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Abstract

Multiple groups of consumers usually reside in the same market. These groups’ pref-

erences often “overlap”—for a consumer from a high-income group, there is a consumer

from a low-income group that has the same preference (e.g. price) due to within group

variation. Leveraging such cross-group matching of consumers, we use each groups’

product market shares to estimate the conditional choice probabilities (CCP) as a

function of unobserved consumer heterogeneity. Armed with our novel CCP estimator,

we develop an approach to identify and estimate a dynamic discrete demand model

for durable goods with non-random attrition of consumers and continuous unobserved

consumer heterogeneity but without the usual need of value function approximation or

reducing the dimension of state space by ad hoc behavioral assumptions. We illustrate

the empirical value of our method by estimating consumer demand for electric vehicles

in the state of Washington during the period of 2016–2019. We further ascertain the

impact of a different federal tax credit based upon a car’s MPGe rating rather than

battery size, which was the existing policy during the data period.

Keywords: Dynamic discrete choice, dynamic selection, market shares

1 Introduction

Dynamic discrete choice models play a key role in modeling consumer demand due to their

ability to incorporate the dynamics of the state of the market and the intertemporal pref-
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erences of consumers. The incorporation of these dynamic aspects comes at the cost of

complexity of estimation and obscurity of identification. Specifically, defining a tractable

state space while accounting for all the products in the market is often a difficult task, lead-

ing some to adopt ad hoc approximation methods. The task becomes even more challenging

when the researcher wants to include multidimensional unobserved state variables, consumer

and product specific, while having access to only aggregate sales data. Besides the estima-

tion difficulties, it is also uncertain whether (or which of) the structural parameters are

identified when there are both continuous unobserved consumer heterogeneity and product

characteristics. In the market of durable products where consumers leave after purchasing,

we have the additional problem that the distribution of unobserved consumer heterogeneity

(e.g. random price coefficients), for those consumers who remain in the market, is likely

to change over time. It is necessary to understand the consequences of such non-random

attrition of consumers (also known as dynamic selection), which usually causes estimation

bias in panel data analysis if ignored.

Our main contribution is to develop a novel approach using market level data to model,

identify, and estimate a dynamic discrete choice demand model for durable goods with dy-

namic selection, continuous unobserved consumer heterogeneity and continuous unobserved

product characteristics, in addition to the commonly included individual-product idiosyn-

cratic errors. The unobserved product characteristics are specified as serially correlated and

correlated with the observed product characteristics, particularly price. The continuous un-

observed consumer heterogeneity (e.g. random price coefficient) can be multidimensional,

and its distribution varies over time due to the non-random attrition of consumers. We

provide a new method to estimate all model primitives, including the consumer’s discount

factor, without the need to reduce the dimension of the state space or by other approxima-

tion techniques such as discretizing state variables. We also provide new identification results

that show the model is identified while being agnostic about how consumers form their be-

liefs regarding the state transition distribution.1 The implementation of our new estimator

1Recently, An, Hu and Xiao (2020) use individual level panel data to identify agents preference and their

subjective beliefs, which do not need to be rational expectation or myopic. Our results are based on market

level data, the discount factor in this paper will be identified without belief restriction (the discount factor

is assumed to be known in their paper), and our state variables, observed and unobserved, are all continuous

(the state variables, excepting for the conventional utility shocks, are discrete in their paper). By no means,

we are claiming that our results are more general. We limit our research scope to the market of durable

goods, where purchasing can be viewed a terminal action hence simplifying the task, but their paper focuses

on general dynamic discrete choice models.
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only involves nonlinear least squares (NLS) and 2 stage least squares (2SLS). Particularly,

one does not need to solve or simulate the dynamic programming discrete choice model. The

estimation simplicity allows researchers to estimate multiple model specifications at little

computational cost. With the absence of the curse of dimensionality, it also makes the dy-

namic demand model more applicable to markets with many differentiated products. Indeed,

including more products improves the efficiency of our estimation rather than causing the

curse of dimensionality.

We illustrate the empirical value of our method by estimating consumer demand for

electric vehicles (EV) in the state of Washington during the period of 2016–2019. Our esti-

mates determine that demand for EVs is driven in part by price, miles per gallon equivalent

(MPGe), gas prices and the network size associated with electric charging stations. We also

determine there is significant levels of unobserved consumer heterogeneity associated with

EV price and MPGe. After estimation, we leverage our estimates to further ascertain the

impact of a different federal tax credit based upon a car’s MPGe rating rather than battery

size, which was the existing policy during the data period.2 We conclude a simple tax credit

of $76.53 per MPGe measure reduces CO2 omissions by 13.86% and with 7 fewer electric

vehicles on the road at no additional cost relative to the existing policy.

The proposed approach relies on our new idea of estimating the conditional choice prob-

ability (CCP) functions. In its original form (Hotz and Miller, 1993), the CCP function is

a function of observed state variables.3 Applying the original CCP estimator to the mar-

ket of durable goods has two major difficulties. The first is the large dimension of product

space and/or product characteristics space. The second is the continuous multidimensional

unobserved state variables (unobserved consumer preference heterogeneity) whose unknown

distribution could also vary over the course of time due to non-random attrition of consumers.

We provide a new perspective by exploring market level data about multiple demographic

groups of consumers in the same market. Instead of viewing the CCP as a function of all

observed state variables as in individual level panel data, our objective is to estimate the CCP

as a function of unobserved consumer heterogeneity for each observed group and market. Re-

covering the CCP for each group and market directly along with the value of unobserved

consumer heterogeneity is the central pillar of our estimator and essential for addressing the

dynamic selection problem due to non-random attrition of consumers after purchasing.

We discover that when we observe the market shares for a product in multiple groups

2The proposed policy is treated as a temporary (1 period) and unexpected change.
3Arcidiacono and Miller (2011) made important progress so that the CCP function can depend on an

agent’s unobserved discrete type.
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of consumers in the same market, we can easily estimate the CCP function that includes

unobserved consumer heterogeneity by NLS. We show that in practice market share data

from only two groups will suffice. To see the intuition, note that for a demographic group

g, the known market share in this group is the integrated unknown CCP of group g with

respect to the unknown distribution of unobserved consumer heterogeneity in group g. This

can be viewed as one moment condition. If the number of unknown CCP functions grows

with the number of groups, we can never recover these unknown CCPs. The key insight is

that when there are multiple groups of consumers residing in the same market, these groups’

preferences usually “overlap” statistically—for a consumer from one group there could be a

consumer from another group where they both have the same preference (e.g. price) due to

within group variation. Because these two consumers also face the same state of the market,

their CCPs are the same. By leveraging such cross-group matching of consumers, we can

combine the information in the market shares for a product from the overlapping groups to

directly estimate one single CCP as a function of unobserved consumer heterogeneity.

The presence of multiple groups of consumers in the same market creates within-market

variation, which also plays a key role in simplifying our CCP estimation.4 Exploiting the

variation of group market shares within the same market, we can avoid the estimation issues

due to the unobserved product characteristics and the possibly high dimension of product

characteristics (since they are fixed given one particular market). We explicitly show how

the effect of the state of the market on demand is aggregated into the parameters of our

CCP as a function of unobserved consumer heterogeneity, which are then further mapped to

the parameters of consumer flow utility functions.

With having highlighted the paper’s innovations, we believe it is important to discuss the

data requirements for implementing our new methodology and its relevance for the on-going

discussion of digital privacy. Up to now, researchers who employ market level sales data have

been in search of a methodology that is able to accommodate unobserved state variables as

well as continuous forms of unobserved consumer heterogeneity in preference parameters,

but without the cost of reducing the state space via approximation. With our methodology

4The use of within-market variation is not new in the literature of demand identification and estimation.

Recently, Berry and Haile (2020) develop new results of nonparametric identification of demand function

using the variation in the choice probabilities of different individual consumers within the same market.

Within a market, the state of the market (including demand shocks within the market) does not change,

but the observed consumer heterogeneity can still shift demand quantity—observably different consumers

have different choice probabilities. Hence, the within-market variation of observed consumer heterogeneity

is natural instruments for demand quantities.
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and panel data of product sales for two or more consumer groups (or repeated cross-sectional

data of individual consumer purchases where researchers can construct group sales from it),

researchers can now account for both needs at no cost. Because customer segmentation is a

standard marketing practice, it is easy to obtain panel data at the consumer segment level.5

For example, the data company NPD provides such consumer segment level panel data for

many industries from apparel to video games.6

We also believe the need for such a method will grow as consumers demand stronger user-

privacy protections and as companies respond to such demand by limiting the collection of

individual level panel data. For instance, Google recently announced that its Chrome internet

browser will stop supporting third-party cookies (a user-tracking technology) by late 2023

making it very difficult for digital advertising companies to individually target consumers.7

As an alternative, Google has been testing a new tool called Floc which allows advertisers

to follow cohorts of users rather than individuals. We therefore expect our method to be

applicable to the data generated by Floc or other similar privacy amicable technologies.

In the rest of the introduction, we discuss the literature. Our identification results are

novel relative to the literature on identifying dynamic discrete choice (DDC) models. Our

model for durable goods can be understood as a general DDC model in which a subset of

unobserved state variables (unobserved product characteristics herein) are continuous, seri-

ally correlated and correlated with other observed state variables. The existing identification

results (Magnac and Thesmar, 2002; Norets, 2009; Kasahara and Shimotsu, 2009; Arcidia-

cono and Miller, 2011, 2018; Hu and Shum, 2012; Hu et al., 2017) in the literature of DDC

models cannot be applied here.

Most of the research focusing on individual-level data do not include persistent unob-

servable state variables (e.g. Bajari et al., 2016; Daljord, Nekipelov and Park, 2018).8 The

following exceptions involving persistent unobservables are worth noting. Hu and Shum

(2012) study dynamic binary choice models with continuous unobserved state variables, but

5Segment level panel data are also substantially cheaper than individual level data if researchers have to

purchase data.
6See “Checkout Segmentation & Survey Insights,” NPD.com, accessed September 7, 2021, https://www.

npd.com/products/checkout-segmentation-survey-insights/.
7Patience Haggin, Sam Schechner and Suzanne Vranica, “Google Delays Cookie Removal to Late

2023”, The Wall Street Journal, June 24, 2021, https://www.wsj.com/articles/google-delays-cookie-

removal-to-late-2023-11624542064?st=sund6fzua5hdf76&reflink=desktopwebshare_permalink.
8We note that Daljord, Nekipelov and Park (2018) presents an innovative way to identify the discount

factor in DDC models with individual data. The primary differences is that our setting involves persistent

unobservable state variables, whereas those are not present in the aforementioned paper.
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their identification result is limited to the conditional choice probabilities and state transition

distribution functions, not to model primitives like flow utility functions and the discount

factor. Norets (2009) does include a serially correlated unobservable idiosyncratic error,

which is individual-specific rather than an aggregate product shock like in our case. Arcidi-

acono and Miller (2011) model persistent unobservables, but limit them to a discrete set of

values.

Our estimation approach is also new relative to the literature on estimating DDC models.

First, our estimation approach is not an approximation method, and thus does not rely on the

validity of specific approximations like interpolation or other value function approximations,

or behavioral assumptions that consumers only consider some function of the state space and

not the entire state (Melnikov, 2013; Gowrisankaran and Rysman, 2012). Second, our esti-

mator does not exhibit a curse of dimensionality, because it does not require the estimation

or approximation of the ex-ante expected value function, as is almost always the case with

prior papers (e.g. Rust, 1994; Bajari et al., 2016). Third, we estimate more model primitives

than the current literature since our method recovers not just the preference parameters but

also the discount factor.

Our work builds on several foundational papers in the demand estimation literature. First

is the result that the difference between choice-specific payoff is a function of individual

choice probabilities (Hotz and Miller, 1993) in static and dynamic settings. The work of

Berry (1994) and the BLP model (Berry, 1994; Berry, Levinsohn and Pakes, 1995; Berry and

Haile, 2014) on demand estimation with market level data including unobservable product

characteristics have been extensively used. This is similar to our setting, but focused on a

static environment.

Extending the BLP models to a dynamic setting with forward-looking agents is challeng-

ing. Some researchers either do not model persistent unobserved shocks (Song and Chinta-

gunta, 2003), or make them time-invariant (Goettler and Gordon, 2011). Others have focused

on improving the computational speed of fixed point estimators with a variety of approaches.

Melnikov (2013) and Gowrisankaran and Rysman (2012) develop an approximation based on

inclusive value sufficiency that allows the researcher to collapse the multi-dimensional state

into one dimension, making the problem much more computationally tractable when using

aggregate data. Moreover, the formal identification in the paper is not specified. Derdenger

and Kumar (2019) have studied the approximation properties of this approach, and have

shown that it is a biased and an inconsistent estimator when consumers track the full set of

state variable.
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The rest of the paper is structured as follows. In section 2, we explain the idea using a

BLP-like static model. In section 3, we apply the insights obtained from the static model

to identify and estimate the dynamic discrete demand model. In section 4, we conduct

simulation studies to illustrate the applicability of our method and to understand a few

empirically relevant questions. In Section 5 we provide an application of our methodology

by estimating the demand for EV vehicles in the state of Washington. Section 6 concludes

this paper. The online appendix contains technical proofs/details and some extensions of

the main theory.

2 A Static Discrete Choice Demand Example

2.1 The Static Model

We start with a BLP-like static discrete choice demand model to illustrate the idea behind

our dynamic estimator in a simple setting. The key observations derived from studying

this familiar model will be used to estimate the more challenging dynamic discrete choice

model, which is of our primary interest.9 Suppose that there are G ≥ 2 demographic groups

of consumers (such as income bracket, age group, sex etc.) in the market facing the same

price and products characteristics, observed and unobserved. For a market, we only observe

group market shares, prices and observed characteristics of products over T periods indexed

by t = 1, . . . , T . Consumers choose from products 1, . . . , J with 0 being the outside option.

A random consumer i has the following indirect utility of choosing different alternatives in

period t:

Vi0t = εi0t and Vijt = δj + γ′Xjt + ξjt − αiPjt + εijt, j = 1, . . . , J,

where Xjt is a vector of observable product attributes other than price, and Pjt is the

price, and ξjt is unobserved product characteristics . Following Berry (1994), the term

δj + ξjt can be interpreted as the mean of consumers’ valuation of unobserved product

characteristics, such as quality, in period t. We let ξjt have mean zero over T periods, so δj

is the product fixed effect and therefore εijt denotes the individual deviation from this mean.

Let Xt ≡ (X1t, . . . , XJt), and Pt and ξt are defined similarly. Assume εit ≡ (εi0t, . . . , εiJt)

follows type 1 extreme value distribution (EVD).

9We understand that a more simple way to estimate the static model than what is presented would be

to separately estimate parameters for each group but again the point of this section is to clearly highlight

the mechanism for estimating the more complex dynamic model.
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Consumers are heterogeneous in their price coefficient αi, which depends on discrete de-

mographic groups and unobserved continuous heterogeneity Ui. For expositional simplicity,

we limit our attention to the consumer heterogeneity in price coefficient αi here and defer

the extension to the multidimensional consumer heterogeneity until our empirical applica-

tion in Section 5 with further details in Appendix D. We use a vector of dummy variables

Di ≡ (D
(1)
i , . . . , D

(G)
i )′ to indicate the membership—D

(g)
i = 1 if consumer i belongs to group

g, and D
(g)
i = 0 otherwise. Assume

∑G
g=1D

(g)
i = 1. Consider

αi = α(1) + τ (2)D
(2)
i + · · ·+ τ (G)D

(G)
i + ωUi,

where τ (g) captures the between group variation, and ωUi is idiosyncratic unobserved price

preference, which captures the within group variation of the price coefficient. We normalize

the variance of Ui to be 1, hence ω ≥ 0 controls the size of within group variation.10 When

we plot the probability density functions (PDF) of consumers’ price coefficients, the PDFs

of two similar groups of consumers will “overlap” (see Panel I of Figure 2 on page 15). We

will use the information of the overlapping groups to identify and estimate the model. It

will be convenient to define τ (1) = 0. Hereafter, we say that a consumer i is of type-(g, U) if

she is from group g and Ui = U , hence her price coefficient αi = α(1) + τ (g) + ωU .

