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When a fluid bears a net electrostatic charge, application of an external electric field can induce fluid motion.  Conversely, fluid motion can induce an electric field.  In this chapter we will quantity such relationships.  
Origin of Charge

Nearly all particles, bubbles or drops in water are charged.  We know this because when you apply an electric field across water containing a particle, bubble or drop, you can observe it to move.  An example is the red blood cell experiment below.

[image: image1.emf]   


The surface of the blood cell or other particle acquires charge by a number of mechanisms:
· adsorption of ions (e.g. SDS and FeOH+2)

· dissolution of ions from ionic solids (e.g. AgI)

· dissociation of acidic or basic sites on interface:

—COOH  —COO– + H+

—NH2 + H+  —NH3+
Regardless of how the surface acquires its charge, overall electroneutrality must be obeyed.  So the solution must contain an excess of counterions.  For example, if the surface acquires its charge by the dissociation of COOH groups at the interface, the COO– remaining at the interface gives the interface a negative charge, but the H+ joins the rest of the ions in the aqueous solution, thereby lending the fluid a net positive charge.  

[image: image2.emf] 

 


Counterions (ions having opposite sign to the charge on the surface) would experience an electrostatic attraction for the surface which tends to pile up the ions next to the interface.  On the other hand, these same ions undergo diffusion (Brownian motion) which tends to disperse them uniformly throughout the phase.  At equilibrium, a balance is achieved between these two opposing tendencies.  In this equilibrium state, a diffuse cloud of counter-ions is formed next to the charged interface.  

double layerXE "double layer" - the layer of charges fixed on interface plus the diffuse cloud of counter-ions.

Even though there are equal concentrations of positive and negative ions far from the surface, this is not true inside the counterion cloud.  Fluid elements inside the cloud bear a net charge.  Just like we define the mass per volume to be the density of the fluid, we can define charge per volume:
e(x,t) = local charge density (charge/volume)

Global electroneutrality requires:
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 = surface charge density (charge/area)

Electrostatic Forces in Water vs. Coulomb’s Law


[image: image4.wmf]
Coulomb’s law states that two point charges Q1 and Q2, separated by a distance r, experience an electrostatic force given by
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where the proportionality constant  is called the electric permittivity which is a property of the medium separating the charges.  

Electrostatic interactions across water are a little more complicated than simple dielectrics like air or oil because water always contains ions.  Even if no salts are added, water itself dissociates to form ions:
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Any charged particle (like the red blood cell) will attract the counterions to its surface forming a diffuse cloud of counterions (shown in gradient-fill blue below):
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This cloud has the same amount of charge per unit area as the particle’s surface.  Since the cloud’s charge is always of opposite sign to the particle itself, from a distance, the particle appears to be electrically neutral.  No electrostatic force is felt between two such particles in water until they get close enough for their clouds to overlap.  The resulting severe weakening of the electrostatic forces is called screening: the cloud essentially hides the bare charge borne by the particles until they get very close together.  
Gouy-Chapman Model of Double Layer

Let's try to quantify this description.  In particular, we would like to know how thick this cloud is.  Because of the charge on the interface, ions feel a electrostatic force.  The force per unit charge is called the electric field XE "electric field" :


E(x) = electric field (force/charge)

Like gravity, this vector field is conservativeXE "conservative", thus there must exist an scalar potential, (x) such that:


E = –
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (2)

Like the gravitational potential, the minus sign is included by convention.   is called the electrostatic potentialXE "electrostatic potential".  


 [=] volts (energy/charge)

Boltzmann Equation (Derivation #1)

In thermodynamics, we learn that the criteria for phase equilibrium is equality of chemical potential XE "chemical potential"  i for each chemical species i in each phase.  For an ideal solution, recall that changes in chemical potential at constant temperature and pressure is given by
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where kT is the thermal energy possessed by every ion or molecule and i is the chemical energy per ion.  When the species is charged, we must add an electrical contribution to the chemical energy to obtain the electrochemical potentialXE "electrochemical potential" of each species.  

