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DC Polarization of Planar Electrodes 
Separated by Low-Dielectric Fluid: Revised
In this Note, we review the derivation of the equations used by Jun Kim et al. Langmuir 21, 8620 (2005).  

Capacitance with Neutral Fluid
Consider a parallel plate capacitor consisting of two parallel plates, located at x=0 and at x=.  [image: image76.wmf]0
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The fluid in between the plates has permittivity  while the plates themselves have permittivity 0.  Suppose we apply a voltage drop V between the two plates.  What charge will accumulate on the plates at steady state after any electrical current has subsided?
Assuming that E = Ex(x)ex and no free charges in any of the media [i.e. (x) = 0], then Gauss’s equation [see 
(12) in 0HElectrostatics of Continuous Media.doc]0F* becomes 
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The value of the integration constant is set by the boundary conditions on the electrostatic potential.  Assuming that V>0, this means that Ex is pointing in the –x direction.  From (anti‑)symmetry (or overall electroneutrality), we expect that equal but opposite surface charge densities arise on the two surfaces: 

– = –+
– > 0 and + < 0 if V>0.  The electric field outside the two surfaces vanishes according to 1HEofCM-
(8) and (9):
for x<0 or x>:
Ex(x) = 0

The magnitude of the charge density is related to the electric field strength by 2HEofCM-
(7):
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Eliminating Ex between 
(2)

:
5H(1)

 and  GOTOBUTTON ZEqnNum948457  \* MERGEFORMAT 4H
The capacitance of the device is defined as the charge separated per unit area per unit voltage applied:
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Capacitance with Thin Double Layers
[image: image77.wmf]20
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Jun uses the differential capacitance calculated from the Gouy-Chapman model.  The potential profile in the Gouy-Chapman model is sketched in the figure at right.  The usual definition of zeta potential is the difference in electrostatic potential of the inner edge (adjacent to the solid surface) of the diffuse layer and the electrically neutral solution outside the diffuse layer.  So, as drawn at right, the zeta potential is negative: the surface is more negative than the solution.  The surface charge density in the Gouy-Chapman model is given by [see 
(16) from 3HElectrohydrodynamics.doc]:
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Note: the charge appearing in this equation is the charge borne by the solid (possibly from electrons a metal).  The diffuse cloud has an equal but oppose charge density.  The differential capacitance is defined as
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In particular, Jun used the differential capacitance corresponding to   0:
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Comparing (3)

, we see that the differential capacitance from the Gouy-Chapman theory corresponds to an apparent plate spacing equal to the Debye length:  = –1.  (5)

 with 
The rationale for using the differential capacitance to interpret Jun’s experiments is not obvious, although it seems like a good guess.  Below we develop a model for slow changes in current during polarization of the double layers.


Slow Polarization of Thin Double Layers
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In the absence of current, each electrode might have a different charge and a different zeta potential.  The blue curve in the figure at right represents the profile of electrostatic potential for open-circuit case (i.e. the electrodes are not connected to each other).  Notice then that any difference in zeta potential between the two electrodes leads to a nonzero voltage difference between the electrodes themselves.  
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Instead of an open circuit, if we short-circuit the two electrodes to each other, we force their potentials to be equal.  We then alter the potential profile to what is seen at left.  This causes a nonzero potential drop across the electrically neutral solution outside either double layer which, in turn, will generate a current through the solution.  From Ohm’s law, the current density (current per unit area) is
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where we have assumed the diffuse clouds are very thin compared to the electrode spacing  or >>1.  Reality check: in the two drawings above, we assumed that both zetas are negative and + is less negative than –.  That leads to the negative slope in the potential profile and a positive current in the x-direction.  Using these same inequalities in the equation above, we obtain ix > 0.

Now suppose we externally apply a voltage difference between the two electrodes: say we raise the voltage of the right electrode by V relative that that of the left electrode.  Of course this causes the voltage drop across the solution to change by V and leads to current given by
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In the absence of any Faradaic reaction to convert ionic charge to electronic charge, a positive electric current causes positive charges to build up next to the right electrode at a rate given by
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and negative charges to build up next to the left electrode at a rate given by
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Adding 
(8)

 we obtain
(7)

 and  GOTOBUTTON ZEqnNum540214  \* MERGEFORMAT 12H
so the system as a whole remains electrically neutral although charges are separated.   Current through the solution causes the charges and potential drop across the diffuse layer next to either electrode to change with time.  Integrating (3)

 after reversing the sign because now  denotes the charge density of the diffuse cloud (not the solid surface):(7)

 and equating the result with 
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Differentiating with respect to t:
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Similarly for (8)

:
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and
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Eliminating ix between (10)

:
(9)

 and 
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Recalling that cosh>0 for all real arguments, we see that the direction of changes in the two zeta potentials are opposite.  Furthermore, the changes in the two zetas are not necessarily equal but opposite in sign.  Substituting (6)