Let σ
(g)
jt (U) denote the CCP of buying product j in period t provided that consumer i is

of type-(g, U). It follows from the logit specification that

σ
(g)
jt (U) =

exp[δj + γ′Xjt + ξjt − (α(1) + τ (g) + ωU)Pjt]

1 +
∑J

k=1 exp[δk + γ′Xkt + ξkt − (α(1) + τ (g) + ωU)Pkt]
, (1)

for j = 1, . . . , J . The CCP σ
(g)
jt (U) can be viewed as a function of U conditional on the

current state of market (Xt, Pt, ξt).

The observed “group market share” S
(g)
jt is defined from averaging unobserved individual

CCP σ
(g)
jt (U) over unobserved price sensitivity U ,

S
(g)
jt =

∫
σ

(g)
jt (u) dF

(g)
t (u),

where F
(g)
t (u) is the cumulative distribution function (CDF) of the unobserved price sensi-

tivity Ui of consumers within group g in period t. Let f
(g)
t (u) denote the respective PDF

of F
(g)
t (u). The observed group market share is either directly observed, constructed from

10To take account of heteroskedasticity (group varying within group variation), it is straightforward to

consider the more flexible specification αi = α(1) +τ (2)D
(2)
i + · · ·+τ (G)D

(G)
i +(ω(1)D

(1)
i + · · ·+ω(G)D

(G)
i )Ui,

where ω(g) controls the variation of αi within group g.
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observed aggregate sales (to different consumer segments), or constructed from individual

panel data by the researchers. Depending on whether or not a consumer would leave the

market after purchasing, f
(g)
t (u) could vary from group to group and over time. Given our

current focus on a static model, we leave the discussion of the group- and time-varying nature

of f
(g)
t (u) when we discuss the dynamic model.

Assume in the first period the unobserved consumer price sensitivity follows the stan-

dard normal distribution. We then can write f
(g)
t (u) = φ(u)Γ

(g)
t (u), where Γ

(g)
t (u) = 1 if

consumers remain the market after purchasing, hence the composition of consumers does

not vary (if consumers left the market after purchasing, Γ
(g)
t (u) is recursively defined by the

CCP σ
(g)
01 (u), . . . , σ

(g)
0,t−1(u)). Here φ(u) denotes the PDF of the standard normal distribution,

and let Φ(u) be the respective CDF.

It is easy to see that the log of the CCP ratio is linear in preference parameters:

ln

[
σ

(g)
jt (U)

σ
(g)
0t (U)

]
= δj + γ′Xjt − (α(1) + τ (g))Pjt + ξjt − ωUPjt.

Integrating both sides with respect to the distribution of U (which is the standard normal

in this static model) and noting that E(U) = 0, we have∫
ln

[
σ

(g)
jt (U)

σ
(g)
0t (U)

]
d Φ(U) = δj + γ′Xjt − (α(1) + τ (g))Pjt + ξjt. (2)

Provided that the CCP function σ
(g)
jt (U) in the term on the left-hand-side is known, we

then identify δj, γ, α
(1), τ (g) using 2SLS. 2SLS is used because price Pjt is often correlated

with ξjt.
11 In the actual estimation, we can simplify the procedure by directly estimating

τ ≡ (τ (2), . . . , τ (G))′ and ω when we estimate the CCP functions σ
(g)
jt (U).

Focus on the first group, for which τ (1) = 0, and let

Y static
jt ≡

∫
ln

[
σ

(1)
jt (U)

σ
(1)
0t (U)

]
d Φ(U).

Equation (2) becomes a linear regression,

Y static
jt = δj + γ′Xjt − α(1)Pjt + ξjt, (Linear-Reg-Static)

for j = 1, . . . , J . We define Y static
jt because we will estimate this dependent variable as a

whole directly during CCP estimation.

11Throughout the paper, we assume there are underlying instrumental variables (IV) available—for exam-

ple, the prices of the product in other markets (Nevo, 2001) or the characteristics of other products (Berry,

Levinsohn and Pakes, 1995).
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2.2 CCP Estimation by Using Overlapping Groups of Consumers

This section shows how to directly estimate the CCP σ
(g)
jt (U) as a function of unobserved

U . We propose a novel method of estimating σ
(g)
jt (U) using observed group market share

data and certain constraints implied by the underlying structural model. The estimation

only involves solving an NLS with linear constraints. Though the particular form of the

constraints depends on whether the model is static or dynamic, the NLS problem remains

unchanged when we discuss the estimation of dynamic models. We have G equations from

the definition of group market shares S
(1)
jt , . . . , S

(G)
jt ,

S
(1)
jt =

∫
σ

(1)
jt (u) dF

(1)
t (u),

...

S
(G)
jt =

∫
σ

(G)
jt (u) dF

(G)
t (u).

(3)

It seems that there are G unknowns σ
(1)
jt (U), . . . , σ

(G)
jt (U) in the above G equations, and it

appears hopeless to solve σ
(g)
jt (U). Below, we will argue that this is not the case.

2.2.1 Key Observation: Shifting CCP Across Similar Groups of Consumers

Our argument rests on the following observation: these G unknown functions σ
(1)
jt (U), . . . ,

σ
(G)
jt (U) indeed can be viewed as one unknown CCP function after some transformations.

To see this, suppose there are two income brackets, 1 (high-income) and 2 (low-income),

in sample. Note that the CCP is determined by comparing expected payoffs of different

alternatives. The expected payoff of product j = 1, . . . , J is simply

δj + γ′Xjt + ξjt −

Consumer Heterogeneity︷ ︸︸ ︷(
α(1) + τ (2)D

(2)
i + ωUi

)
Pjt.

The unknown consumer’s type affects the choice probabilities by altering the expected pay-

offs, which can be only through the term αi = α(1) + τ (2)D
(2)
i + ωUi. Now consider con-

sumer h from a high-income group 1, and consumer ` from a low-income group 2. Let

Uh and U` be the idiosyncratic price sensitivity relative to their respective group for the

two consumers h and `, respectively. Note that if Uh and U` satisfy the condition that

Uh = U` + τ (2)/ω, we have the conclusion that these two consumers have the same price

coefficient: αh = α(1) + ωUh = α(1) + τ (2) + ωU` = α`. Intuitively, this says that though

consumer h is from higher income group, she still has the same price sensitivity as a lower in-

come consumer ` because of h’s idiosyncratic relatively high price sensitivity. The same price

10



τ (2)/ω

0.0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2
U

C
C

P

CCP of Group 2 by Shifting: σ
(1)
jt (U + τ (2)/ω)

CCP of Group 1: σ
(1)
jt (U)

CCP of Group 2: σ
(2)
jt (U)

Figure 1: Shift CCP of Group 1 to Obtain CCP of Group 2

coefficient further implies that the two CCPs σ
(2)
jt (U`) = σ

(1)
jt (Uh) when Uh = U` + τ (2)/ω.

In summary, we conclude that two CCPs σ
(1)
jt (U) and σ

(2)
jt (U), viewed as a function U , are

essentially identical—we can obtain one by shifting the other along the axis of U , i.e.

σ
(2)
jt (U) = σ

(1)
jt (U + τ (2)/ω).

Figure 1 illustrates this observation using the CCP of two groups from our simulation studies.

The essential observation is that the underlying structural model implies certain restrictions

that can be used to transform the CCP functions of one focal group to get the CCP of the

other groups. In addition, the underlying structural models also impose restrictions on CCP

function σ
(1)
jt (U). The application of these restrictions can be better seen after expressing

σ
(1)
jt (U) using a series multinomial logit.

We can now rewrite the G group market shares equations about G unknown CCP func-

tions at the beginning, eq. (3), as the following G equations about one unknown σ
(1)
jt (U) by

applying our shifting observation σ
(g)
jt (U) = σ

(1)
jt (U + τ (g)/ω). Recall that we defined τ (1) = 0

11



for convenience. We have

S
(1)
jt =

∫
σ

(1)
jt

(
u+

τ (1)

ω

)
dF

(1)
t (u)

...

S
(G)
jt =

∫
σ

(1)
jt

(
u+

τ (G)

ω

)
dF

(g)
t (u)

j = 1, . . . , J, t = 1, . . . , T. (4)

For each period, we now have J × G equations, but only J + G unknowns, where J refers

to the unknown CCP σ
(1)
1t (U), . . . , σ

(1)
Jt (U) for group 1, and G comes from the unknown

τ (2), . . . , τ (G) and ω, which are common for all markets and products. It is hardly a surprise

that we can recover σ
(1)
jt (U) (hence the other σ

(2)
jt (U), . . . , σ

(G)
jt (U) by shifting) from the above

equations by parameterizing σ
(1)
jt (U) (so it is known up to finite number of parameters).

2.2.2 Series Multinomial Logit Approximation of CCP

We now discuss the details of solving the CCP σ
(1)
jt (U) from eq. (4). The unknown σ

(1)
jt (U)

is a continuous function of scalar U , whose range is between 0 and 1, and
∑J

j=0 σ
(1)
jt (U) = 1

for any U . We approximate the CCP σ
(1)
jt (U) (as a function of U) by interpolation using a

“series multinomial logit”, which is a simple extension of the series logit in Hirano, Imbens

and Ridder (2003). For j = 1, . . . , J , let

σ
(1)
jt (U ; ρt) = Lj(RK(U ; ρ1t), . . . , RK(U ; ρJt)), (5)

where Lj is a multinomial logit model,

Lj(c1, . . . , cJ) ≡ exp(cj)

1 +
∑J

k=1 exp(ck)
,

and RK(U ; ρjt) is a polynomial function,

RK(U ; ρjt) ≡ ρjt1 + ρjt2U + ρjt3U
2 + · · ·+ ρjtKU

K−1.

Let ρjt ≡ (ρjt1, . . . , ρjtK)′, and let ρt be the collection of ρ1t, . . . , ρJt. Lastly,

σ
(1)
0t (U ; ρt) ≡ 1−

J∑
j=1

σ
(1)
jt (U ; ρt).

The idea of a series (multinomial) logit is to use the power series RK(U ; ρjt) to approximate

the log odds ratio ln[σ
(1)
jt (U)/σ

(1)
0t (U)]. Let ρ be the (KJT ) × 1 vector from stacking ρt

over all T periods. The coefficients ρ in this series expansion indeed will have an economic

12



interpretation—for this static model, ρjt1 is the mean value of product j among the consumers

from group 1 as defined in Berry (1994) (see Proposition 1 below). In practice, we found the

polynomial of degree 2, i.e. K = 3, is sufficient for approximation. Indeed, for the current

static model, we can prove that ρjtk = 0 for any k ≥ 3, though this is not true for the

dynamic model. For exposition simplicity, we let K = 3 hereafter.

We estimate (τ , ω,ρ) using an NLS procedure below. Knowing ρ, we know group 1 CCP

σ
(1)
jt (U ; ρt) for each alternative j and each period t. Knowing τ and ω, we know the CCP of

the other groups by shifting: σ
(g)
jt (U) = σ

(1)
jt (U + τ (g)/ω).

For the rest of this section, we will explain the estimation of (τ , ω,ρ) leaving a remark

about the limitation of our approach at the end. The estimation is based on

S
(g)
jt =

∫
σ

(1)
jt

(
u+

τ (g)

ω
; ρt

)
f

(g)
t (u) du.

where

σ
(1)
jt

(
U +

τ (g)

ω
; ρt

)
=

exp
[
ρjt1 + ρjt2

(
U + τ (g)

ω

)
+ ρjt3

(
U + τ (g)

ω

)2]
1 +

∑J
k=1 exp

[
ρkt1 + ρkt2

(
U + τ (g)

ω

)
+ ρkt3

(
U + τ (g)

ω

)2] . (6)

If consumers remain in the market after purchasing as assumed for our static model,

f
(g)
t (U) = Γ

(g)
t (U)φ(U), where Γ

(g)
t (U) = 1. The above equation can be rewritten as follows,

S
(g)
jt = E

[
σ

(1)
jt

(
U∗ +

τ (g)

ω
; ρt

)
Γ

(g)
t (U∗)

]
, U∗ ∼ N (0, 1).

for all j = 1, . . . , J , g = 1, . . . , G, and t = 1, . . . , T . In practice, it is straightforward to

compute the above expectation by Gauss–Hermite quadrature:

GH
(g)
jt (τ , ω,ρ) ≡

n∑
i=1

ζi ×
[
σ

(1)
jt

(
ui +

τ (g)

ω
; ρt

)
Γ

(g)
t (ui)

]
.

Here u1, . . . , un are n nodes, and ζ1, . . . , ζn are the respective weights. Both nodes and

weights are predetermined known constants.12 By Gauss–Hermite approximation, we have

S
(g)
jt = GH

(g)
jt (τ , ω,ρ).

We then can estimate the unknown parameters (τ , ω,ρ) by NLS:

(τ̂ , ω̂, ρ̂) ≡ arg min
τ ,ω,ρ

J,G,T∑
j=1,g=1,t=1

[
S

(g)
jt −GH

(g)
jt (τ , ω,ρ)

]2

,

12To be clear, let u∗1, . . . , u
∗
n be the n nodes of Gauss-Hermite quadrature, and let ζ∗1 , . . . , ζ

∗
n be the

respective weights. In our simulation, we used n = 15 nodes. The nodes and associated weights are

determined by the Hermite polynomial, and they do not depend on the function to be approximated, which

is σ
(1)
jt (U + τ (g)/ω; ρt) herein. For i = 1, . . . , n, define ui =

√
2u∗i and ζi = ζ∗i /

√
π.
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subject to

ρjt2 = −ωPjt and ρjt3 = 0, j = 1, . . . , J . (Constraints: Static)

In Appendix C, we provide the derivation of the constraints eq. (Constraints: Static) implied

by our static demand model. From eq. (Constraints: Static), we have seen the interpretation

of the parameters of series expansion, ρjt2, in terms of the structural parameters. The next

proposition, whose proof is also in Appendix C, provides the interpretation of ρjt1 using the

structural parameters. The proposition states that our NLS procedure and the recovery of

ρjt,1 is akin to the contraction mapping of Berry, Levinsohn and Pakes (1995).

Proposition 1 (Interpretation of series logit parameters ρjt1 in a static model). Recall that

Y static
jt ≡

∫
ln

[
σ

(g)
jt (U)

σ
(g)
0t (U)

]
d Φ(U)

is the dependent variable of our first identification linear regression eq. (Linear-Reg-Static).

We have

ρjt,1 = Y static
jt = δj + γ′Xjt − α(1)Pjt + ξjt.

Remark 1 (Overlapping Groups). One key step is the transformation between σ
(1)
jt (U) and

σ
(2)
jt (U). Our observation is that for a consumer ` from observed group 2 with idiosyncratic

U`, we can find a consumer h from group 1, whose idiosyncratic Uh = U` + τ (2)/ω, then the

two consumers have the same price coefficient. See Panel I of Figure 2.

However, when the two groups 1 and 3 are too distinct (that is τ (3) is large) and/or the

within group variation of idiosyncratic U is extremely small (that is ω is tiny), the chance

of cross-group matching decreases. See Panel II of Figure 2. Note that τ (3)/ω becomes

large, when either τ (3) is large or ω is small. In this case, though the identity σ
(3)
jt (U) =

σ
(1)
jt (U + τ (3)/ω) is still valid, the equation about the market share in group 3,

S
(3)
jt =

∫
σ

(1)
jt

(
u+

τ (3)

ω

)
d Φ(u)

has less information for identifying σ
(1)
jt (U). Empirically, this also implies that the observed

S
(3)
jt is also close to zero. Intuitively, when the two groups are very different (τ (3) is large)

or there is little variation (ω is small) within a group, it is expected that in equilibrium, the

two groups of consumers will choose different products. Our simulation studies (Section 4)

shows that our estimator works very well even when the within group variation is very small

(which has the same effect as the inter group variation is large).
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3 The Dynamic Discrete Demand Model

Up to now, we have made two points. First, by leveraging the information contained in the

overlapping groups of consumers, we can simply estimate the CCP function σ
(g)
jt (U) by NLS.