electrical potential energy: zie
where zi is the number of elemental charges per unit ion (including sign) and e (>0) is the magnitude of the elemental charge (on proton); thus zie is the charge on one ion.  At equilibrium, ionic species distribute themselves in an electric field such that their electrochemical potential is constant everywhere:
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For example, diffusion of nonelectrolytes (i.e. zi = 0) takes place so that i is constant throughout the solution, which means that the concentration ci is uniform at equilibrium.  If the electrostatic potential varies from one location to the next, the concentration of charged species will also not be uniform.  (4)

 can be re-written in differential form as
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After substituting (3)

, we have
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which relates changes in ion concentration to changes in potential.  This can be integrated to obtain Boltzmann's Equation XE "Boltzmann's Equation"  relating the local ion concentration to the local electrostatic potential
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where A is some integration constant.  In our problem, we expect the ion concentration to depend only on y and we expect that the ionic concentration will approach the bulk value ci at some distance from the charged interface.  For this to happen, the electrostatic potential must tend to some constant (say 0 as y) or E  0:

as y   :
ci  ci,   0
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (5)

To satisfy these boundary conditions, Boltzmann’s equation can be rewritten as
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Boltzmann Equation (Derivation #2)

Instead of using thermodynamics, Boltzmann’s equation can also be obtained by integrating the transport equations.  Knowing that the solution next to the charged surface is nonuniform in concentration owing to an electric field normal to the surface, we can express the net flux of ions toward the surface as the sum of contributions from diffusion and migration in the electric field.  Of course diffusion obeys Fick’s law:

diffusion flux in +y direction:
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where Di is the diffusion coefficient for ions of species i.  So what is the flux due to electromigration in the electric field?  Suppose the local electric field is Ey; this represents the force per unit charge.  If the charge on one ion is zie, then the electric force acting on one ion is


force =  zieEy
In a viscous fluid like water, application of a force will cause ions to move at the speed proportional to the force.  The proportionality constant is called the hydrodynamic mobility mi, which for a spherical ion of radius ai, can be estimated from Stokes law:
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Multiplying the force by the mobility we obtain the migration velocity for ions in the electric field:


velocity = ziemiEy
Multiplying the velocity by the local concentration of ions, we obtain the 

electromigration flux:
ziemiciEy 
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The units of flux are dependent on the units of ci: if a molar concentration is used, then we obtain a molar flux.  If a number concentration (number of ions per unit volume) is used, then we obtain a number flux (number of ions per unit area per unit time).  Finally, we express the electric field in terms of the electrostatic potential using (2)

 (see second equation above).  Adding the electromigration flux to the diffusion flux, we obtain the net flux in the +y direction:

net flux:
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Continuity (mass balance) of ions for 1-D transport requires
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At steady state, the time derivative vanishes and continuity then requires that Niy be independent of y.  Assuming the wall is impermeable to ions, this implies that Niy at all y which is the basis of the second equality in (5)

 yields
(7)

 subject to the boundary condition given by (7)

.  Integrating 
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Comparing (6)

 — which must be the same — we conclude that
(8)

 with 

Di = mikT
which is called the Nernst-Einstein equation.  
So if I knew the (y), I could calculate the concentration profile.  But alas (y) is still unknown.  I need another equation.  The extra equation is provided by Coulomb’s lawXE "Coulomb's law" of electrostatics.  If I knew the distribution of charges (ions) within a system, I could calculate the force on them using Columb’s law.  For a continuum, Coulomb’s law can be written as:
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where  is the electric permittivity XE "electric permittivity"  of the medium between the ions (e.g. the water): 
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This equation is called Poisson's EquationXE "Poisson's Equation".  The charge density of the fluid arises from the charge born by each ion.  Adding up the charges from each species i, then substituting Boltzman’s equation, gives



[image: image25.wmf](

)

(

)

(

)

exp

eii

i

i

ii

i

yzecy

zey

zec

kT

¥

r=

éù

y

=-

êú

ëû

å

å


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (10)

 


Substituting this into (9)

 yields
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which is called the Poisson-Boltzmann Equation XE "Poisson-Boltzmann Equation" .  There are two limiting cases in which the solution to this equation is known.
Special Case #1

