from the DGP elasticities also

improves as the price process across products becomes more differentiated and as J increases.

However, these improvements do not compete with the results of the full solution method, where little

to no bias is observed in parameter estimates and in the estimates of long term (quantity) elasticities. With

respect to the long term change in profits from a permanent 1% reduction in price, the full solution does

exhibit some deviation from the DGP value but this deviation is smaller than the what is found employing

the IVS method. Finally, the IVS method appears to perform better in recovering parameter estimates and

in matching the long term elasticies when the consumer price sensitivity is large (αp = −.3 vs αp = −.2)

and/or when the consumer discount factor is small (β = .8 vs β = .95), regardless of the price process.

The latter result is unsurprising given Proposition 1–the bias associated with the parameter estimates

decreases as β → 0.9

Additionally, the Monte Carlo results for both price processes illustrate that the IVS method under

estimates the model’s own-price elasticities and over estimates the change in profits as prices change. This

finding highlights the importance of correctly assuming how consumers form expectations on estimates.

If consumers form expectations by tracking each individual state variable, the result of the model mis-

specification by employing an IVS estimator can be quite large with deviations of own-price elasticities

upward of -50% in our Monte Carlo settings. Moreover, with the IVS price parameter estimate biased

toward zero, the associated cross-price elasticities will be biased toward zero as well. This implies a less

competitive environment than what is true. The downward bias of a product’s own-price and cross-price

elasticities can have important ramifications for antitrust/merger analysis as regulators would incorrectly

assume that a firm has to much market power. Thus, when employing dynamic demand models to un-

derstand important policy interventions, its is vital the researcher empirically supports his/her decision

about the underlying consumer belief structure. One such method is for regulators or policy analyst to

directly survey consumers about their beliefs as is discussed in Manski [2004].
9In Appendix A, we present the results of our analysis of a short-term temporary price increase.
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6 Discussion and Conclusion

Dynamic discrete choice models are typically computationally intractable without using approximation

methods [Aguirregabiria and Mira, 2010]. The inclusive value is one such approximation that makes

estimation tractable. In our examination, we show that the estimator generates bias in the parameter

estimates when compared to the full solution method. We also show that it performs better when the

discount factor is small (β = .8 vs β = .95) and/or when the price sensitivity of the consumer is large

(αp = −.3 vs αp = −.2). Additionally, predictions of economic quantities of interest (long-run demand

and profits) indicate potential for substantial bias. Our analysis does have one important limitation and

that it excludes the inclusion of unobservable consumer heterogeneity with respect to the price. We

have experimented with allowing for unobserved heterogeneity, but found that without the right type of

data variation the estimator performs poorly. In order to estimate this parameter we require significant

variation in the data, which is computational challenging to generate given the need for variation across

multiple markets, time periods and products.

Many practical settings of interest feature a large number of products. For example, Gowrisankaran

and Rysman [2012] consider the market for digital camcorders with J = 383 products, and similarly

the automobile market modeled in Berry et al. [1995] had hundreds of models as well. Thus, an alter-

native approach might be to model the primary observable product characteristic or a small subset of

characteristics as the state variables of interest [Gordon, 2009, Song and Chintagunta, 2003], However,

this approach has the disadvantage that crucial unobservable time-varying product characteristics that

determine consumer choices could be left out of the model. In some special cases, it might be possible to

avoid making the inclusive value approximation by using an estimation approach that sidesteps the need

to compute a value function, similar to Bayer et al. [2016], who examine the demand for housing with

an individual model. Broadly, it points to the need for further research into dynamic discrete models to

develop better approximations to address this challenging issue.

The concern regarding approximations used in dynamic discrete choice models are not limited to those

of the inclusive value kind. Rather, there are other widely used approximations in dynamic discrete choice

models, particularly with individual level data. The impact of these approximations has been an under-

explored area of research. They are important because they can result in significant bias not only in the
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obtained parameter estimates, but in counterfactual objects of interest, including elasticities and welfare

measures. More broadly, the difference between theoretical performance of estimators and their small

sample properties would benefit from further careful investigation across a range of settings.