Second, knowing σ
(g)
jt (U), the structural parameters in a static BLP model can be estimated

by the 2SLS even with the presence of unobserved consumer heterogeneity. In what is to

follow, we will show that these two points are still valid when we consider the structural

dynamic discrete choice model. It is worth pointing out that our estimation strategy below

does not require the usual value function approximation or a reduction in the state space

by assuming that consumers only consider some function of the state variables (e.g. the

inclusive value). Rather, the estimator allows for the consumer to track all state variables

individually.

3.1 The Dynamic Model

The timing of our model is the following. In each period t, a forward-looking consumer i

observes the state of market Ωit and considers whether or not to purchase a durable product

from the available goods 1, . . . , J .13 The associated expected lifetime payoffs are vi1t, . . . , viJt.

If she decides to purchase, she then chooses which to buy by comparing payoffs vi1t, . . . , viJt.

Once a consumer has purchased a product, she exits the market completely, hence purchasing

is a terminal action in our model causing non-random attrition of consumers. If she decides

not to purchase now, she chooses the outside good 0 and remains in the market for the next

period. In other words, the outside good 0 is “wait-and-see”. Let vi0t denote her discounted

expected future value.

The lifetime payoff is a “sum” of discounted per period or flow utilities. We first state

the flow utilities. If consumer i does not purchase in period t, she receives the flow utility

εi0t in period t and stays in the market. When consumer i purchases product j at time t,

her indirect flow utility during the purchase period t is

δj + γ′Xjt + ξjt − αiPjt + εijt. (7)

She then receives the identical flow utility δj + γ′Xjt + ξjt in each period following her

13Although the model is general, it is especially appropriate for durable products, since consumers in such

markets are typically forward looking and weigh the trade-off of making a purchase now versus the option

value of waiting. For the simplicity of exposition, we let the product space being fixed. The arguments do

not change if we consider time varying choice set.
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purchase. Let Ωit ≡ (X ′t, P
′
t , ξ
′
t, ε
′
it)
′. Like the static model, individual price coefficient is

αi = α(1) + τ (2)D
(2)
i + · · ·+ τ (G)D

(G)
i + ωUi.

For a consumer i of type-(g, U), we write v
(g)
jt (U) to denote her expected lifetime payoffs

vijt from product j. Given the fact that consumers exit the market after the purchase of

any product, a consumer’s expected lifetime payoff can be written as the sum of the current

period t utility and the stream of utilities in periods following purchase:

v
(g)
jt (U) =

δj + γ′Xjt + ξjt
1− β

− (α(1) + τ (g) + ωU)Pjt, j = 1, . . . , J. (8)

The discount factor is β ∈ [0, 1). Recall α(1) + τ (g) +ωU is the price coefficient of a consumer

of type (g, U). To formalize the option value of “waiting” (choosing the outside option), we

make the following assumptions, so a consumer’s decision becomes a dynamic programming

problem.

Assumption 1 (Type-I EVD). Assume that utility shocks εijt are serially independent,

follow type 1 EVD, and they are independent of (Di, Ui, Xt, Pt, ξt).

Assumption 2 (Markov Process). Pr(Ωi,t+1 |Ωit, Ωi,t−1, . . .) = Pr(Ωi,t+1 |Ωit).

Assumption 3 (Conditional Independence). For all periods t, we have (i) Ωi,t+1 ⊥⊥ εit|(Xt, Pt, ξt);

(ii) εi,t+1 ⊥⊥ Ωit |(Xt+1, Pt+1, ξt+1); (iii) if two consumers have the same price sensitivity, they

have the same belief about the conditional distribution of (Xt+1, Pt+1, ξt+1) given (Xt, Pt, ξt).

The above assumptions restricting consumers’ belief about the state transitions are stan-

dard in the literature. It is worth mentioning that we only assume that consumers’ beliefs

satisfy the Markov property and certain conditional independence. What we do not assume

is that the state transition distribution according to consumers’ beliefs is identical to the

observed state transition distribution in the data, which is implicitly assumed in the litera-

ture as rational expectation. The last part of Assumption 3 says that the heterogeneity in

price sensitivity also determines the belief about the transition of the market state variables

(Xt, Pt, ξt). This is still weaker than the common rational expectation assumption that as-

sumes that the transition distribution of the market state variables (Xt, Pt, ξt) is the same as

contained in data—which is apparently the same for all consumers in the market. One inter-

esting feature of our method is that we can identity and estimate the flow utility functions

and the discount factor under this weaker assumption of a consumer’s belief.
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Consider a consumer i of type (g, U), and let V
(g)
t (Ωit, U) denote her value function.14

Then the option value of waiting to purchase is

v
(g)
0t (U) = β E

[
V

(g)
t+1(Ωi,t+1, U)

∣∣∣Ωit

]
= β E

[
V̄

(g)
t+1(Xt+1, Pt+1, ξt+1, U)

∣∣∣Xt, Pt, ξt

]
.

The second identity follows from applying Assumption 3.

Up to now, we have formalized what the payoffs vi0t, vi1t, . . . , viJt are. They are vijt =

v
(g)
jt (U) for a consumer of type (g, U). Correspondingly, the CCP of type-(g, U) is

σ
(g)
jt (U) =

exp(v
(g)
jt (U))

exp(v
(g)
0t (U)) +

∑J
k=1 exp(v

(g)
kt (U))

.

Lastly, the market share of product j in group g in period t is

S
(g)
jt =

∫
σ

(g)
jt (u) dF

(g)
t (u).

3.2 Dynamic Selection Problem

Some comments about the composition of consumers in different periods, i.e. F
(g)
t (U), are

due here. The composition of consumers depends on whether or not consumers remain in

the market after purchasing. For the case of non-durable goods, like ready-to-eat oatmeal,

consumers remain in the market after purchasing, hence F
(g)
t (u) does not vary across time as

in our static model. For the case of durable goods, it is reasonable to assume that consumers

will exit the market after purchasing. It is expected that such non-random attrition (or

dynamic selection) of consumers could significantly change the distribution of unobserved

price sensitivity F
(g)
t (u), depending on the rate of attrition. This is a “selection problem” in

dynamic discrete choice. We will show that in order to fix the dynamic selection problem,

it is essential to obtain the CCP σ
(g)
jt (U) as a function of unobserved heterogeneity U .

The attrition has the following implications in theory, and our simulation studies show

that ignoring attrition could cause substantial bias in practice. First, it changes the distri-

bution of price sensitivity Ui over the course of time even after controlling the demographic

14We can write the Bellman equation in terms of the value function V
(g)
t (Ωit, U) as follows:

V
(g)
t (Ωit, U) = max

(
εi0t + β E

[
V

(g)
t+1(Ωi,t+1, U)

∣∣∣Ωit

]
, max
j∈{1,...,J}

v
(g)
jt (U) + εijt

)
.

The first term within brackets is the present discounted utility associated with the decision to not purchase

any product, i.e. choosing the outside option j = 0, in period t. The choice of not purchasing in period t

provides flow utility εi0t, and a term that captures expected future utility conditional on the current state

being Ωit. This last term is the option value of waiting to purchase. The second term within brackets

indicates the value associated with the purchase of a product.
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groups. It is intuitive that attrition “pushes” the distribution of Ui to concentrate more and

more on the price sensitive area over the time. Second, attrition also changes the compo-

sition of groups. Attrition pushes the distribution of groups to concentrate more on price

sensitive groups—over the time, we see bigger and bigger weights on price sensitive groups.

Lastly, the rate of attrition is different for different groups. Consumers in the group with

lower average price elasticity would leave the market faster.

First assume that the unobserved price sensitivity follows a normal distribution at the

beginning of the sample, which is a fairly standard assumption in the literature (Nevo,

2011). Depending on whether or not there is attrition, Proposition 2 provides a formula of

the distribution of price sensitivity for the subsequent periods in terms of the CCP function

σ
(g)
jt (U).15

Assumption 4 (Initial distribution of unobserved price sensitivity). For each of the G

groups, assume that in the first period the unobserved consumer price sensitivity follows the

standard normal distribution, that is F
(g)
1 (u) = Φ(u).

Proposition 2 (Distribution of unobserved heterogeneity due to attrition). Suppose As-

sumptions 1 to 4 hold. Let f
(g)
t (U) be the PDF of the unobserved price sensitivity U in

period t and group g. We have that

f
(g)
t (u) = φ(u)× Γ (g)

t (u), (9)

where Γ
(g)
t (u) satisfies the following.

(i) (Case I: No attrition) If consumers remain in the marker after purchasing, Γ
(g)
t (u) = 1

for all (u, t, g);

(ii) (Case II: Attrition) If consumers left the market after purchasing,

Γ
(g)
1 (u) = 1, Γ

(g)
t (u) =

t−1∏
s=1

σ
(g)
0s (u)

S
(g)
0s

, t ≥ 2.

Note that the definition of Γ
(g)
t (u) implies the following recursive formula:

Γ
(g)
1 (u) = 1, Γ

(g)
t+1(u) = Γ

(g)
t (u)× σ

(g)
0t (u)

S
(g)
0t

.

15Proposition A.1 in the appendix describes the variation of group composition when there is consumer

attrition.
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3.3 CCP Estimation

Our shifting observation σ
(g)
jt (U) = σ

(1)
jt (U + τ (g)/ω) still holds for the dynamic model. To

see this, note again that the CCP is determined by comparing expected payoffs of different

alternatives. The expected payoff of product j in the dynamic model is

vijt ≡
δj + γ′Xjt + ξjt

1− β
−

Consumer Heterogeneity︷ ︸︸ ︷(
α(1) + τ (2)D

(2)
i + ωUi

)
Pjt.

The expected payoff of the outside option depends on the expected future vij,t+1, vij,t+2,

. . . for all products j = 1, . . . , J .16 Again the unknown consumer’s type affects the choice

probabilities by altering the expected payoffs, which can be only through the term αi =

α(1) + τ (2)D
(2)
i +ωUi. Using this observation, we can again conclude that σ

(g)
jt (U) = σ

(1)
jt (U +

τ (g)/ω). So the focus is to estimate the CCP of one group, σ
(1)
jt (U), τ and ω. We can again

parameterize the CCP σ
(1)
jt (U) using the series multinomial logit and write σ

(1)
jt (U ; ρt).

We then can estimate the unknown parameters (τ , ω,ρ) by the NLS:

(τ̂ , ω̂, ρ̂) ≡ arg min
τ ,ω,ρ

J,G,T∑
j=1,g=1,t=1

[
S

(g)
jt −GH

(g)
jt (τ , ω,ρ)

]2

(10)

but subject to a different set of linear constraints:

ρjt2 − ρ1t2 = −ω(Pjt − P1t) and ρjt3 − ρ1t3 = 0, j = 2, . . . , J .

(Constraints: Dynamic)

In Appendix C, we provide the derivation of the constraints eq. (Constraints: Dynamic)

implied by our dynamic model.

Comparing the constraints from the static model (eq. (Constraints: Static)) and the ones

from the dynamic model, it is interesting to see that a more restrictive demand model (the

static model restricts the discount factor β = 0) gives rise to more constraints for the NLS

problem of estimating CCP.

3.4 Post-CCP Estimation: Structural Parameters

The conclusion we arrive at is that in order to estimate the structural parameters in consumer

preferences, including the discount factor, one simply needs to run two linear regressions,

16This is most transparent by considering a two period dynamic model. In period 2 (terminal period),

vi,j=0,t=2 = 0. The expected optimal payoff in period 2 is ln(1 +
∑

j exp(vij2)). Then the payoff of the

outside option in period 1 is β E[ln(1 +
∑

j exp(vij2)) | X1, P1, ξ1]. The statement can be generalized to

infinite horizon dynamic programming problem easily.
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eq. (Linear-Reg-1) and eq. (Linear-Reg-2), below. At the end, we provide two remarks

explaining the consequence of dynamic selection on the model estimation, and the intuition

why we can estimate the model while being agnostic about consumers’ belief about the state

transition.

Model Parameters except for Discount Factor and Product Fixed Effect

Identification and estimation of model parameters outside of the discount factor and product

fixed effects start from the following observation. Conditional on purchasing in period t, a

consumer’s choice about which one to buy does not depend on the unknown continuation

value v
(g)
0t (U). We choose product 1 as the reference product and focus on consumer group

1, which results in

ln

[
σ

(1)
jt (U)

σ
(1)
1t (U)

]
= v

(1)
jt (U)− v(1)

1t (U).

By the definition of payoff functions v
(1)
jt (U) in eq. (8), and integrating the above display

over U with respect to its distribution function in period t, we have the first condition∫
ln

[
σ

(1)
jt (U)

σ
(1)
1t (U)

]
dF

(g)
t (U) + ω(Pjt − P1t)

∫
U dF

(g)
t (U) =

δj − δ1

1− β
+ (Xjt −X1t)

′ γ

1− β
− α(1)(Pjt − P1t) +

ξjt − ξ1t

1− β
. (11)

The next proposition, whose proof is in Appendix C, provides the interpretation of ρjt1

using the structural parameters. Note that the left-hand-side of the above is exactly Y dynamic
jt

defined in Proposition 4.

Proposition 3 (Interpretation of series logit parameters ρjt1 in dynamic model). Define

Y dynamic
jt ≡

∫
ln

[
σ

(1)
jt (U)

σ
(1)
1t (U)

]
dF

(1)
t (U) + ω(Pjt − P1t)

∫
U dF

(1)
t (U).

We have

Y dynamic
jt = ρjt,1 − ρ1t,1.

Thus, Y dynamic
jt = ρjt,1 − ρ1t,1 is known after CCP estimation. We conclude that

Y dynamic
jt =

δj − δ1

1− β
+ (Xjt −X1t)

′ γ

1− β
− α(1)(Pjt − P1t) +

ξjt − ξ1t

1− β
, (Linear-Reg-1)

for j = 2, . . . , J . We then identify (δ2 − δ1)/(1 − β), . . . , (δJ − δ1)/(1 − β), γ/(1 − β), α(1)

using 2SLS.
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Model Parameters: Discount Factor and Product Fixed Effect

Identification and estimation of β and δ1 originates from a condition that comes from

ln(σ
(g)
1t (U)/σ

(g)
0t (U)) = v

(g)
1t (U) − v

(g)
0t (U) and describes the trade-off from buying now and

waiting. By the definition of the payoffs, it becomes

ln

[
σ

(g)
1t (U)

σ
(g)
0t (U)

]
=

δ1

1− β
+X ′1t

γ

1− β
− (α(1) + τ (g) + ωU)P1t +

ξ1t

1− β

− β E[V̄
(g)
t+1(U) |Xt, Pt, ξt]. (12)

We will identify the discount factor β and product fixed effect δ1 using the second condition.

Before that, we will first show that for any fixed unobservable price sensitivity Ũ (e.g. Ũ = 0),

E[W
(g)
t (Ũ)] = δ1 + β E[W

(g)
t+1(Ũ) + ln σ

(g)
0,t+1(Ũ)], (Linear-Reg-2)

where W
(g)
t (Ũ) is estimable and defined below. This equation will give rise to an estimable

formula of (β, δ1)′.

We obtain eq. (Linear-Reg-2) from eq. (12) with four steps. Note that after running 2SLS

of eq. (Linear-Reg-1), we already know many parameters including σ
(g)
jt (U), τ , ω, γ/(1− β),

and α(1). Step 1 is to define W
(g)
t (U) by combining the terms that are already known in

eq. (12). Let

W
(g)
t (U) ≡ ln

[
σ

(g)
1t (U)

σ
(g)
0t (U)

]
−
[
X ′1t

γ

1− β
− (α(1) + τ (g) + ωU)P1t

]
.