:(10)

 into (9)

 and 
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Dividing by 2K/:
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where
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Multiply by ze/2kT:
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which represent two coupled ODE’s in the two zeta potentials, where
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Special Case: +0 = –0 = 0
If the initial zeta potentials are equal to zero, then (11)

 will be equal and cancel out, leaving
(11)

 predicts the initial rates of change in zetas will be equal in absolute magnitude but opposite in sign.  They will grow at equal rates but with opposite signs.  Subsequent values of the two cosh’s in 
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at all times.  Integrating while taking + = –– = 0 at t = 0:

+ = –– for all t
So
+ – – = 2+ = –2–
and the two ODE’s of (12)

 can be decoupled into a single ODE:
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or
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where
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Let 
u = y– + v = –y+ + v
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (15)

Then either (14)

 becomes
(13)

 or 
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Integrating this separable FOODE using u(0) = v as the initial condition yields
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Figure 1
At right is the solution u(t') to the above integral for various values of v = u(0).  The initial rate can be deduced directly from (16)

 since at this instant cosh(u-v) = 1:
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or
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Notice that for v<<1, the curves are linear on these semilog coordinates and the slope is ‑2.303 as expected.  For v>>1, this value of the initial slope is not apparent, but the initial value predicted by (17)

 must be true: in particular for v = 100, the curve appears to be completely horizontal, suggesting a slope of zero.  The reason for this is that the slope for v = 100 decays very rapidly from its initial value as u becomes nonzero and cosh grows much larger than unity.  
Initial Rate of Decay

We can estimate the time for the initial slope to differ significantly from (16)

 by itself evaluated at t=0:(17)

.  To be specific, suppose we wish to know how long it takes for the slope to change by 10%.  Dividing 
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There are two limiting case.  For v<<1, the cosh does not differ significantly from unity, regardless of the t.  For this same case, we have
for v<<1:
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Then the time for a 10% drop in rate is simply –ln(0.9) = 0.105.  
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Above we see how u and du/dt actually decay at short times.  Note that the initial rate is –u(0) = –v (as expected) and that the rate decays to 90% of its initial value in about t' = 0.1 as expected.  

In the opposite limit of v>>1, we see (from the top curve in the previous figure) that u itself does not decrease noticeably before the initial rate almost vanishes.  In this case, it is the growth of the cosh that is reducing the rate.  Let z = u – v, du = dz and approximate u = z + v  v; (16)

 becomes
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Integrating both sizes, taking z = 0 at t' = 0:


sinh z = –v t'
or
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Since we approximated z + v  v, this is only good when z << v and v >> 1.  
Returning to our estimate of how long it takes for the slope to decay to 90% of its initial value: For small values of its argument, cosh can be approximated as
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Solving
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for t' yields

for v>>1:
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For u(0) = 100, this yields t' = 0.0045, which is considerably shorter than t' = 0.1 at the other extreme.  
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Above we see how u and du/dt decay at short times for large v (v = 100).  Note that the initial rate is –u(0) = –v (as expected) and that the rate decays to 90% of its initial value in about t' = 0.0045, also as expected.  

Uncertainty in Initial Current
Owing to the finite rate of sampling of current, the first sample might not correspond to t' = 0.  A more useful “initial” condition is to prescribe u(t'1) (which must be smaller in magnitude than v but of the same sign), where t'1 corresponds to the first sample.  which leads to



[image: image52.wmf](

)

(

)

(

)

1

1

cosh

ut

ut

uv

dutt

u

¢

¢

-

¢¢

=-

ò


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (18)

Notice that we did not replace the v in the integrand, because this represents the true initial value of u which must be used even if it is not measurable.  Once u(t) is known, we are most interested in predicting the evolution of current.  Nondimensionalizing (6)

 taking + = –:
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Normalizing by the current measured at the first sampling point:

known:
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This quantity and t' (defined as t' – t'1) are known experimentally.  
Unknown is

[image: image55.wmf](

)

0

1

v

s

ut

º

¢


Then

[image: image56.wmf](

)

(

)

(

)

(

)

(

)

101010

00

1

uv

vs

uvsutsutssutssv

ss

æö

¢¢¢

-=-=-=-=-

ç÷

èø

12314243


Normalizing all of the u's by u(t'1), (18)

 becomes
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Generally we know the value of v, but not s0 (which must be 1).    