Our work also produces additional questions that are worth building upon in further research. First,

the approximations errors identified here are conceptually present even when IVS is used with individual-

level data in stockpiling models, e.g. Hendel and Nevo [2006]. It would be useful to examine whether

there are specific features of problem settings that might make such a method more accurate, e.g. having

a relatively low number of products. Second, if we are able to identify the expected asymptotic error from

IVS, it might be possible to develop a “bias correction” for it. Even if that proves challenging, it might be

useful to explore whether we might be able to bound the errors identified in the paper. This is likely to

depend on the specifics of the model, but some classes of problems (e.g. with exit choices similar to our

setting of interest) might have simplifications to allow such bounding.
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Appendix A: Short Term Elasticity

In addition to estimates of a long run own-price elasticities and profits to inform the reader of the difference

between the data generating process and the results of the estimation methodologies, we also present short-

term elasticities. Specifically, this short-term own-price elasticity is the % change in total quantity for

good j for the first τshort = 4 periods resulting from a 1% temporary decrease in the price of good j in

period 1. We determine this measure for each good and average over the number of products as done

above with the long-term elasticity measures.The profit measure is computed as the sum of discounted

period profits and computed based on prices, marginal costs and sales in each period. We then determine

the percent change in profit from a 1% temporary decrease in price in period 1, assuming an initial market

size of 10,000,000 consumers and a discount factor of βj = 0.975 for the firm.

We present the results of a short-term temporary price change in Tables 5 and 6 for the setting of

identical price transitions and heterogeneous transitions, respectively. When analyzes the results we find

the results from the own-price elasticity differs from the long term elasticity above. Specifically, the tables

below indicate that % change from the short-term own-price DGP elasticity becomes more negative as J

increases whereas the long-term own-price elasticity improves as J increases. Moreover, it appears that

with respect to both elasticity measures that the IVS is competitive with the full solution when J=2 or

J=3.
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ᾱ
p

=
−

0
.2

T
=

50
;
J=

2
0.

52
-1

.1
9

-3
3.

22
14

.9
9

-1
3.

56
9.

32
0.

52
-1

.0
9

11
.4

7
-5

.7
6

-1
2.

22
11

.1
3

T
=

50
;
J=

3
0.

70
-1

.0
5

-3
5.

22
23

.2
3

-6
.6

8
7.

24
0.

69
-1

.0
2

-0
.8

1
-0

.6
8

11
.0

5
10

.4
6

T
=

50
;
J=

4
0.

79
-0

.9
8

-3
4.

29
27

.5
8

9.
48

-6
.3

2
0.

80
-0

.9
8

-3
.7

8
2.

83
-0

.7
4

-1
.9

9

T
=

50
;
J=

5
0.

84
-0

.9
5

-3
4.

28
30

.7
2

-2
.9

3
3.

56
0.

87
-0

.9
8

-6
.2

6
5.

56
3.

00
-3

.9
0

E
s p

E
s π

%
∆
E
s p

%
∆
E
s π

%
∆
E
s p

%
∆
E
s π

E
s p

E
s π

%
∆
E
s p

%
∆
E
s π

%
∆
E
s p

%
∆
E
s π

ᾱ
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Appendix B: Computational Details

We use the following computational algorithm to estimate the model parameters. We employ a GMM
procedure using mathematical programming with equilibrium constraints (MPEC). Model parameters are
θ = (ᾱp, α). Let W be the GMM weighting matrix. The constrained optimization formulation is

minθ,ξ [ξ′ZWZ′ξ] ,
st : ŝjt(ξ, θ) = Sjt

with the market share equations imposed as constraints to the optimization problem.

Overall Procedure:

1. Given a guess of θ = (ᾱp, α) and ξjt determine the simulated market share for each product in each
time period.

2. With the same guess of θ = (ᾱp, α) and ξjt compute the GMM objective function defined in the
equation above.

3. Search over θ = (ᾱp, α) and ξjtto minimize the objective function given the constraint that the
observed market share equals the simulated share.

Formation of the Market Share Constraint

1. Given a guess of θ = (ᾱp, α) and ξjt formulate fk,t (xct , ξt) for each product k, and for each period t.

2. Obtain δhkt for each product k and period t, using the following equation:

δkt =
Fk,t

(1− β)
+ ᾱppk,t k ∈ Jt

3. Compute the inclusive value for each consumer:

δt = log

(∑
k

exp (δkt)

)

4. Obtain the coefficients through estimation of an AR(1) regression of δit:

(a) estimate δt+1 = γ0 + γ1δt + ζt

(b) given estimates of γ1 and the variance of ζt discretize (N=30) formulate the transition matrix
of δt using the Rouwenhorst method
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5. Obtain consumer-specific expected value of not purchasing (and hence continuing):

EV (δ) = log
(

exp (δ) + exp
(
β E

[
EV (δ

′
)|δ
]))

(a) Given the discretized values of δt and the corresponding transition matrix perform a value
function iteration to determine EV (δ)

(b) Perfrom a linear interpolation of the expected value function back to the estimated values of
δit

6. The model-predicted purchase probability or market share for each product k in each period t is
then given as:

ŝkt =
exp (δt)

[exp (EV (δt))]

exp (δkt)

exp (δt)

7. Determine the difference between the observed and simulated market shares at a given parameter
set sk,t − ŝkt (δt)
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