Note that W
(g)
t (U) is known for any U after the CCP estimation and the above 2SLS linear

regression. Step 2 is to convert the unknown integrated value function V̄
(g)
t+1(U) into some-

thing we already know using the well known expectation maximization formula for the logit

model Arcidiacono and Miller (2011): V̄
(g)
t+1(U) = v

(g)
1,t+1(U)− lnσ

(g)
1,t+1(U). We have

V̄
(g)
t+1(U) = −[W

(g)
t+1(U) + lnσ

(g)
0,t+1(U)] +

δ1

1− β
+
ξ1,t+1

1− β
,

In step 3, we rewrite eq. (12) in terms of W
(g)
t (U) and conclude

W
(g)
t (U) = δ1 +

ξ1t

1− β
+ β E

(
W

(g)
t+1(U) + ln σ

(g)
0,t+1(U)− ξ1,t+1

1− β

∣∣∣∣Xt, Pt, ξt

)
, (13)

Lastly, in step 4, for a fixed unobserved price sensitivity Ũ , we take unconditional expectation

with respect to (Xt, Pt, ξt), and use the condition E(ξ1t) = E(ξ1,t+1) = 0 and the law of

iterated expectation to reach eq. (Linear-Reg-2).
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We now show how to identify the discount factor β and product fixed effect δ1 using

eq. (Linear-Reg-2). The expectations E[W
(g)
t (Ũ)] and E[lnσ

(g)
0t (Ũ)] are taken over (Xt, Pt, ξt)

only with Ũ being fixed for each group g and each t. This expectation can be estimated by

T−1
∑T

t=1W
(g)
t (Ũ) when (Xt, Pt, ξt) satisfies certain stationarity conditions.17 With at least

two groups (say 1 and 2), we have

E[W
(1)
t (Ũ)] = δ1 + β E[W

(1)
t+1(Ũ) + lnσ

(1)
0,t+1(Ũ)]

E[W
(2)
t (Ũ)] = δ1 + β E[W

(2)
t+1(Ũ) + lnσ

(2)
0,t+1(Ũ)].

We can solve the discount factor β from the above linear system of equations, and obtain

β =
E[W

(1)
t (Ũ)]− E[W

(2)
t (Ũ)]

E[W
(1)
t+1(Ũ)]− E[W

(2)
t+1(Ũ)] + E[ln σ

(1)
0,t+1(Ũ)]− E[lnσ

(2)
0,t+1(Ũ)]

.

The discount factor can be estimated by the sample analog of above formula. Knowing the

discount factor β, we recover the fixed effect δ1. The other product fixed effects δ2, . . . , δJ

are automatically determined since we know (δj − δ1)/(1− β).

Remark 2 (How does the attrition affect the estimation?). Non-random attrition affects

the estimation in two ways. The first is apparent. Ignoring the attrition is to let F
(1)
t (u) be

the distribution function of Ui in the first period, i.e. F
(1)
1 (u) = Φ(u). Reading the definition

of the dependent variable Yjt of eq. (Linear-Reg-1), it is apparent that ignoring the attrition

will misspecify the F
(1)
t (U), causing bias in estimating preference parameters. The second is

more subtle. Attrition will create a nonstationarity problem, which can be clearly seen from

the estimation of discount factor.

Reading the equation of identifying the discount factor, eq. (Linear-Reg-2), one may won-

der why not integrate out the unobserved price sensitivity U since we also know its distribution

function F
(g)
t (U)? It turns out this will lead us to a biased estimator of the discount factor

in the presence of attrition. To understand why, consider W̄
(g)
t ≡

∫
W

(g)
t (U) dF

(g)
t (U). For

a given period t, we have

W̄
(g)
t =

∫
ln

[
σ

(g)
1t (U)

σ
(g)
0t (U)

]
dF

(g)
t (U)−X ′1t

γ

1− β
+ (α(1) + τ (g))P1t + ωP1t

∫
U dF

(g)
t (U),

by the definition of W
(g)
t (U). The integrated term W̄

(g)
t is still estimable using our approach

for each period t. It is also easy to verify that eq. (Linear-Reg-2) becomes

E(W̄
(g)
t ) = δ1 + β E

[
W̄

(g)
t+1 +

∫
lnσ

(g)
0,t+1(U) dF

(g)
t (U)

]
.

17We need the time series (Xt, Pt, ξt) is ergodic, and for the chosen fixed Ũ , W
(g)
t (Ũ), as a function of

(Xt, Pt, ξt), satisfies certain continuity conditions.
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We then have an alternative formula of the discount factor,

β =
E(W̄

(1)
t )− E(W̄

(2)
t )

E(W̄
(1)
t+1)− E(W̄

(2)
t+1) + E[

∫
lnσ

(1)
0,t+1(U) dF

(1)
t (U)]− E[

∫
lnσ

(2)
0,t+1(U) dF

(2)
t (U)]

.

with at least two groups 1 and 2.

The problem is how to estimate E(W̄
(g)
t ) and E[

∫
lnσ

(g)
0,t+1(U) dF

(g)
t (U)]? Taking E(W̄

(g)
t )

for example, it is tempting to use T−1
∑T

t=1 W̄
(g)
t as the estimator, however it is an incon-

sistent estimator when there is non-random attrition of consumers. The underlying reason

is that even though (Xt, Pt, ξt) satisfies certain stationarity conditions, W̄
(g)
t is still non-

stationary due to the attrition of consumer. In particular, both∫
ln

[
σ

(g)
1t (U)

σ
(g)
0t (U)

]
dF

(g)
t (U) and

∫
U dF

(g)
t (U)

in the definition of W̄
(g)
t are nonstationary. Intuitively, consumers who are less price sensitive

purchase and leave the market earlier making the average
∫
U dF

(g)
t (U) drift upward over

time. Due to this non-stationary property (caused by attrition), the temporal average will

not converge in probability to E(W̄
(g)
t ), which is indeed only well defined for a fixed period.

In order to estimate E(W̄
(g)
t ), one needs access to a large number of cross sectional markets

for each period. Such data access is usually unavailable in empirical studies. The same

comments apply to the integral term of CCP functions.

Our approach works here because we can recover the CCP function at such a precise

level that the CCP for any given unobserved price sensitivity, i.e. σ
(g)
jt (Ũ) herein, can be

obtained. We then can avoid the problem of attrition by focusing on one type of consumer

(in terms of fixing U). After fixing U , all variables, like W
(g)
t (U), involve only stationary

process (Xt, Pt, ξt). We then can use the temporal average to estimate them and the discount

factor. This again highlights the importance of recovering the CCP σ
(g)
jt (U) in order to fix

the dynamic selection problem.

Remark 3 (Why can we identify the model without a specification of belief?). Note that our

estimation of flow utility functions and the discount factor does not rely on the specification of

the law of state transition that is embedded in the conditional expectation E[g(Xt+1, Pt+1, ξt+1)|Xt, Pt, ξt]

(here g(Xt+1, Pt+1, ξt+1) denotes a generic function of (Xt+1, Pt+1, ξt+1)). For example, a

consumer’s belief about the state transition may not be that of rational expectation.

For the estimation of flow utility functions (2SLS of regression eq. (Linear-Reg-1)), the

intuition is that because purchasing in our model is a terminal choice, the comparison between

two products once a consumer has decided to buy one of them does not involve the future

valuation, hence it does not involve the belief about the state transition distribution.
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The intuition for why we can estimate the discount factor without knowing a consumer’s

belief regarding the law of state transition is less transparent. The key step to identify the dis-

count factor is to take the unconditional expectation for eq. (13). The trick of unconditional

expectation can be understood by the following story. Suppose consumer A has rational ex-

pectation about the quality of a car without further information (unconditional expectation).

It is fine that A has an irrational belief about the quality of the car given the year it was

manufactured (conditional expectation with year manufactured being the conditional vari-

able). Taking unconditional expectations is to disregard the information of the year, hence

the irrational belief due to year does not matter. In our model, taking unconditional expec-

tation of eq. (13) ignores the information about the current market state (Xt, Pt, ξt), so that

consumers belief about (Xt+1, Pt+1, ξt+1) given (Xt, Pt, ξt) is irrelevant.

4 Simulation

In order to determine how well our estimator performs in small samples, we run several

simulations that vary the number of products, the number of observed groups, and the

degree of within group variation. We designed our numerical experiments to illustrate the

applicability of our estimator and to understand the following empirically relevant questions:

(i) How does the number of products affect the estimation?

(ii) How does the within group variation affect the estimation?

(iii) How does the number of observed groups and the number of periods affect the estima-

tion?

(iv) Does the theory work when there is enormous group difference while there is little

within group variation?

(v) How does the attrition rate affect the estimation?

We address each question in the results section 4.2 below. We make section 4.2 self-contained

so that readers, who are not interested in the data generating process (DGP) details, can

skip the DGP section and jump to the results.
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4.1 Data Generating Process

In our DGP, the flow utility function follows the specification in Section 3.1. When consumer

i of group g purchases product j in period t in market m, she receives the following utility

uijtm =
f(Xjtm, ξjtm)

1− β
− αiPjtm + εijtm,

and receives f(Xjtm, ξjtm) as flow utility in each period post purchase in period t where

αi = α(1) + τ (2)D
(2)
i + · · ·+ τ (G)D

(G)
i + ωUi.

In all the simulations below (except where noted) we let

f(Xjtm, ξjtm) = δj +X ′jtmγ + ξjtm = −0.1 +Xjtm × 0.03 + ξjtm,

for any product j. Thus, γ = 0.03 and δj = −0.1 for any product j. For price coefficient αi,

let α(1) = 0.1, τ (2) = 0.05, τ (3) = 0.1, τ (4) = 0.15, τ (5) = 0.2, τ (6) = 0.25, the within group

variation ω will take one value from (0.025, 0.05, 0.075), and let Ui be a random variable

drawn from the standard normal distribution. Products are differentiated by the observed

price, Pjtm, observed product characteristic Xjtm and unobserved characteristics, ξjtm. The

discount factor β is set to 0.90.

We next describe the data generation process of price, Xjtm, and the unobserved prod-

uct characteristics. We specifically account for correlation between ξjtm and Pjtm. Such a

formulation is motivated by the price endogeneity problem researchers face when employing

aggregate data, where firms can observe ξjtm and then set prices optimally. In practice, we

allow for multiple markets where M = 2. We use a reduced form price model to characterize

this dependence. Specifically,

Xjtm = rm + φxmXj,t−1,m + νxjtm,

ξjtm = φξξj,t−1,m + νξjtm,

Pjtm = c+MCjtm + νpjtm,

MCjtm = dj + φMC
j MCj,t−1,m + νMC

jtm ,

where (νxjtm, ν
ξ
jtm, ν

p
jtm, ν

MC
jtm )′ is independent and identically distributed across products, time

periods and markets, and follows a multivariate normal distribution,
νxjtm

νξjtm

νpjtm

νMC
jtm

 ∼ N
0,


σ2
x 0 0 0

0 σ2
ξ ρσξσp 0

0 ρσpσξ σ2
p 0

0 0 0 σ2
MC


 .
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Here MCjtm denotes the marginal cost of product j at time t in market m. We will use

MCjtm as the instrumental variable in estimation.

In our simulations, the maximum number of products is 8, and we assign the following

parameter values. We let c = 3, (d1, . . . , d8) = (0.21, 0.28, 0.35, 0.42, 0.49, 0.56, 0.63, 0.7),

(rm=1, rm=2) = (0.35, 0.55), φξ = 0, (φMC
1 , . . . , φMC

8 ) = (0.965, 0.94, 0.925, 0.91, 0.895, 0.88,

0.865, 0.85) and (φxm=1, φ
x
m=2) = (0.35, 0.55). For the initial state of MCj0m, we let (MC1,0,m,

. . . ,MC8,0,m) = (9.5, 9.25, 9.00, 8.75, 8.50, 8.25, 8.00, 7.75). Such specification ensures that

product marginal cost, MCjtm, has a declining trajectory, which is consistent with durable

goods models. As for the X variable, the initial starting values do not differ across j, but

do so across markets with (X0,m=1, X0,m=2) = (0.525, 0.825). Finally, we let σx = 0.15,

σξ = 0.05, σp = 0.25, σMC = 0.1 and ρ = 1.

It is important to note the specified DGP produces own-price elasticities (when all 8

goods are available) in the range of -1 for type 1 consumers to -3.5 for type 6. Additionally,

each set of simulations results are based on 50 replications.

4.2 Results

Effect of the number of products (J = 4 vs. J = 6 vs. J = 8)

Below we present the results of several Monte Carlo simulations in order to illustrate the per-

formance of our estimator as the number of products, J , increase. Given the time consuming

nature of the data generating process we restrict the number of products to be no more than

8. Additionally, the number of distinct consumer groups and the within group heterogeneity

parameter are held constant at 6 and at a value of ω = 0.075, while the number of products

in a consumer’s choice set varies from 4 to 8.

We have the following observations based on Table 1. (a) The estimator has negligible

bias, regardless of the number of products. (b) Unlike the other estimators of dynamic

discrete choice models, that would suffer from the curse of dimensionality as the number

of products increases, a bigger number of products indeed boost the performance of our

method by decreasing the standard error. This is more evident for the estimation of the

price coefficient α(1)—when the number of products doubles, the standard error is halved.

This observation is very useful because it is common to obtain data about many products.

This observation is also new—a larger number of products is usually perceived by applied

researchers as a source of estimation challenge because it would cause the curse of dimen-

sionality.
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Table 1: Simulation Results: Comparison Across Number of Products

DGP: M = 2, T = 12 and ω = 0.075

J = 4 J = 6 J = 8

δ = −0.1 -0.1025 (0.0132) -0.1023 (0.0101) -0.1028 (0.0083)

γ = 0.03 0.0312 (0.0047) 0.0313 (0.0042) 0.0313 (0.0037)

α(1) = 0.10 0.1001 (0.0090) 0.1004 (0.0069) 0.1004 (0.0055)

τ (2) = 0.05 0.0501 (2.35e-5) 0.0502 (1.68e-5) 0.0502 (1.63e-5)

τ (3) = 0.10 0.1000 (4.16e-5) 0.1001 (2.82e-5) 0.1002 (2.72e-5)

τ (4) = 0.15 0.1500 (5.67e-5) 0.1501 (3.73e-5) 0.1502 (3.50e-5)

τ (5) = 0.20 0.2001 (6.99e-5) 0.2003 (4.56e-5) 0.2004 (4.09e-5)

τ (6) = 0.25 0.2503 (8.31e-5) 0.2507 (5.45e-5) 0.2508 (4.62e-5)

ω = 0.075 0.0753 (1.09e-4) 0.0758 (7.75e-5) 0.0760 (7.46e-5)

β = 0.90 0.8981 (8.44e-4) 0.8978 (7.51e-4) 0.8978 (7.20e-4)

Note: Mean and standard deviation (in parenthesis) for 50 simulations.

Effect of within group variation: (ω = 0.025 vs. ω = 0.05 vs. ω = 0.075)

The within group variation plays an important role in our theory not only because this

parameter itself has important economic interpretation but also because when there is no

within group variation at all, different groups of consumers do not overlap in terms of price

sensitivity, hence the market share in one group is uninformative about the consumers choice

in the other groups. In the end our identification arguments will break.

The simulation shows that our estimator works very well even when the within group

variation is very small. In Table 2, we consider the estimation when the within group

variation ω = 0.025, 0.05, and 0.075. (a) There is no noticeable bias for all estimates, except

for ω itself. Only when ω is very small, ω = 0.025, there is small bias in estimating ω—the

mean of our estimates is 0.0272 as opposed to the true value 0.025. (b) Small ω indeed only

affects the estimation of ω itself—it does not affect the estimation of all the other parameters,

including product fixed effect, price coefficient, and the discount factor.
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Table 2: Simulation Results: Comparison Across Within Heterogeneity

DGP: M = 2, T = 12 and J = 8

ω = 0.025 ω = 0.05 ω = 0.075

δ = −0.10 -0.1043 (0.0083) -0.1039 (0.0083) -0.1028 (0.0083)

γ = 0.03 0.0317 (0.0037) 0.0316 (0.0037) 0.0314 (0.0037)

α1 = 0.10 0.1003 (0.0055) 0.1003 (0.0055) 0.1004 (0.0055)

τ 2 = 0.05 0.0503 (1.44e-5) 0.0503 (1.27e-5) 0.0502 (1.63e-5)

τ 3 = 0.10 0.1002 (2.75e-5) 0.1002 (2.18e-5) 0.1002 (2.72e-5)

τ 4 = 0.15 0.1502 (4.09e-5) 0.1502 (2.96e-5) 0.1502 (3.50e-5)

τ 5 = 0.20 0.2004 (5.34e-5) 0.2003 (3.59e-5) 0.2004 (4.09e-5)

τ 6 = 0.25 0.2510 (6.66e-5) 0.2509 (4.22e-5) 0.2508 (4.62e-5)

ω 0.0272 (2.40e-4) 0.0512 (9.12e-5) 0.0760 (7.46e-5)

β = 0.90 0.8968 (7.39e-4) 0.8971 (7.31e-4) 0.8978 (7.20e-4)

Note: Mean and standard deviation (in parenthesis) for 50 simulations.