: small potentials.  If the potentials are small enough we can linearize the exponential:
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Truncating the series after the second term and substituting into (11)

 yields



[image: image28.wmf](

)

22

02

4

iiii

ii

I

ey

e

zczc

kT

¥¥

ìü

y

p

Ñy=--

ïï

e

íý

ïï

îþ

åå

1424314243


Now the first sum vanishes because the bulk solution is electrically neutral.  This leaves
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where
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is called the ionic strength XE "ionic strength"  of the bulk solution.  In the case of a symmetric univalent electrolyte (e.g. NaCl), the ionic strength is also the bulk concentration of salt.  The remaining collection of constants is lumped to 2 where  is called the Debye parameter XE "Debye parameter" .  linearized Poisson-Boltzmann equation" (12)

 is called the linearized Poisson-Boltzmann equation GOTOBUTTON ZEqnNum989157  \* MERGEFORMAT .  If  = (y) this equation reduces to
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Integrating 

subject to:
 = 0 at y=0


 = 0 at y=
yields
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and the linearlized form of (6)

 yields
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The linearized form for (10)

 the space charge density is
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Integrating over the entire solution:
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Substituting this integral into (1)

 yields the surface charge density
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Notice that the surface charge density  and the surface potential 0 have the same sign (since all the other symbols in the equation are positive).  Of course the electrolyte solution must have a net charge opposite in sign to that born by the surface itself.  
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Clearly  is associated with the thickness of the diffuse cloud.  –1 is called the Debye lengthXE "Debye length":

–1 = 10–9m = 1nm     for     c = 10–1M

–1 = 10–6m = 1m     for     c = 10–7M

This provides some idea of the thickness of the charge cloud.

Special Case #2

: symmetric binary electrolyte, which means there are only two different species of ions and they have the same magnitude of charge:


z+ = –z– = z

c+ = c– = c
Then Boltzmann's equation can be used to calculate the charge density:
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Substituting this into Poisson's equation, we get:
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The argument of the sinh must be dimensionless, so let’s use this combination to define a new dimensionless potential
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We can make the  on the left-hand side dimensionless by multiplying both sides by ze/kT.  Then we have
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where
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Appropriate boundary conditions are

at y=0:
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as y:
  0

(15)

 by (15)

 is a nonlinear ODE boundary-value problem.  Despite its innoccuous appearance, it is much more difficult to solve than linear equations.  However, a particular solution can be found for the boundary conditions used above.  Multiply both sides of  GOTOBUTTON ZEqnNum872357  \* MERGEFORMAT :
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This can be integrated (subject to 
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= 0 and  = 0 as y) to yield


[image: image49.wmf](

)

2

222

1

cosh12sinh

22

d

dy

æö

YY

æö

=kY-=k

ç÷

ç÷

èø

èø


where the integration constant was chosen (to make the right-hand side vanish) in order to satisfy the b.c. at y.  The second equation above is a mathematical identity.  Taking the square root of both sides:
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In taking the square root, we obtain a ±; we choose the negative root so that >0 leads to a negative slope and the function will decay to zero (instead of growing away from zero).  This can be integrated again to yield
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where we have used (0) = 0 to evaluate the second integration constant.  This is called the Gouy-Chapman modelXE "Gouy-Chapman model" for the double layer.  Of interest is the surface charge density given by (17)

:
(18)

 into (17)

.  Substituting 


[image: image52.wmf]0

2

sinh

2

kT

ze

Y

ke

æö

s=

ç÷

èø


After eliminating  using (16)

, we have
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which is called the Gouy-Chapman equation.  0 is called the surface potential because it is the potential evaluated at the surface y=0.  This is not necessarily the same as the zeta potential.  
Electrostatic Body Forces

Since the fluid inside the diffuse cloud is charged, any electric field in the fluid will exert a force on the fluid elements.  This body force needs to be included in the Navier-Stokes equations:


electrostatic body force/volume = eE
which is analogous to the body force exerted by gravity:


gravitational body force/volume = g
Including electrostatics, but neglecting gravity, the Navier-Stokes equation becomes:


Dv/Dt = 2v – p + eE

In the Gouy-Chapman model described in the previous section, the fluid is stagnant.  At hydrostatic equilibrium, any electric field applied to a charged fluid element will lead to a pressure gradient:

v = 0:
p = eE
To see how large the pressure gradient is, let’s return to the Gouy-Chapman model where the electric field is oriented normal to the charged surface: i.e.  = (y).  Then the pressure gradient must also be normal to the wall so that p = p(y).  Hydrostatic equilibrium requires
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where the second equality results from substituting (13)

 to evaluate the derivative leaves
(2)

.  Using (14)

 and 
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Notice that pressure always decreases with distance y from the wall, regardless of the sign of the surface potential or the surface charge density.  Multiplying both sides by dy and integrating from y=y to y=:
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Surface potentials tend to be on the order of kT/e.  Scaling the surface potential by this quantity:
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suggests the pressure p(y) scales like IkT which represents the osmotic pressure XE "osmotic pressure"  of the bulk solution (recall van’t Hoff’s law for osmotic pressure of ideal solutions).  

Thus the pressure inside the cloud is always greater than the pressure in the bulk solution outside the cloud.  This is because the diffuse cloud is always oppositely charged compared to the surface, so the cloud is also being pulled by electrostatic forces toward the surface — just like gravity always pulls us downward.

Electrokinetic Phenomena

So far in our discussion, there has been no fluid motion.  But since the fluid inside the diffuse cloud is charged, we can exert a force on it by applying an electric field tangent to the surface.  
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Consider again the distribution of ions near a charged interface.  The solution is not electrically neutral.  So if an electric field is applied tangent to the surface, the fluid will experience an electrostatic body force:

dFf = (dq)E = (edV)E
where dq is the net charge on a fluid element having volume dV.  The solid is oppositely charged, so it feels a force in the opposite direction.  Consequently, at steady state, we can expect the fluid to move relative to the solid, or vice versa.  

At least two phenomena are associated with with the relative motion generated by this externally applied electrostatic force:

electrophoresisXE "electrophoresis" - migration of charged particles through an otherwise quiescent fluid

electro-osmosisXE "electro-osmosis" - flow of fluid through a porous solid bearing a surface charge

In both cases, relative motion between the fluid and the solid arises when an electric field is applied externally.  Conversely, forcing a fluid to move tangent to a charged interface generates an electric field:

sedimentation potentialXE "sedimentation potential" - the electrical potential (gradient) which arises during sedimentation of charged particles in a gravitational field

streaming potentialXE "streaming potential" - the electrical potential (gradient) which arises during flow of fluid through a porous solid which bears a surface charge

These four phenomena depend on the magnitude of the surface charge.  Measurements of these induced velocities or induced potentials are the most commonly used techniques for determination of surface charge.
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Smoluchowski's Analysis (ca. 1918)

Consider an infinite plate in contact with an electrolyte solution.  Suppose the plate bears a uniform surface charge density and we somehow externally apply an electric field Ex tangent to the surface in the +x direction.  Let's try to find the velocity profile v induced by this electric field.

continuity:
.v = 0

NSE:
Dv/Dt = 2v – p + eE
macrobutton MTPlaceRef (21)

From the arguments above, we expect the fluid to move in the direction of the applied electrostatic force.  The simplest solution to this problem which has this property is:


vx = vx(y),  vy = vz = 0

Since vx is independent of x, this solution automatically satisfies the mass balance.  Of course, we must allow vx to vary with y so we can meet the no-slip condition at the surface.  Note that at steady-state, the inertial terms identically vanish (like gravity-driven flow down inclined plane).