The plot at right shows the effect of uncertainty in the initial current for the case of v = 9.735 (V = 1 volt).  The lowest curve corresponds to measuring the true initial current (i.e. s0 = 1).  The higher curves correspond to larger values of s0 and more offset in the time (i.e. greater values of t'1).   We have extended the calculations to t' < 0 to see when s(t' ) = s0.  The corresponding value of t' tells us how large t'1 is:
if s(t' ) = s0 then
t'1 = –t' 

	s0
	t'1

	1
	0

	1.2
	0.278

	1.5
	1.746

	2
	11.35


Thus we determined the following relationship summar–ized by the table at left.  Keep in mind that this relationship only applies for v = 9.735.  
To confirm that we haven’t made any errors, we test the above results by realizing that all of the above curves should map into a single universal curve corresponding to that curve in Figure 1 on page 6 having v = 9.735.  The mapping is as follows: the ordinate of the universal plot is the current normalized by the true initial current.  So instead of plotting s defined by (19)

 we renormalize to
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To convert the abscissa (t' ) of the above plot into that of the universal plot (t' ), we use the definition of t'; thus we obtain

t' = t' + t'1
Through this mapping, the figure above is transformed into the figure at right. Although only the renormalized results for s0 = 2 are shown (as the blue points), all four curves map into one universal curve (see Polarization Model3.mcd).  

Test “Point Charge” Assumption

Jun et al. point out that the nonlinear analysis is not valid because very early in the polarization process, the volume fraction of ions in the diffuse layer becomes comparable to unity, whereas the Gouy-Chapman theory assumes “point charges” — in other words, zero volume fraction.   A major conclusion from Jun’s paper is that the charge carriers for OLOA in dodecane are unicharged (z=1) micelles whose diameter is about 20 nm, independent of OLOA concentration.  A closed packed array of these spheres corresponds to a concentration of
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In 0.5 wt% OLOA in dodecane, Jun determined the bulk concentration of charge carriers to be 210–5 mM which is 104 times smaller than Cmax, so there’s no problem in the bulk.  But, as the electrodes begin to polarize, much higher concentrations of carriers can arise next to the polarized electrodes.  In the Gouy-Chapman model, the local concentration of counterions is related to the local electrostatic potential by Boltzmann’s equation:
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Taking Cbulk to equal 210–5 mM and Cwall to equal Cmax, we can calculate the zeta potential leading to closed-packed conditions:
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Unless the applied voltage is very small compared to twice this value, we really can’t expect the Gouy-Chapman model to hold throughout the polarization process.  More generally, we must restrict our analysis to conditions in which the dimensionless zeta potential remains much smaller than this.  According to the nondimensionalization of (15)

, we need
for 0.5 wt% OLOA:
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At higher concentrations of OLOA, this constraint will be tighter because Cbulk is higher.  
Special Case: +0 = –0
If the initial zeta potentials are equal, then (12)

 for each of the two derivatives:
(11)

 predicts the initial rates of change in zetas will be equal in absolute magnitude but opposite in sign.  Subsequent changes in the two zetas will not be equal in magnitude nor sign: one increases and one decreases.  Thus we really do have to solve two coupled ODE’s — not one.  So this particular special case affords no simplification.  Solving 
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Below is the solution for three different initial zeta potentials (assumed equal and denoted by y0).  Note that when both initial zeta potentials are zero, y+ = –y– for all time as deduced above.  When the initial zeta potentials are equal but nonzero, the initial rates are equal but of opposite sign but subsequent evolution is not symmetric.  At long times, both zeta potentials tend to ±5, regardless of the initial value.  
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The current is given by 
(6)

:
 GOTOBUTTON ZEqnNum778841  \* MERGEFORMAT 
Nondimensionalizing:
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Differentiating with respect to t':
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Assuming that the surfaces are charged at t=0 with 

at t' = 0:
y+ = y– = y0
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (24)

then 
(21)

 yield
(20)

 and  GOTOBUTTON ZEqnNum344126  \* MERGEFORMAT 
and 
(23)

 yields
 GOTOBUTTON ZEqnNum201339  \* MERGEFORMAT 
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With the initial condition prescribed by (22)

 is:
(24)

, the initial current calculated from 
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or in terms of symbols having units:*
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Dividing 
(26)

:
(25)

 by  GOTOBUTTON ZEqnNum636247  \* MERGEFORMAT 
or in terms of symbols having units:



[image: image75.wmf](

)

00

0

1122

0coshcosh

x

xdl

t

di

KK

idtyyc

=

--d-d

===

tke


Thus any nonzero initial charge on the electrodes will decrease (perhaps dramatically) the initial rate of change of current (because cosh in the denominator becomes larger than unity).  Recall from (4)

 that  coshy0 is the differential capacitance cdl of the double layer.  A nonzero charge on the surfaces, increases the differential capacitance and decreases the initial rate of decay of current.  Interpreting the initial rate of decay of current assuming y0 is zero when it is not will cause  to be overestimated which, in turn, leads to an overestimate in the ionic strength.  
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* Recall that ix is current density (i.e. current per unit area).
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