Effect of the number of groups and the number of periods: (2 Groups vs. 6

Groups; 12 Periods vs. 36 Periods)

The method to estimate CCPs, i.e. eq. (10), is NLS, whose degree of freedom is driven by

the number of products, the number of groups G, and the number of periods T . In Table 3,

we check the performance of our estimator, when G = 2 and 6, and T = 12 and 36. For

the case of G = 2, we chose the most challenging case, in which the two selected groups are

the most distinct pair in terms of the difference of price coefficients. By checking this “near

boundary” case, we show the robustness of the proposed estimator.

We have following observations from Table 3. (a) Comparing the case (G = 2, T = 12)

and (G = 6, T = 12), we find that small number of groups does not affect the estimation

of product fixed effect (δ), coefficients associated with observed product characteristics (γ),

the price coefficient of the base group (α(1)), and the discount factor (β). (b) When G = 2

and T = 12 (one year of monthly data), there is small bias in estimating the within group

variation ω and price coefficient of the non-base group, and such bias vanishes when T

increases to 36 (three years of monthly data).
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Table 3: Simulation Results: Comparison Across Number of Groups

DGP: M = 2, J = 8 and ω = 0.075

G = 2, T = 12 G = 6, T = 12 G = 2, T = 36 G = 6, T = 36

δ = −0.10 -0.1042 (0.0082) -0.1028 (0.0083) -0.1046 (0.0032) -0.0977 (0.0033)

γ = 0.03 0.0316 (0.0037) 0.0314 (0.0037) 0.0308 (0.0020) 0.0300 (0.0020)

α1 = 0.10 0.1006 (0.0055) 0.1004 (0.0055) 0.1011 (0.0027) 0.1003 (0.0027)

τ 2 = 0.05 – 0.0502 (1.63e-5) – 0.0499 (1.27e-5)

τ 3 = 0.10 – 0.1002 (2.72e-5) – 0.0997 (2.14e-5)

τ 4 = 0.15 – 0.1502 (3.50e-5) – 0.1496 (2.70e-5)

τ 5 = 0.20 – 0.2004 (4.09e-5) – 0.1997 (3.06e-5)

τ 6 = 0.25 0.2551 (0.0015) 0.2508 (4.62e-5) 0.2489 (1.31e-4) 0.2501 (3.40e-5)

ω = .075 0.0847 (0.0025) 0.0760 (7.46e-5) 0.0736 (2.00e-4) 0.0747 (5.10e-5)

β = 0.90 0.8970 (8.54e-4) 0.8978 (7.20e-4) 0.8983 (5.43e-4) 0.9009 (5.20e-4)

Note: Mean and standard deviation (in parenthesis) for 50 simulations.

Biased estimation of discount factor caused by nonstationarity when attrition is

ignored

In Remark 2, we point out that non-random attrition of consumers will cause estimation

bias in two ways—misspecifciation of the distribution of unobserved heterogeneity and non-

stationary. The second (nonstationarity) is more subtle. To enhance this point, we consider

using the correctly estimated distribution of unobserved heterogeneity, but in the estimation

of the discount factor, we use

β̂ ≡ 1

G− 1

G∑
g=2

E(W̄
(1)
t )− E(W̄

(g)
t )

E(W̄
(1)
t+1)− E(W̄

(g)
t+1) + E[

∫
lnσ

(1)
0,t+1(U) dF

(1)
t (U)]− E[

∫
lnσ

(2)
0,t+1(U) dF

(g)
t (U)]

,

where, we use T−1
∑T

t=1 W̄
(g)
t as the estimator of E(W̄

(g)
t ), and use

T−1
∑T

t=1

∫
lnσ

(g)
0,t+1(U) dF

(g)
t (U) as the estimator of E(

∫
lnσ

(1)
0,t+1(U) dF

(1)
t (U)). The non-

random attrition makes W̄
(g)
t nonstationary even when (Xt, Pt, ξt) is stationary, so that

T−1
∑T

t=1 W̄
(g)
t does not converge.

Table 4 reports the estimation results using the above procedure. We have two ob-

servations. (a) Nonstationarity caused by attrition, if ignored, will bias the estimate of

the discount factor, hence bias the estimates of the product fixed effect and preference of

observed product characteristics. (b) The bias from ignoring attrition will increase with
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Table 4: Simulation Results: Bias If Ignore Attrition

DGP: M = 2, T = 12, G = 6 and J = 8

ω = 0.025 ω = 0.05 ω = 0.075

δ = −0.10 -0.1295 (0.0088) -0.1844 (0.0096) -0.2693 (0.0111)

γ = 0.03 0.0336 (0.0039) 0.0381 (0.0044) 0.0453 (0.0052)

β = 0.90 0.8907 (7.10e-4) 0.8758 (7.15e-4) 0.8525 (7.70e-4)

Note: Mean and standard deviation (in parenthesis) for 50 simulations.

greater within group heterogeneity of price sensitivity. Greater within heterogeneity causes

more substantial attrition making the distribution of unobserved consumers heterogeneity

change more rapidly over time.

5 Empirical Application: Demand of Electric Vehicles

We illustrate the empirical value of our method by estimating consumer demand for electric

vehicles in the state of Washington during the period of 2016–2019. We further ascertain the

impact of a different federal tax credit based upon a car’s MPGe rating rather than battery

size, which was the existing policy during the data period. We conclude a simple tax credit

of $76.53 per MPGe unit is cost neutral to the existing policy and reduces CO2 omissions

by 13.86% with 7 fewer electric vehicles on the road.

5.1 Data

The main data originates from new EV registration records from Washington State Depart-

ment of Licensing. The electric vehicles include battery electric vehicle (BEV) and plug-in

hybrid electric vehicle (PHEV). For each vehicle, we observe the first ten digits of vehicle

identification number (VIN), from which we collect vehicle characteristics by using a VIN

decoder. In the registration records, we also observe the ZIP code of a owner’s residence.

We then use Internal Revenue Service (IRS) ZIP code income as a proxy of the owner’s

household income.

In the data, a geographical market is a county, one time period is a quarter of a year, and

the group of consumers is defined based on household income. There are three geographical

markets in the data: King County (m = 1), Snohomish County (m = 2), and Pierce County

(m = 3). Together, these counties account for 77% of the EV market in Washington state.

31



We observe these geographical markets from quarter 1 (Q1) of 2016 to quarter 4 (Q4) of 2019.

There are three income groups in the data. These income groups are based on household

income in 2016. Group 1, 2 and 3 consist of households with incomes above the 90-th

percentile ($100,966), between the 75-th ($74,353) and 90-th percentile, and below the 75-th

percentile, respectively. For each income group and county, we let the initial market size

be the half of the number of households in that income group and county in 2016. Recent

survey suggests that about half of the respondents consider buying an EV as their new car.18

In the data, a product j corresponds to a model car such as the Nissan Leaf. We excluded

the models with extremely small market share such as the Smart Fortwo EV. The models we

included in the sample account for more than 99% of the total sales of EV in Washington.

If two trims of a model are very similar in terms of fuel efficiency and battery range (like

BMW 530E and BMW 530E AWD), we collapse them as one model and use their average

characteristics as the product characteristics of the collapsed model. In total, we have 29

distinct models from 17 makes.

We obtain additional data from various sources. The gasoline prices by county and period

are from Cost of Living Index. The number of electric charging stations in each county and

period is from Alternative Fuels Data Center in the US Department of Energy. The number

of public facilities in each county and period, which will be used as an instrumental variable

of the number of charging stations, is from County Business Patterns from the US Census

Bureau. The price is mostly from the transaction price in the registration data. In the

registration data, 25.3% of the vehicles do not have valid transaction prices. When the

transaction price is unavailable, we use the list price after the deduction of all federal and

state-level tax incentives. The available rebates for each model car and the amount of CO2

emission per model car in tons per year are from the US Department of Energy.

Table 5 reports the means of key vehicle characteristics and the sales in different income

groups. We note that because electric cars are expensive even after a variety of government

financial incentives,19 buying an EV is more popular among affluent Americans. The top

10% of consumers in terms of income own 47.6% of PHEV and 61.5% of BEV, which is more

expensive than PHEV on average, and they own 62.2% and 58.2% of electric cars in 2016 and

2019, respectively. Figure 3 plots the average electric range in miles, the number of charging

18Olivier Blanchard, “New Research: Purchase Intent For Hybrids and EVs Has Reached

An Inflection Point in North America,” Creative Strategies, accessed May 2, 2022, https:

//creativestrategies.com/new-research-purchase-intent-for-hybrids-and-evs-has-reached-

an-inflection-point-in-north-america/
19The average new car prices in 2016 and 2019 were $34,077 and $36,718, according to Edmunds.
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Table 5: Means of Key EV Characteristics

Variable PHEV BEV 2016 2019

Price (thousand of $) 42.7 48.0 42.9 47.0

(17.3) (28.7) (21.9) (23.2)

Federal Tax Credit ($) 4831 6789 6015 5312

(1354) (1633) (1579) (1817)

Electric Range (miles) 21.1 155.2 69.6 107.5

(8.75) (73.59) (67.25) (97.92)

Miles per gallon equivalent (MPGe) 48.7 100.9 72.4 75.1

(18.4) (14.8) (31.0) (31.0)

Horsepower 213 236 212 245

(88.1) (138.3) ( 89.5) (136.4)

Tailpipe CO2 emission (ton/year) 1.254 - 0.915 0.737

(0.728) - (0.898) (0.805)

Sales: all groups 5318 24921 4422 9120

% sales: income below 75th percentile 28.1 17.1 16.7 20.1

% sales: income between 75th and 90th percentile 21.4 21.4 21.1 21.7

% sales: income greater 90th percentile 47.6 61.5 62.2 58.2

Note: CO2 emission of PHEV is based on 15,000 miles driving distance a year, and 37% electric

driving in real life (Plötz et al., 2020). The standard deviation is in the parenthesis.

stations in the three counties, average federal tax credit, and sales across time. We observe

substantial improvement of electric range and rapid deployment of EV charging stations

across time. On the other hand, we see a declining federal tax credit in Figure 3. This is

because the tax credit is phased out over time after a manufacturer reaches a total sales

(200,000) milestone since 2010.20 Intuitively, the shrinking tax credit incentivizes consumers

to buy EV earlier than later. On the other hand, longer electric range and growing network

of charging stations provide the motivation to delay an EV purchase.

Lastly, our data contain only the sales of electric vehicles. We do not observe the sales

of the conventional combustion vehicles. This creates a potential issue in our model spec-

ification, in which the outside option in a period is to delay the purchase, rather than to

20Taking Tesla Model 3 for example, its credit was $7,500 before 12/31/2018, then $3,750 from 1/1/2019

to 6/30/2019, and lastly $1,875 from 7/1/2019 to 12/31/2019.
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Figure 3: Time Series of Key Variables in the EV Market

purchase a gasoline car. This potential issue might have limited impact on our empirical

analysis based on a survey of electric car owners in California conducted by the Center for

Sustainable Energy (Johnson et al., 2017). According to this survey, when consumers start

searching for a new vehicle, 72 percent of the EV owners stated that they were at least very

interested in a PHEV or BEV, and 94 percent of the owners said they at least had some

interest in electric cars.

5.2 Consumer Dynamic Demand Model for EV

Our empirical model follows closely to the theoretical framework with a few changes to ad-

dress specific empirical issues. Most notable is the inclusion of multidimensional unobserved

heterogeneity. For a household of type (g,Ui ≡ (Ui1, Ui2)), assume their expected life-time

payoff of buying an EV j = 1, . . . , J at time t is

v
(g)
jt (Ui) =

∑K
k=1 δjMakejk + γ′1X

ev
jt + γ′2X

cnty
jt + ηiMPGejt + ξjt

1− β
− αiPjt,

(
ηi

αi

)
=

(
η(1)

α(1)

)
+D

(2)
i

(
τ

(2)
1

τ
(2)
2

)
+D

(3)
i

(
τ

(3)
1

τ
(3)
2

)
+Ω

(
Ui1

Ui2

)
,

where Ω is a diagonal matrix defined as

Ω ≡

(
ω1

ω2

)
.
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For simplicity of reporting the results and for estimation, we report η(1)

1−β , τ (2)

1−β , τ (2)

1−β , and

ω1 ≡ ω̃1

1−β .

Here Makejk, for k = 1, . . . , K, is a dummy variable for the make k. If EV j is manufac-

tured by make k, Makejk = 1 and = 0 otherwise. There are K = 17 makes in the sample.

Here Xev
jmt consists of various product characteristics including horsepower, a dummy vari-

ables for BEV, a dummy variable of sport utility vehicle (SUV), the interaction between BEV

and SUV indicator variables, the interaction term between the dummy variable of BEV and

the gasoline price in county m, and the interaction term between the dummy variable of

BEV and the log number of charging stations in county m. The vector Xcnty
mt consists of

county market characteristics including gasoline price and the log number of EV charging

stations in the county. The price Pjmt is the final price after deducting all federal and state

tax incentives. Lastly, we let Nissan Leaf be the base product 1, because it appears in all

markets, time periods and groups. Also let Nissan be make 1.

The structural estimation first relies on21

Y dynamic
jmt =

K∑
k=1

δmake,k − δmake,1
1− β

Makejk + (Xev
jmt −Xev

1mt)
′ γ1

1− β
− α(1)(Pjmt − P1mt)+

η(1)

1− β
[MPGejmt −MPGe1mt] +

ξjmt − ξ1mt

1− β
. (EV-Linear-Reg-1)

Note that γ2 does not appear in and cannot be identified from the above equation. This is

because the county market variables do not vary across the products in the county. From this

first stage, we obtain the estimates of the make effect (δmake,2−δmake,1)/(1−β), . . . , (δmake,K−
δmake,1)/(1 − β), γ1/(1 − β), η(1)/(1− β) and price coefficient α(1). In this regression, car

price Pjmt and the interaction term between BEV dummy variable and the log number of

charging stations are endogenous. The IV for price of product j in our estimates is the

battery pack cost multiplied by the electric range, which can be viewed as a proxy of the

battery size of an EV.22 The average lithium battery pack price in 2019 was about half of

its price in 2016 according to Bloomberg.23 For this reason we also include the battery pack

price and its squared terms as additional instruments. For the number of charging stations

21Appendix D collects the details of estimating CCP function with multidimensional unobserved hetero-

geneity.
22Note, the IV employed above accounts for the difference between product 1 and product j—battery pack

cost in period t times the difference in electric range between products 1 and j in period t.
23See “Battery Pack Prices Fall to an Average of $132/kWh, But Rising Commodity Prices Start to Bite,”

BloombergNEF, accessed May 3, 2022, https://about.bnef.com/blog/battery-pack-prices-fall-to-

an-average-of-132-kwh-but-rising-commodity-prices-start-to-bite/
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times BEV, we follow Zhou and Li (2018) and use the log number of public facilities (such

as universities, hospitals, supermarkets etc.). This comes from the observation that many

EV charging stations locate in the parking lots of these public facilities, which were built

long before there was an EV market.

The next step is to use

ln

[
σ

(g)
1mt(U)

σ
(g)
0mt(U)

]
=
δmake,1
1− β

+Xev
1mt
′ γ1

1− β
+Xcnty

mt

′ γ2

1− β
+

(
η(1)

1− β
+

τ
(g)
1

1− β
+ ω1U1

)
(MPGe1mt)

− (α(1) + τ
(g)
2 + ω2U2)P1mt +

ξ1mt

1− β
+ β E[V̄

(g)
t+1(U) |Xmt, Pmt, ξmt]. (14)

to recover δmake,1, γ2 and the discount factor β.