In the absence of flow, the ion concentration profiles are independent of x [see (6)

].  Any flow tangent to the plate is not expected to perturb the ion concentration profiles because tangential flow just replaces fluid having a particular concentration with fresh fluid having the same composition (also v.ci = 0).  This suggests that the charge density profile is not perturbed by flow caused either by an externally applied electric field (tangent to plate) or by an externally applied pressure gradient:

 = eq
where we will use the superscipt “eq” to denote the equilibrium state of the variable (in the absence of flow); we will also use the prefix "" to denote perturbations from equilibrium (caused by the applied electric field).  Thus the above statement is equivalent to


  eq +     where    = 0
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If we used two large vertical plate electrodes to apply the electric field, as shown at right, we would expect the electric field lines to be straight and tangent to the surface* and the electrostatic potential to vary linearly with distance from one electrode to the other.  Thus the applied electrostatic forces should act perpendicular to the electrodes and parallel to our surface.  In other words, the applied electric field is expected to have only an x-component which independent of x and y.  

This expectation is fulfilled if the electrostatic potential has the following form:
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where eq is the equilibrium potential found in the absence of an externally applied electric field or an applied pressure gradient (see previous section on “Gouy-Chapman model”), and where  is the perturbation from equilibrium caused by the externally applied electric field or pressure gradient.  The pressure field suffers a similar perturbation:
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The y-component of (21)

 yields:
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but adding the superscript eq to terms in (20)

 yields:



[image: image65.wmf]eq

eqeq

y

dp

E

dy

=r


subtracting:
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   or   p = p(x)

Poisson's equation (9)

 can also be written as:
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but in the absence of flow, Poisson's equation requires
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subtracting leaves
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The x-component of (21)

 becomes
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By applying a pressure gradient along the surface, we could “pump” the fluid past the solid, but this is not the problem we want to address.  Thus we set the pressure gradient to zero (p0 = pL) so there is no pressure-driven flow.  Boundary conditions include

at x=0:
vx = vx,s
as x :
dvx/dy  0  or  vx  vx,f
where vx,s is the velocity of the solid and vx,f is the velocity of the bulk fluid outside the cloud.  The first condition is just “no-slip” which says that at the interface between the fluid and the solid the two take on the same velocity.  The second condition says there is no shear force being applied to the fluid outside the double layer.  

To go further, we need to know how eq changes with y.  This is provided by Poisson's equation (9)

:
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(23)

:
(24)

 into 
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Since Ex=const, this can easily be integrated to
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Substituting eq(y) from (13)

, we obtain a velocity profile like that shown below.  
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Let
vx()  vx,f
Then the above equation can be rewritten as
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where
  eq(0) – eq()

is called the 

zeta potentialXE "zeta potential" - the electrostatic potential drop across the diffuse part of the double layer.  

Example

: A typical value of the  potential for aqueous solutions is about 50mV.  Plugging in the values of the other parameters


/4 = 3.5 m/s per V/cm

as a typical value of vf/Ex.

Electro-Osmosis in Cylindrical Pores
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Consider a circular hole drilled through a plate.  If this is submerged in an electrolyte solution and becomes charged, then applying a voltage across the length of the pore will give rise to electro-osmosis through the hole.

If the pore radius a is must larger than the Debye length –1, then the velocity profile is essentially plug flow except inside the double layer where the velocity suddenly drops to zero at the stationary solid surface

vs = 0
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for all r outside the double layer.  Here we have applied (25)

, but dropped the prefix "" since we have no further need to distinguish between the equilibrium and the applied fields.  

The volumetric flowrate through the pore is just this velocity times the cross-sectional area:

a>>1:
Q = a2(/4)Ex
So a measurement of the flowrate for a known applied electric field allows us to determine the zeta potential.

[image: image79.emf]
Electrophoresis of Large Spheres

Consider a rigid sphere immersed in a quiescent electrolyte solution.  Somehow we apply an electric field of strength E.  (25)

 applies inside the counterion cloud next to a charged sphere:

at r=a+-1:
v = -(/)E
 macrobutton MTPlaceRef (26)

in a reference frame in which the sphere is stationary.  This is the basis for solving the more complex problem of electrophoresis XE "electrophoresis"  of a large sphere.