Letting

W
(g)
mt (U) ≡ ln

[
σ

(g)
1mt(U)

σ
(g)
0mt(U)

]
−[

Xev
1mt
′ γ1

1− β
+

(
η(1)

1− β
+

τ
(g)
1

1− β
+ ω1U1

)
MPGe1mt − (α(1) + τ (g) + ω2U2)P1mt

]
, (15)

we have the conclusion following the similar arguments in section 3.4:

W
(g)
mt (Ũ) = δmake,1 +Xcnty

mt

′ γ2

1− β
+

ξ1mt

1− β
+

β E

(
W

(g)
m,t+1(Ũ)−Xcnty

m,t+1

′ γ2

1− β
+ lnσ

(g)
0,m,t+1(Ũ)− ξ1,m,t+1

1− β

∣∣∣∣Xmt, Pmt, ξmt

)
, (16)

for a fixed Ũ.

To estimate the discount factor β and γ2, one possible approach is to consider the un-

conditional expectation again and to have the following conclusion:

E[W
(g)
mt (Ũ)] = δmake,1+β E[W

(g)
m,t+1(Ũ)+lnσ

(g)
0,m,t+1(Ũ)]−E[(Xcnty

mt −βX
cnty
m,t+1)′]

γ2

1− β
= 0,

for a fixed Ũ. Then we can solve β and γ2/(1−β) from the above equation by the variation of

groups.24 For this particular application, this approach is infeasible because some of our state

24When there are two groups, we have the following formula for β:

β =
E[W

(1)
mt (Ũ)]− E[W

(2)
mt (Ũ)]

E[W
(1)
m,t+1(Ũ)]− E[W

(2)
m,t+1(Ũ)] + E[lnσ

(1)
0,m,t+1(Ũ)]− E[lnσ

(2)
0,m,t+1(Ũ)]

.

Knowing β, it is straightforward to obtain γ2 from

E[W
(g)
mt (Ũ)]− β E[W

(g)
m,t+1(Ũ) + lnσ

(g)
0,m,t+1(Ũ)] = δmake,1 + E[(βXcnty

m,t+1 −X
cnty
mt )′]

γ2
1− β

,

for all g and m.
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variables are nonstationary as illustrated by the time series plot in Figure 3. For example,

the number of charging stations, which is one element of Xcnty
mt , is clearly nonstationary.

Due to the nonstationarity of the state variables, we cannot use T−1
∑T

t=1X
cnty
mt to estimate

E(Xcnty
mt ), which is not well defined for a given county.

As an alternative, we note that in eq. (16), for a fixed Ũ, the random variable W
(g)
mt (Ũ)

is a function of the vector (Xmt, Pmt, ξmt). So we have a conditional moment condition:

E

(
W

(g)
mt (Ũ)− βW (g)

m,t+1(Ũ)− δmake,1 − β lnσ
(g)
0,m,t+1(Ũ)− (Xcnty

mt − βX
cnty
m,t+1)′

γ2

1− β

− ξ1mt − βξ1,m,t+1

1− β

∣∣∣∣Xmt, Pmt, ξmt

)
= 0.

Suppose there is a vector of Xmt,IV , which are elements or functions of the conditioning

variables (Xmt, Pmt, ξmt) and satisfy

E(Xmt,IV ξ1mt) = E(Xmt,IV ξ1m,t+1) = 0.

We have the moment conditions of

E

[
Xmt,IV

(
W

(g)
mt (Ũ)−βW (g)

m,t+1(Ũ)−δmake,1−β lnσ
(g)
0,m,t+1(Ũ)−(Xcnty

mt −βX
cnty
m,t+1)′

γ2

1− β

)]
= 0.

We then can estimate δmake,1, β and γ2 from the above equation using the moment estimator.

In our empirical estimates, we let Ũ = 0 and define Xmt,IV as a vector of ones, gascntymt −
βgascntym,t+1, the number of public charging stations in period t, and the log battery price

interacted with a county indicator variable in period t.

5.3 Empirical Results

Given our methodology focuses on estimating unobserved heterogeneity, the most important

parameter estimates are those linking to MPGe and price, which recover respective sensi-

tivities (η(1), τ
(g)
1 , α(1), τ

(g)
2 ) for each consumer type as well as Ω which again measures the

variation of unobserved consumer heterogeneity within each group.

Our estimates in Table 6 indicate the price sensitivity for those whose income reside in

the 90-th percentile or higher is 1.0667, followed by group 2 (income between 75-th and 90-th

percentile) whose price sensitivity is α(1) + τ (g=2) = 1.1780. On average, Group 3 consumers

whose income is below the 75-th percentile are the most price sensitive consumers with

(1.5775 = 1.0667 + 0.5108). Additionally, there is a statistically significant estimate of

within group unobserved heterogeneity (ω = 0.5491) in price sensitivity. In order to provide
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economic meaning to these price estimates, we determine that a temporary unexpected 10%

price increase in period 1 for all EVs would lead to a fall in sales by 37.24% in period 1. With

respect to MPGejt, we find sensitivities decline as incomes fall. Consumer segment 1 whose

income falls above the 90-th percentile is statistically not different from zero. Consumers in

group 2 and 3 negatively value MPGe, with sensitivity estimates of (−0.1375) and (0.1143),

respectively. There too is statistically significant unobserved heterogeneity with respect to

MPGe (ωmpge = 0.8387). The goodness of fit statistic of our first stage nonlinear least

squares model is 0.9899.

We include several other observable product characteristics in our estimation besides price

and MPGe. We report and discuss these results in terms of their lifetime effect (γ/(1− β)).

Most notably, we include make fixed effects in addition to indicator variables for BEV,

SUV and the interaction for BEV and SUV. The indicator for BEV is found to be negative

and significant. This suggests that after controlling the price difference between BEVs and

PHEVs, Americans prefer PHEVs over BEVs. This is possibly due to lack of EV charging

stations, especially DC fast charging stations. Because PHEV has a much smaller battery

and can drive on gasoline, consumers can simply fully charge their PHEV in their garages

over the night, which is impossible for a BEV without fast-charging technology at home.

Though BEV now has good electric range, consumers can still feel range anxiety without

convenient charging network. This is related to our estimates about the effects of charging

stations on the adoption of EV.

We find that demand is driven by the network of charging station in the residing county

but only for BEVs (0.4198) as the county effect is insignificant (−0.1654). This effect indi-

cates that consumers value the size and existence of the network of electric charging stations

for BEVs. Our estimates also indicate a strong driver of BEV adoption is the current price

of gas with an estimate of 0.5187, since the general term for all EVs is statistically insignifi-

cant. We add economic meaning to these results by determining the change in total EV sales

in period 1 from a temporary unexpected increase in gas prices by 10%. We conclude EV

sales would increase by 14.25% in period 1 with BEV sales increasing by 18.21% and PHEV

sales by 0%. Additionally, consumers have a preference for larger vehicles (SUV=1.0349)

but not for large BEV SUVs as this latter parameter is insignificant. Consumers of EVs also

illustrate little utility to horsepower as the parameter estimate is statistically insignificant.

Finally, we discuss our discount factor estimate. The first note of interest is that we are

able to precisely estimate it. Additionally, the magnitude (0.9146) is inline with the standard

assumption of a monthly discount factor of β = 0.975. In order to put this estimate into
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perspective our estimate of β = 0.9146 equates to consumers valuing utility 15 years in the

future—by the 60th quarter or 15th year after the purchase date, the associated flow utility

is valued at near zero by the consumer in period t = 1 (β4×15 = 0.0047). How reasonable

is this estimate? It is quite sensible according to the leading industry magazine, Consumer

Reports reports EV battery packs last 13-17 years, which is based upon a total of 200, 000

miles.25

5.4 Policy Simulation

Since 2010, the federal government has incentivized the purchase of new electric vehicles with

federal tax credits. To date, many BEV and PHEV buyers have benefited from this program.

With consumer preferences estimates in hand, we are able to compare the existing federal

tax credit based upon battery size to a new policy that employs MPGe. In order to make

a fair comparison of these two policies, we simulate the impact on sales and CO2 emissions

for only period 1 in our data, as the new policy must be treated as temporary unexpected

change to the existing policy as we have not estimated any state transitions. Moreover, we

hold the cost of the new policy equal to the existing cost of the policy in period 1 across all

three counties.

Before we discuss the details of our new policy and its results, it is important to under-

stand how the tax credit works, and which cars are eligible. First, the vehicle must be new

and its must be purchased rather than leased. The IRS tax credit for 2016 ranged from

$2, 500 to $7, 500 per new electric vehicle purchased. The exact credit amount is based upon

the size of the EV battery. For instance, the there is a base payment of $2, 500 for any

battery size. For EVs with larger batteries, the policy provides an additional credit of $417

per kilowatt hour for batteries that are in excess of 5 kilowatt hours and is capped at $5, 000.

The total federal tax credit is therefore limited to $7, 500.26 27

Our new policy leverages battery efficiency to incentivize EV adoption, rather than bat-

tery capacity.28 For our policy simulation we propose a new federal tax incentive that is

a linear function of MPGe: Tax Credit ($) = MPGe×$76.53. We also hold the total cost

25Ceyhan Cagatay, “How Long Should An Electric Car’s Battery Last?”, MyEV, accessed May 16 2022,

https://www.myev.com/research/ev-101/how-long-should-an-electric-cars-battery-last.
26https://www.efile.com/electric-vehicle-car-tax-credits/
27There are other details of the policy that are omitted as they are not relevant to the current counterfactual

simulation (e.g. phasing out of the tax credit over time after a manufacturer reaches a total of 200,000 BEV

or PHEV vehicles sold nationally since 2010).
28MPGe is the official metric that the EPA uses to measure the efficiency of alternative-fuel.
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Table 6: Estimation of EV Demand

Variables Estimate SE

Price 1.0667*** (0.4439)

Price*I[Medium Income] 0.1113*** (0.0108)

Price*I[Low Income] 0.5108*** (0.2157)

MPGe 0.3914 (0.6875)

MPGe*I[Medium Income] −0.5289*** (0.0483)

MPGe*I[Low Income] −0.5057*** (0.1231)

BEV −3.1782*** (0.6140)

SUV 1.0349*** (0.3105)

BEV × SUV 1.2284 (0.8555)

Horsepower 0.6744 (0.4707)

Gas Price 6.1302 (4.3634)

Gas Price × BEV 0.5187*** (0.2499)

ln(EV Stations) 0.8350 (9.6096)

ln(EV Stations) × BEV 0.4198*** (0.1040)

ω1 —MPGe 0.8387*** (0.1512)

ω2 —Price 0.5491*** (0.0108)

Discount Factor (β) 0.9146*** (0.2250)

Note: Make fixed effects are not reported to save space.

Price is scaled by 1/10,000. MPGe and HP are scaled by 1/100.

Estimates for observed charac. report values γ/(1− β).

*** 95 percent significance; ** 90 percent significance.
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of the proposed policy fixed at the period 1 (2016-Q1) level under the existing federal tax

credit policy for the three included counties in our analysis. This latter measure is found

by aggregating the tax credits from all EVs sold during Q1 of 2016 across the 3 counties of

Washington state.

The new proposed policy rewards more efficient cars in terms of MPGe compared with

the existing policy. To put this into perspective, a Tesla Model S in 2016 had an MPGe of

100 and a 95kWh battery and received a federal tax credit of $7, 500. Under our proposed

policy that tax credit would increase slightly to $7, 653. Contrast that with a BMW X5

PHEV with an MPGe of 29 and 9.1 kWh battery in 2016. Under the current policy, the

consumer received a $4, 668 tax credit whereas under our policy a consumer would only

receive $2, 219—a roughly 52% reduction in the federal tax credit.

In order to simulate the results of our new temporary policy, we assume the change

in the tax rebate was unexpected to the consumers and is believed to be temporary (one

period). We leverage the structural parameter estimates along with the series multinomial

logit estimates of the CCP (ρjmt1, ρjmt2, and ρjmt3) to simulate new choice probabilities

under the new proposed tax policy. (See eq. (D.3) in Appendix D for the definition of series

approximation of CCP with multidimensional unobserved heterogeneity.) We show below

that only ρjmt1 and ρjmt2 change from their initial estimates. Note, policies that are not

temporary cannot leverage the series multinomial logit CCP parameters to simulate new

CCPs as such policies would require a change in the beliefs and/or evolution of the state

space.

Proposition 4 (Transformation of the series multinomial logit parameters for a temporary

and unexpected policy change). Define ρ̃jmt1, ρ̃jmt2 and ρ̃jmt3 as CCP series multinomial

logit parameters under the new policy. We have

ρ̃jmt1 = ρjmt1 − α(1)∆Pjmt, ρ̃jmt2 ≡

(
ρ̃jmt2,1

ρ̃jmt2,2

)
=

(
ρjmt2,1

ρjmt2,2 −∆Pjmtω2

)
, ρ̃jmt3 = ρjmt3,

where ∆Pjmt is the price difference between the new and old policy for product j in period t

and county m.

The results of our proposed policy are reported in Table 7, and highlight a sizable re-

duction in CO2 emissions (13.86%) with a (-0.81%) reduction in the total number of EVs

sold (7 car). This indicates under the new policy consumers substituted away from PHEV

vehicles to more efficient BEV vehicle (15 more BEVs were sold). In Q1 of 2016, the original

policy sold 889 units whereas the the new policy sold 7 fewer cars at 882 cars. Given our pol-

icy emphasizes battery efficiency rather than capacity, we analyze the policy effect on CO2
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Table 7: Policy Simulation Results

Existing Policy (kWh) Proposed Policy (MPGe) % change

Sales (units) 889 882 -0.81%

BEV Sales (units) 705 720 2.07%

PHEV Sales (units) 184 162 -11.90%

CO2 (tons) 362.82 312.54 -13.86%

Total Cost ($) 6,101,169.10 6,101,140.61 4.6696e-04%

emissions. Leveraging data from the US Department of Energy we are able to determine the

change in CO2 due to the change in tax policy. It is important to note that the results that

pertain to CO2 emissions are only from the use of EVs and do not include any emissions

from the generation of electricity to charge the EVs. We determine our proposed policy

reduces CO2 emissions by 13.86% or 50.28 tons of CO2 from 362.82 tons to 312.54 tons.

In summary, we show a cost neutral temporary policy that emphasizes battery efficiency

over storage can reduce CO2 emissions by incentivizing consumers to switch from PHEVs

to BEVs, and in particular lighter more efficient BEVs.

6 Conclusion

In estimating dynamic discrete choice demand models for durable goods, it is essential to

account for unobserved consumer heterogeneity and unobserved product characteristics in

order to obtain unbiased estimates of important parameters like price elasticities. However,

in the implementation of such models, it is inevitable to address the curse of dimensionality

caused by the large number of products on the market and the high dimension of product

characteristics. This paper provides a new estimation approach using group market share

data that includes continuous unobserved consumer heterogeneity and unobserved product

characteristics, but avoids the curse of dimensionality. As a result, our methodology can be

used in the markets with many differentiated products.

The implementation of our method is simple and requires only NLS and 2SLS. It allows

researchers to consider various model specifications at little computational and programming

cost. In addition to these practical benefits, our method also has a few theoretical appealing

properties. We find that the identification of dynamic demand model requires the same

conditions as the identification of static demand model, which requires instrumental variables
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to address the endogeneity of variables like price. In establishing identification, we are

agnostic about how consumers form their beliefs regarding the state transition distribution,

and we explicitly take account of dynamic selection. This is useful because there is evidence

of discrepancies between an individual’s subjective belief and the assumption of rational

expectations (see the cited reference in An, Hu and Xiao 2020). The fact that the model is

identified without imposing an assumption about consumer beliefs is novel and interesting,

and is particularly true for the discount factor where existing results require not only rational

expectation but also excluded variables (that affect the state transition but not the flow

utility). Our paper requires neither.

Our data requirement is group market shares (or sales). This is weaker than requiring

consumer-level panel data, from which we can construct the group market shares. To collect

customer level panel data, companies need to track customers over time. For durable goods,

this could be very costly and impractical due to their longer life span (last at least 3 years

by the definition of the US Census Bureau29). Additionally, in the digital age where privacy

is concern, customers are unwilling to be tracked over time, and companies are unwilling

to share their customer-level data with researchers.30 As a result, these prospects make our

data requirement (and methodology) more desirable in the future.

29See for example: “Manufacturers Place Orders When Economy Improves,” United States Census Bu-

reau, accessed December 24, 2020, https://www.census.gov/library/stories/2018/07/manufacturers-

durable-goods.html
30Dropbox once shared its customer data with researchers and incurred ethical concerns. See the report

by Emily Dreyfuss, “Was It Ethical for Dropbox to Share Customer Data with Scientists?”, Wired, July 24,

2018, https://www.wired.com/story/dropbox-sharing-data-study-ethics/.
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A Proofs

Proof of Proposition 2. First, without attrition, the pool of consumers does not change with

time. So that f
(g)
t (u) = f

(g)
1 (u) = φ(u) for any period t. In the rest, we focus on the case

with attrition.

When t = 1, f
(g)
1 (u) = φ(u) by Assumption 4. We will prove

f
(g)
t (u) = φ(u)×

t−1∏
s=1

σ
(g)
0t (u)

S
(g)
0t

, t ≥ 2. (A.1)

by the induction. Define a few notation for exposition. Let Ait denote the discrete purchasing

choice made by consumer i in period t. Particularly, Ait = 0 means not purchase in period

t. Let Zt ≡ (X ′t, P
′
t , ξ
′
t)
′ denote the vector of product characteristics in period t. Also recall

that D
(g)
i = 1 denotes that i is from group g.

When we randomly draw a consumer i with unobserved price sensitivity Ui from group

g, f
(g)
t (u) is the probability that Ui = u provided that consumer i still exists in period t.

Because consumers leave the market after purchasing, a consumer would exist in period t if

and only if she had chosen not to purchase in all the previous periods given the past product

characteristics. In other words, f
(g)
t (u) is the probability that Ui = u conditional on that

D
(g)
i = 1 (so i is from group g) and consumer i did not purchase from period 1 to t− 1 with

the past product characteristics Z1, . . . , Zt−1. That is

f
(g)
t (u) = Pr(Ui = u |D(g)

i = 1, Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1).

The above conditioning variables just restrict the population to be the remaining consumers

after t−1 periods. Because all the remaining consumers in period t face the same the product

1Cheng Chou: School of Business, University of Leicester, UK. Email: cchou@le.ac.uk.
2Tim Derdenger: Tepper School of Business, Carnegie Mellon University
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state variables Zt, we also have the following conditional independence,

f
(g)
t (u) = Pr(Ui = u |D(g)

i = 1, Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1)

= Pr(Ui = u |D(g)
i = 1, Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1, Zt).

(A.2)

We now prove eq. (A.1) by the induction. Starting with period 2, we have

f
(g)
2 (u) = Pr(Ui = u |D(g)

i = 1, Ai1 = 0, Z1)

=
f(Ui = u |D(g)

i = 1, Z1)f(Ai1 = 0 | Ui = u,D
(g)
i = 1, Z1)

f(Ai1 = 0 |D(g)
i = 1, Z1)

= φ(u)× σ
(g)
01 (u)

S
(g)
01

.

The third line used f(Ui = u |D(g)
i = 1, Z1) = f(Ui = u |D(g)

i = 1) because all consumers in

group g face the same product characteristics Z1 in the first period.

Suppose eq. (A.1) holds for period t. We will prove that this equation also holds for

period t+ 1. We have

f
(g)
t+1(u) = Pr(Ui = u |D(g)

i = 1, Ai1 = 0, . . . , Ai,t−1 = 0, Ait = 0, Z1, . . . , Zt)

= Pr(Ui = u |D(g)
i = 1, Ai1 = 0, . . . , Ait−1 = 0, Z1, . . . , Zt)

× f(Ait = 0 | Ui = u,D
(g)
i = 1, Ai1 = 0, . . . , Ait−1 = 0, Z1, . . . , Zt)

f(Ait = 0 |D(g)
i = 1, Ai1 = 0, . . . , Ait−1 = 0, Z1, . . . , Zt)

= f
(g)
t (u)× f(Ait = 0 | Ui = u,D

(g)
i = 1, Ai1 = 0, . . . , Ait−1 = 0, Z1, . . . , Zt)

f(Ait = 0 |D(g)
i = 1, Ai1 = 0, . . . , Ait−1 = 0, Z1, . . . , Zt)

by eq. (A.2)

= f
(g)
t (u)

σ
(g)
0t (u)

S
(g)
0t

= φ(u)×
t∏

s=1

σ
(g)
0s (u)

S
(g)
0s

.

Note that the purchase choice Ait in period t depends only on the payoffs vijt, which are

functions of (Ui, D
(g)
i , Zt) only. So that Ait ⊥⊥ (Ai1, . . . , Ait−1, Z1, . . . , Zt−1) | (Ui, D(g)

i , Zt),

and the last line follows. This completes the proof. �

Proposition A.1 (Group composition due to attrition). Suppose consumers leave the market

after purchasing. Let π
(g)
t denote the proportion of group g consumers in period t, and let

S0t denote the share of consumers who choose the outside option (not purchase) in period t.

We have

π
(g)
t = π

(g)
1 ×

(t−1∏
s=1

S
(g)
0s

S0s

)
. (A.3)
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Proof. The proof is similar to the proof of proposition 2 and we keep using the notation

defined in that proof. We prove by induction. Starting from period 2, we have the following

by definition,

π
(g)
2 = Pr(D

(g)
i = 1 | Ai1 = 0, Z1)

=
Pr(D

(g)
i = 1 | Z1) Pr(Ai1 = 0 |D(g)

i = 1, Z1)

Pr(Ai1 = 0, Z1)

= π
(g)
1 ×

S
(g)
01

S01

.

Suppose eq. (A.3) holds for period t. We want to show the statement holds for period t+ 1,

we have

π
(g)
t+1 = Pr(D

(g)
i = 1 | Ai1 = 0, . . . , Ai,t−1 = 0, Ait = 0, Z1, . . . , Zt)

= Pr(D
(g)
i = 1 | Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1, Zt)

× Pr(Ait = 0 |D(g)
i = 1, Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt)

Pr(Ait = 0 | Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt)

= π
(g)
t

S
(g)
0t

S0t

.

The last line follows because the vector product characteristics Zt is the same for different

groups of remaining consumers after t−1 periods, so that Pr(D
(g)
i = 1 |Ai1 = 0, . . . , Ai,t−1 =

0, Z1, . . . , Zt−1, Zt) = Pr(D
(g)
i = 1 | Ai1 = 0, . . . , Ai,t−1 = 0, Z1, . . . , Zt−1) = π

(g)
t . This

completes the proof. �

Proof of Proposition 4. For expositional simplicity, we omit the market indexm in this proof.

Also note that U = (U1, U2)′ involves two-dimensional unobserved heterogeneity, and U1 and

U2 are associated with MPGe and price, respectively. Correspondingly, τ (g) = (τ
(g)
1 , τ

(g)
2 )′.

We begin by first specifying the log market share ratio under each policy where the current

policy follows from eq. (14), and the new policy takes the form of

ln

[
σ̃

(g)
jmt(U)

σ̃
(g)
0mt(U)

]
=

δj
1− β

+X ′jt
γi

1− β
− (α(1) + τ

(g)
2 + ω2U2)P̃jt +

ξjt
1− β

− β E[V̄
(g)
t+1(U) |Xmt, Pmt, ξmt], (A.4)

where P̃jt is the new price of the EV vehicle with the proposed tax credit. Its series repre-

sentation is that

ln

[
σ̃

(g)
jmt(U)

σ̃
(g)
0mt(U)

]
= ρ̃jt1 + ρ̃′jt2Ω

−1
(
ΩU + τ (g)

)
+
(
ΩU + τ (g)

)′
Ω−1ρ̃jt3Ω

−1
(
ΩU + τ (g)

)
,

3



with unknown coefficients ρ̃jt1, ρ̃jt2, and ρ̃jt3. Ω is a diagonal matrix whose diagonal elements

are ω1 and ω2. The objective is to solve for ρ̃jt1, ρ̃jt2, and ρ̃jt3. Define P̃jt = Pjt+ ∆Pjt. First

note that by eq. (14), we have

ln

[
σ̃

(g)
jmt(U)

σ̃
(g)
0mt(U)

]
= ln

[
σ

(g)
jmt(U)

σ
(g)
0mt(U)

]
− (α(1) + τ

(g)
2 + ω2U2)∆Pjt

= ρjt1 + ρ′jt2Ω
−1
(
ΩU + τ (g)

)
+
(
ΩU + τ (g)

)′
Ω−1ρjt3Ω

−1
(
ΩU + τ (g)

)
− (α(1) + τ

(g)
2 + ω2U2)∆Pjt

= ρjt1 − (α(1) + τ
(g)
2 )∆Pjt + ρ′jt2Ω

−1
(
ΩU + τ (g)

)
+
(
ΩU + τ (g)

)′
Ω−1ρjt3Ω

−1
(
ΩU + τ (g)

)
− ω2U2∆Pjt.

Note that ρjt2 is a two-dimensional vector:

ρjt2 =

(
ρjt2,1

ρjt2,2

)
and ρ′jt2Ω

−1 = (ρjt2,1ω
−1
1 , ρjt2,2ω

−1
2 ),

where ρjt2,1 is associated with MPGe, and ρjt2,2 is with price. Next, we write ω2U2∆Pjt =

(ω2U2 + τ
(g)
2 )∆Pjt − τ (g)

2 ∆Pjt so that

ln

[
σ̃

(g)
jmt(U)

σ̃
(g)
0mt(U)

]
= ρjt1 − α(1)∆Pjt +

(
ρjt2,1

ρjt2,2 −∆Pjtω2

)
Ω−1

(
ΩU + τ (g)

)
+
ρjt3
ω2

(
ΩU + τ (g)

)2

.

Thus,

ρ̃jt1 = ρjt1 − α(1)∆Pjt, ρ̃jt2 ≡

(
ρ̃jt2,1

ρ̃jt2,2

)
=

(
ρjt2,1

ρjt2,2 −∆Pjtω2

)
, ρ̃jt3 = ρjt3.

�

B Asymptotics

The asymptotics is built on T → ∞ with the number of products J and the number of

groups G being fixed. Let θ ≡ (θ1, θ2), where θ1 ≡ (τ , ω,ρ, (δ2 − δ1)/(1 − β), . . . , (δJ −
δ1)/(1−β), γ/(1−β), α(1)), and θ2 ≡ (β, δ1). We decompose θ into these two parts, because

the estimation of θ2 relies on the estimation of θ1. Let θ̂1 and θ̂2 denote the estimator of θ1

and θ2, respectively.

It is easier to derive the asymptotic distribution backwardly from θ2 ≡ (β, δ1). We use

eq. (Linear-Reg-2) to estimate θ2. In the estimation of θ2, we fix U at certain number. In

4



particular, we let U = 0 here to simplify the discussion. For exposition simplicity, we ignore

the dependence on U below. Let

Ŵ (g)(θ̂1) ≡ T−1

T∑
t=1

W
(g)
t (U = 0, θ̂1), and ˆ̀(g)(θ̂1) ≡ T−1

T∑
t=1

lnσ
(g)
0t (U = 0; θ̂1).

Then

θ̂2 = [A(θ̂1)′A(θ̂1)]−1A(θ̂1)′Y2(θ̂1).

where A(θ̂1) is G× 2 matrix, and Y2(θ̂1) is G× 1 vector defined below:

A(θ̂1) ≡


1 Ŵ (1)(θ̂1) + ˆ̀(1)(θ̂1)
...

...

1 Ŵ (G)(θ̂1) + ˆ̀(G)(θ̂1)

 and Y2(θ̂1) ≡


Ŵ (1)(θ̂1)

...

Ŵ (G)(θ̂1)

 .
They are defined in this way so that Y2 is the “dependent variable” and A is the “design

matrix” of eq. (Linear-Reg-2). Because θ̂2 is analytical function of random variables Ŵ (g)(θ̂1)

and ˆ̀(g)(θ̂1), its variance can be easily obtained by simulation provided that we know the

asymptotic distribution of Ŵ (g)(θ̂1) and ˆ̀(g)(θ̂1).

Now, we derive the distribution of Ŵ (g)(θ̂1) and ˆ̀(g)(θ̂1), whose definition requiresW
(g)
t (0; θ̂1)

and σ
(g)
0t (0; θ̂1). We have

W
(g)
t (0; θ̂1) = ln

[
σ̂

(g)
1t (0)

σ̂
(g)
0t (0)

]
−X ′1t

̂( γ

1− β

)
+ (α̂(1) + τ̂ (g))P1t

= ln

[
σ̂

(1)
1t (τ̂ (g)/ω̂)

σ̂
(1)
0t (τ̂ (g)/ω̂)

]
−X ′1t

̂( γ

1− β

)
+ (α̂(1) + τ̂ (g))P1t

=
[
ρ̂jt1 + ρ̂jt2

τ̂ (g)

ω̂
+ ρ̂jt3

( τ̂ (g)

ω̂

)2]
−X ′1t

̂( γ

1− β

)
+ (α̂(1) + τ̂ (g))P1t,

and σ
(g)
0t (0; θ̂1) = σ

(1)
0t (τ̂ (g)/ω̂; θ̂1) has the series logit expression. BothW

(g)
t (0; θ̂1) and σ

(g)
0t (0; θ̂1)

are analytical functions of θ̂1. We then can determine the variance of Ŵ (g)(θ̂1) and ˆ̀(g)(θ̂1)

by randomly drawing samples from the asymptotic distribution of θ̂1.

Lastly, we derive the distribution of θ̂1. We estimate θ1 by

θ̂1 ≡ arg min
θ1∈Θ1

T−1

T∑
t=1

ht(θ)
′ht(θ)

subject to constraints eq. (C.3) below,

where

ht(θ1)′ ≡ (h1t(θ1)′, h2t(θ1)′, . . . , hJt(θ1)′),

5



and

hjt(θ1) ≡


S

(1)
jt −GH

(G)
jt (τ , ω,ρ)

...

S
(G)
jt −GH

(G)
jt (τ , ω,ρ)

XIV
jt

[
Yjt − δj−δ1

1−β − (Xjt −X1t)
′ γ
1−β + α(1)(Pjt − P1t)

]

 .
Here XIV

jt is a vector of IV in eq. (Linear-Reg-1) satisfying E[XIV
jt (ξjt − ξ1t)] = 0. This

is a standard M-estimation problem, so under the regularity conditions,
√
T (θ̂1 − θ1) →d

N (0, Σ1). The asymptotic variance Σ1 is readily reported by most statistical softwares, or

computed using numerical score and Hessian matrices.

C Constraints about CCP

C.1 Constraints about CCP from Static Model

We claim that the static model implies the following constraints about the parameters ρt:

ρjt2 = −ωPjt and ρjt3 = 0. (C.1)

It can be shown (see proof blow) that the above constraints also imply Proposition 1, i.e.

ρjt1 = δj + γ′Xjt − α(1)Pjt + ξjt.

In the rest, we show how we obtain the constraints in eq. (C.1). We need to return to the

structural model. For a static model, we conclude from the log CCP ratio between product

j and the outside option 0 that

ln

[
σ

(g)
jmt(U)

σ
(g)
0mt(U)

]
= δj + γ′Xjt − (α(1) + τ (g))Pjt + ξjt − ωUPjt. (C.2)

From the above equation, we have

d ln[σ
(g)
jt (U)/σ

(g)
0t (U)]

dU
= −ωPjt.

Note that it does not depend on U . On the other hand, it follows from series logit properties

that

ln

[
σ

(g)
jmt(U)

σ
(g)
0mt(U)

]
= ρjt1 +

(ρjt2
ω

)
(ωU + τ (g)) +

(ρjt3
ω2

)
(ωU + τ (g))2,

which implies an alternative expression of the same derivative:

d ln[σ
(g)
jt (U)/σ

(g)
0t (U)]

dU
=
(ρjt2
ω

)
ω + 2

(ρjt3
ω2

)
(ωU + τ (g))ω.

6



Equalizing these two expressions of the same term, we reach the conclusion in eq. (C.1).

Note that under the constraints in eq. (C.1), we have

ln

[
σ

(g)
jmt(U)

σ
(g)
0mt(U)

]
= ρjt1 − Pjt(ωU + τ (g)).

Using this expression and eq. (C.2), it is straightforward to show the formula of ρjt1.