We have now only to solve for the electric field and fluid velocity outside the double layer.  Outside the double-layer, the charge density  vanishes and Gauss’s law (.E =  = 0) reduces to Laplace’s equation:


2 = 0
 macrobutton MTPlaceRef (27)

at r=a:
/r = 0


as r :
  0 - Ercos


The b.c. at r=a assumes that the sphere is an insulator and that no electrical current can be conducted into it.  The b.c. as r  requires that the electric field E tend to the uniform value E externally applied.  To see this, recall that the usual relationship between spherical coordinates and Cartesian coordinates (see Appendix A.6 on p733 of BSL)( corresponds to rcos = z, so the asymptotic behavior of the potential is given by


 = 0 - Ez
Taking the gradient:


 = - Eez
or
E = - = Eez
is the magnitude of the electric field, whereas the z-axis is oriented to point in the direction of the electric field E.  The solution to the axisymmetric problem posed by (27)

 is:


(r,) = 0 - E[r + (1/2)a3r-2]cos
In particular, we will soon need the following:

at r=a+-1a:


E = -(1/r)/ = -(3/2) Esin
 macrobutton MTPlaceRef (28)

Now let's turn to the fluid flow problem.  A balance of forces and conservation of fluid mass requires:


2v + E = p

.v = 0

Outside of the counterion cloud, the fluid is electrically neutral and there are no electrostatic body forces acting on the fluid, even though there might be an electric field:

for r>a+-1:
2v = p
 macrobutton MTPlaceRef (29)


.v = 0
 macrobutton MTPlaceRef (30)



Let's choose a reference frame which moves with the center of the particle.  If we define Uel as the electrophoretic velocity of the sphere in a fixed reference frame, then the appropriate boundary conditions (in the moving reference frame of the sphere) are:

as r :
v = -Uel
 macrobutton MTPlaceRef (31)

at ra:
v = 0
which requires no slip XE "no slip"  of the fluid immediately in contact with the sphere.  But just outside of the thin counterion cloud, we will have a tangential component of the fluid velocity as specified by (26)

, but there is still no normal component of fluid velocity:

at r=a+-1:
vr = 0
 macrobutton MTPlaceRef (32)

If there is no pressure gradient imposed on the distant fluid, i.e. if p = 0, then the solution to equation potential flow" (32)

 is potential flow(31)

 and (29)

, subject to  gotobutton ZEqnNum841470 .  In other words, the velocity field has the form:

for ra+-1:
v = -
where  is the velocity potential XE "velocity potential" .  Then (30)

 becomes:
(29)

 is automatically satisfied* and 

2 = 0
 macrobutton MTPlaceRef (33)

(31)

 becomes:
 = o + Uelz 
as r 


(32)

 becomes:
/r = 0
at r=a
The particular solution to (33)

 also turns out also to be axisymmetric:


(r,) = Uel [r+(1/2)a3r-2]cos
In particular, we will need:

at r=a:
v = -(1/r)/ = (3/2) Uel sin
 macrobutton MTPlaceRef (34)

Finally, we need to satisfy (26)

, we conclude that
(34)

 in (28)

 and (26)

.  Using 

Uel = (/)E
In vector form, we can write:

a>>1:
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which is called Smoluchowski's equation XE "Smoluchowski's equation" .  Thus, except for sign, this electrophoretic velocity of a charged sphere through a stagnant fluid is identical to the osmotic velocity of fluid through a stationary solid membrane.  Although we have derived this result for a sphere, this result applies for any shape of particle provided the counterion cloud is thin compared to any radius of curvature of the particle (Morrison, 1970).*
Electrophoresis of Small Particles

Now let's consider the opposite extreme of a very small particle compared to the thickness of the counterion cloud.  In other words, let a  0.  In this limit, we can treat the particle as a point charge XE "point charge" .  The force acting on the particle by the applied electric field is given by the definition of electric field:


Fel = QE
The particle will begin to move creating a drag force which can be calculated from Stokes' law:


Fdrag = -6aU
The particle continues to accelerate until the drag force exactly balances the electrostatic force and the net force is zero:


Fel + Fdrag = 0
This terminal velocity represents the electrophoretic velocity in the induced electric field:
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Comparing electrophoretic mobility" (36)

, we see that both electrophoretic velocities are proportional to electric field.  The proportionality constant is electrophoretic mobility(35)

 and  gotobutton ZEqnNum511904 :


electrophor. mobility  U/E
which is positive if the particle moves in the same direction as the electric field and negative if it moves in the opposite direction.  