C.2 Constraints about CCP from Dynamic Model

We claim that the dynamic model implies the following constraints about the parameters ρt

in the CCP function:

ρjt2 − ρ1t2 = −ω(Pjt − P1t) and ρjt3 − ρ1t3 = 0, j = 2, . . . , J . (C.3)

The above constraints eliminate many parameters, leaving the following to estimate in the

NLS problem, eq. (10):

(ρ1t1, . . . , ρJt1)′, ρ1t2, ρ1t3, ω, τ , for t = 1, . . . , T .

The degree of freedom of the NLS problem is JGT −JT −2T −G, where JGT is the number

of observations, JT results from ρjt1 for each j = 1, . . . , J and t = 1, . . . , T , 2T comes from

(ρ1t2, ρ1t3) for each t = 1, . . . , T , and G refers to one ω plus (G − 1) × 1 vector τ . The

most stringent case is when G = 2, in which we need at least three products (J ≥ 3) and

(J − 2)T > G. In practice, such NLS with the above constraints takes very little time and

is robust to the choice of initial guess.

To see how we obtain the above constraints, note that in dynamic model, we have

ln[σ
(g)
jt (U)/σ

(g)
1t (U)] = v

(g)
jt (U) − v

(g)
1t (U). Using the definition of the payoffs, we can com-

pute the derivative:

d ln
[
σ

(g)
jt (U)/σ

(g)
1t (U)

]
dU

= −ω(Pjt − P1t)

By the series logit approximation, we have

ln

[
σ

(g)
jt (U)

σ
(g)
1t (U)

]
= (ρjt1−ρ1t1)+

[(ρjt2
ω

)
−
(ρ1t2

ω

)]
(ωU+τ (g))+

[(ρjt3
ω2

)
−
(ρ1t3

ω2

)]
(ωU+τ (g))2,

(C.4)

which implies

d ln
[
σ

(g)
jt (U)/σ

(g)
1t (U)

]
dU

= ω
[(ρjt2

ω

)
−
(ρ1t2

ω

)]
+ 2

[(ρjt3
ω2

)
−
(ρ1t3

ω2

)]
(ωU + τ (g))ω.

7



Equalizing the two formulas of the same derivative gives rise to the conclusion in eq. (C.3).

A useful conclusion is the following. Applying the constraints about ρ to eq. (C.4) for

the first group, g = 1, we have

ln

[
σ

(1)
jt (U)

σ
(1)
1t (U)

]
= (ρjt,1 − ρ1t,1)− ωU(Pjt − P1t).

The dependent variable Yjt of eq. (Linear-Reg-1), whose definition is copied below, has a

simple expression,

Yjt ≡
∫

ln

[
σ

(1)
jt (U)

σ
(1)
1t (U)

]
dF

(1)
t (U) + ω(Pjt − P1t)

∫
U dF

(1)
t (U) = ρjt,1 − ρ1t,1.

This is useful, because the NLS step will estimate ρjt,1−ρ1t,1. After which, one can estimate

(δj − δ1)/(1 − β), γ/(1 − β) and α(1) by running 2SLS of (ρjt,1 − ρ1t,1) on (Xjt − X1t) and

(Pjt − P1t) according to eq. (Linear-Reg-1). This also proves Proposition 4.

Initial values

Good initial values help solve the NLS in eq. (10). Here we focus on the dynamic model,

which is of our primary interests. We need initial values of τ init = (τ
(2)
init, . . . , τ

(G)
init )′, ρinit, and

ωinit. We follow two steps to obtain the initial values, and these steps are based on the first

order Taylor expansion of CCP function σ
(g)
jt (U).

In the first step, we find τ init by running 2SLS for the following linear regression,

ln

(
S

(g)
jt

S
(g)
1t

)
=
δj − δ1

1− β
+ (Xjt −X1t)

′ γ

1− β
− (α(1) + τ (g))(Pjt − P1t) +

ξjt − ξ1t

1− β
.

To see the rationale, recall the identity

S
(g)
jt = E[σ

(g)
jt (U∗)Γ

(g)
t (U∗)], U∗ ∼ N (0, 1),

and consider the first order Taylor expansion of CCP function σ
(g)
jt (U∗)Γ

(g)
t (U∗) at 0, which

is the mean of U∗ ∼ N (0, 1), for each group g. We have

S
(g)
jt = E[σ

(g)
jt (U∗)Γ

(g)
t (U∗)]

≈ σ
(g)
jt (0)Γ

(g)
t (0) +

(
dσ

(g)
jt (U∗)Γ

(g)
t (U∗)

dU∗

)
U∗=0

E(U∗ − 0)

= σ
(g)
jt (0)Γ

(g)
t (0).
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The first order Taylor expansion leads to S
(g)
jt ≈ σ

(g)
jt (0)Γ

(g)
t (0). Thus,

S
(g)
jt

S
(g)
1t

≈
σ

(g)
jt (0)

σ
(g)
1t (0)

.

The application of this conclusion to eq. (Linear-Reg-1) when U = 0 gives rise to the stated

regression.

In the second step, we find ρjt1,init for all j = 1, . . . , J , and (ρ1t2/ω)init, (ρ1t3/ω
2)init by

running OLS for the following linear regression,

ln

(
S

(g)
jt

S
(g)
0t

)
+ (Pjt − P1t)τ

(g)
init = ρjt1 +

(ρ1t2

ω

)
τ

(g)
init +

(ρ1t3

ω2

)
(τ

(g)
init)

2.

We now explain how we got the above regression. It follows from series logit that

ln

[
σ

(g)
jt (0)

σ
(g)
0t (0)

]
= ln

[
σ

(1)
jt (τ (g)/ω; ρt)

σ
(1)
0t (τ (g)/ω; ρt)

]
= ρjt1 +

(ρjt2
ω

)
τ (g) +

(ρjt3
ω2

)
(τ (g))2

= ρjt1 +
(ρ1t2

ω

)
τ (g) − (Pjt − P1t)τ

(g) +
(ρ1t3

ω2

)
(τ (g))2.

The second line follows from imposing the constraints eq. (C.3). By the approximation,

ln

(
S

(g)
jt

S
(g)
0t

)
≈ ln

[
σ

(g)
jt (0)

σ
(g)
0t (0)

]
,

we have the stated regression.3

D Multidimensional Unobserved Heterogeneity

In this appendix, we extend our main results to include multidimensional unobserved hetero-

geneity. We have two observations. First, our estimation method works for multidimensional

unobserved heterogeneity after some modification in the stage of CCP estimation. Second, a

higher dimension of unobserved heterogeneity does not cause the curse of dimensionality for

our CCP estimation that involves a series polynomial approximation of CCP as a function

of multidimensional unobserved heterogeneity. This is because the structural model imposes

certain restrictions that can eliminate a large number of parameters in CCP function.

3We do not have a clever initial value of ωinit. In our simulation, we varied the initial value ωinit substan-

tially, and our optimization routine seems very robust.

9



D.1 Static Demand Model

The new expected payoff function is

vijt = δj + γ′iXjt + ξjt − αiPjt.

We now have the new dimension of unobserved heterogeneity γi associated with product

characteristics Xjt. Particularly, when Xjt includes the product dummy variable, the above

specification says that consumers could have heterogeneous valuation about the unobserved

product characteristics (e.g. advertising).4 This will be useful if researchers choose the con-

sumers residing in different locations (California and Pennsylvania) as different groups of

consumers.

Using our group specification, we write(
γi

αi

)
=

(
γ(1)

α(1)

)
+D

(2)
i

(
τ

(2)
1

τ
(2)
2

)
+ · · ·+D

(G)
i

(
τ

(G)
1

τ
(G)
2

)
+Ω

(
Ui1

Ui2

)
, (D.1)

where Ω is a diagonal matrix,

Ω ≡

(
Ω1

ω2

)
.

The diagonal elementsΩ1, which is also a diagonal matrix, and ω2 determine the within group

variation of γi and αi, respectively. Below, let τ (g) ≡ (τ
(g)
1

′
, τ

(g)
2 )′ and let Ui ≡ (U′i1, Ui2)′.

Use q to denote the dimension of (X ′jt, Pjt)
′. Again, let τ (1) ≡ 0. Let φ(U) denote the PDF

of the multivariate normal distribution N (0, I).

For a consumer of type-(g,U), the CCP function is

σ
(g)
jt (U) =

exp[δj + (γ(1) + τ
(g)
1 +Ω1U1)′Xjt − (α(1) + τ

(g)
2 + ω2U2)Pjt + ξjt]

1 +
∑J

k=1 exp[δk + (γ(1) + τ
(g)
1 +Ω1U1)′Xkt − (α(1) + τ

(g)
2 + ω2U2)Pkt + ξkt]

.

This gives rise to

ln

[
σ

(g)
jt (U)

σ
(g)
0t (U)

]
= δj + (γ(1) + τ

(g)
1 )′Xjt − (α(1) + τ

(g)
2 )Pjt + ξjt + (Ω1U1)′Xjt − ω2U2Pjt. (D.2)

The market share within group g is as defined before: S
(g)
jt =

∫
σ

(g)
jt (u) dF

(g)
t (u). The

distribution of U satisfies Proposition 2 with slight modification—φ(u) in proposition 2

should now be replaced by the multivariate normal density φ(u).

4For example, suppose Xjt is just the product dummy variable that equals 1 for product j and 0 otherwise.

The expected payoff of product j in period t then reads vijt = δj + γi + ξjt−αiPjt, and γi serves as random

effect that explains consumer heterogeneity in the valuation of unobserved product characteristics. This will

be useful if researchers choose the consumers residing in different locations (California and Pennsylvania) as

groups of consumers.
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We claim that we have been able to estimate CCP σ
(g)
jt (U), the dispersion coefficients Ω

and τ , then δj, γ
(1) and α(1) can be estimated by applying 2SLS to the following equation,

∫
ln

[
σ

(1)
jt (U)

σ
(1)
0t (U)

]
f

(1)
t (U) d U +

∫
((Ω1U1)′Xjt − ω2U2Pjt)f

(1)
t (U) d U =

δj + γ(1)′Xjt − α(1)Pjt + ξjt.

We now start addressing the estimation of CCP function σ
(g)
jt (U) in this extended model.

First of all, our observation about shifting the CCP of one group to obtain the CCP of the

other groups still hold. It is easy to verify that

σ
(g)
jt (U) = σ

(1)
jt (U +Ω−1τ (g)).

Secondly, we need to slightly modify the multinomial series logit approximation. We still

write

σ
(1)
jt (U; ρt) ≡ Lj

(
RK(U; ρ1t), . . . , RK(U; ρJt)

)
, (D.3a)

where Lj is a multinomial logit model as defined before (Lj(c1, . . . , cJ) ≡ exp(cj)/(1 +∑J
k=1 exp(ck))), and RK(U; ρjt) is a polynomial function of U,

RK(U; ρjt) = ρjt1 + ρ′jt2U + U′ρjt3U + · · · , (D.3b)

where ρjt2 is a q × 1 vector, and ρjt3 is a q × q triangular matrix. Though such polynomial

expansion suggests that there would be much more parameters to estimate than the case

with unidimensional unobserved heterogeneity, we will show that it is not the case because

the structural demand model imposes many restrictions. The estimation is still based on

S
(g)
jt =

∫
σ

(1)
jt (u +Ω−1τ (g); ρt)f

(g)
t (u) d u

=

∫
σ

(1)
jt (u +Ω−1τ (g); ρt)Γ

(g)
t (u)φ(u) d u.

We then use Gauss–Hermite to approximate the above expectation, and estimate τ , Ω,ρ by

the NLS principle.

For the rest, we want to find the constraints implied by this myopic model with mul-

tidimensional unobserved heterogeneity. From the structural model itself (eq. (D.2)), we

conclude
d ln[σ

(g)
jt (U)/σ

(g)
0t (U)]

dU
=

(
Ω1Xjt

−ω2Pjt

)
,
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and any higher order derivatives are zeros. Comparing the above derivatives with the resulted

derivatives from series logit form, we conclude

ρjt2 =

(
Ω1Xjt

−ω2Pjt

)
, ρjt3 = ρjt4 = · · · = 0. (Constraints: Static Mult-Dim Heterogeneity)

We reach an interesting conclusion that including multidimensional unobserved heterogeneity

indeed does not generate any new coefficients in the series logit model—we still have to and

only need to estimate ρjt1 for each j and t. The only new parameters involved here are Ω

and additional τ . The degree of freedom of the NLS problem now is GJT−(JT+qG) (recall

q is the dimension of (X ′jt, Pjt)
′, and qG comes from the unknown τ and Ω). So unless the

number of products and the periods are very small, we can still estimate the model with

only 2 groups.

D.2 Dynamic Demand Model

We continue by discussing the estimation of a dynamic model with multidimensional het-

erogeneity. Under the same specification of (γ′i, αi) in Equation (D.1), the expected lifetime

payoff of purchasing product j at time t becomes

v
(g)
jt (Ui) =

δj + γ′iXjt + ξjt
1− β

− αiPjt, j = 1, . . . , J.

Correspondingly, the CCP of type-(g,U) is

σ
(g)
jt (U) =

exp(v
(g)
jt (U))

exp(v
(g)
0t (U)) +

∑J
k=1 exp(v

(g)
kt (U))

.

Because v
(g)
jt (U) = v

(1)
jt (U + Ω−1τ (g)), we still have shifting formula σ

(g)
jt (U) = σ

(1)
jt (U +

Ω−1τ (g)). So the CCP estimation can be based on the same NLS problem excepting for

the constraints about the series approximation coefficients. Once the CCP functions are

known, it will be easy to estimate the model structural parameters using our procedures in

the post-CCP estimation section.

Like the above static model, the constraints about ρt result from the comparison between

the derivatives of the log CCP ratio with respect to U in the structural demand model and
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the same derivatives in the series approximation. Particularly, we have

ln

[
σ

(g)
jt (U)

σ
(g)
1t (U)

]
= v

(g)
jt (U)− v(g)

1t (U)

=
δj − δ1

1− β
+

(γ(1) + τ
(g)
1 )′

1− β
(Xjt −X1t)− (α(1) + τ

(g)
2 )(Pjt − P1t) +

ξjt − ξ1t

1− β
+

((1− β)−1Ω1U1)′(Xjt −X1t)− ω2U2(Pjt − P1t).

This gives rise to

d ln[σ
(g)
jt (U)/σ

(g)
1t (U)]

dU
=

(
(1− β)−1Ω1(Xjt −X1t)

−ω2(Pjt − P1t)

)
,

and any higher order derivatives are zeros. Comparing the above derivatives with the resulted

derivatives from series logit form, we conclude

ρjt2 − ρ1t2 =

(
(1− β)−1Ω1(Xjt −X1t)

−ω2(Pjt − P1t

)
, (ρjt3 − ρ1t3) = (ρjt4 − ρ1t4) = · · · = 0.

(Constraints: Dynamic Mult-Dim Heterogeneity)

In the series approximation, we only consider the second order approximation, i.e. letting

ρ1t4 = ρ1t5 = · · · = 0. So for the dynamic model with multidimensional heterogeneity, the

CCP estimation stage involves the following unknowns,

(ρ1t1, . . . , ρJt1)′, ρ1t2, ρ1t3, (1− β)−1Ω1, ω2, τ , for all t.

Note that in this step of CCP estimation, we are only able to estimate (1 − β)−1Ω1 as a

whole and cannot separately estimate β from Ω1. Recall q is the dimension of (X ′jt, Pjt)
′,

and ρ1t3 is a q × q triangular matrix. The degree of freedom of the NLS problem is GJT −
(JT +(3q+ q2)T/2+ 2q). In order to make this degree of freedom be positive, it is necessary

to satisfy (G−1)J− (3q+q2)/2 > 0.5 Depending on the number of dimension of unobserved

heterogeneity, we may or may not need a large number of groups or products. It is interesting

to point out that even when the number of groups is small, we can ensure a positive degree

of freedom by including a large number of products. This manifests one advantage of our

method—the number of products, rather than causing the curse of dimensionality, helps

solve the curse of dimensionality if we are willing to assume that purchasing is a terminal

action in the dynamic model, which is reasonable for the market of durable goods.

5We write GJT − (JT + (3q+ q2)T/2 + 2q) = [(G− 1)J − (3q+ q2)/2]T − 2q. When T is relatively large,

(G− 1)J − (3q + q2)/2 > 0 will also be sufficient to have positive degree of freedom.
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