Is the mobility of Debye-Huckel" (35)

?  To compare them, we must first relate Q to .  Recall that in the Debye-Huckel(36)

 different from  gotobutton ZEqnNum524372  theory for the counterion cloud around a point charge, the potential profile around the central “ion” (or “particle” in our problem) is given by:
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where z is the charge number of the particle so that ze=Q
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Now we might define the zeta potential as the electrostatic potential at the surface of the sphere (r=a):
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but a<<1 so that e-a1, leaving:
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(36)

 gives:
(37)

 into 
a<<1:
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which is called Huckel's equation XE "Huckel's equation" .*  

Electrophoresis of a Sphere of Arbitrary Size

In the derivation of both Smoluchowski's and Huckel's equation, the distribution of ions within the counterion cloud was computed using either the Gouy-Chapman theory or the Debye-Huckel theory.  Both of these theories describe an

equilibrium double layer XE "equilibrium double layer"  — ion concentrations given by Boltzmann's equation (electrochemical potential of ions is constant along a normal to particle's surface).

In general, either ion migration in the applied electric field or convection of charge can distort the cloud away from equilibrium.  For a more general description of electrophoresis, we must abandon Boltzmann's equation for describing the distribution of ions.  That is we must allow for a non-equilibrium double layer:

Transport of ions occurs by convection, diffusion and migration of charges in an electric field.  In terms of “driving forces,” the flux is given by:
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where
F/RT = e/kT
which is called the Nerst-Planck equation XE "Nerst-Planck equation" .  Think of it as Fick's law for electrolytes.  The last term in this equation represents migration of ions in the electric field.  It's form is obtained by multiplying the terminal velocity by the ion concentration:

migr. flux:


Uelci = miFci = (Di/kT)(zieE)ci
but instead of using Stokes equation for the mobility (as we did to derive Huckel's equation), we used the Nernst-Einstein equation.  

Now to find the ion distributions, we solve the steady-state ion continuity equations:

for i=1,2,...,n:
.Ji = 0

where Ji is given by the Nernst-Planck equation (38)

.  At equilibrium, Ji = 0 and continuity is automatically satisfied while the Nernst-Planck equation reduces to Boltzmann's equation.  If we are not at equilibrium, we must determine the ion distribution by solving coupled P.D.E.'s:


.{vci - Di[ci+(zieci/kT)]} = 0
for i=1,...,n

2 = - (zieci) /

2v = p + (zieci)

.v = 0

As you can see, all of the variables are now badly coupled.  We have 5+n equations in 5+n unknowns (v,,p,ci), where n is the number of ion species (n2).  Products of unknown appear so the equations are also nonlinear.  Boundary conditions are of the form:

at r=a:
n.Ji = 0


 = 

v  Uel
(no slip)

as r :
ci  ci

  -r.E

v = 0
The terminal velocity Uel is determined such that the net force acting on any portion of the system vanishes:


F = Sn.da = 0
where  is the total stress tensor (viscous+Maxwell).  Numerical solutions of this problem for a sphere of arbitrary radius have been published:

Reference -- Obrien & White, J. Chem. Soc. Faraday Trans. II 74, 1607 (1978).

It turns out that the electrophoretic velocity is proportional to the electric field (if it's not too big).  The proportionality constant is the electrophoretic mobility


Uel = meE
where
me = me(D+,D-,a,)

They report their results using the following dimensionless quantities:
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y  e/kT
In terms of these variables, Huckel's equation becomes:

a 0:
M = y
while Smoluchowski's equation becomes:

a :
M = (3/2)y
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Although these two limiting cases bound the result for small y, they do not bound the mobility for large y.

Streaming Potential

So far in our discussion of electrokinetic phenomena, we have considered the motion of either fluid or solid that results from the application of an electric field:

Electrophoresis, Electro-osmosis:
E0     U0
Now we would like to consider the inverse situation in which relative motion across a charged interface generates an electric field:

Streaming Potential, 
Sedimentation Potential:

U0     E0
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Consider the pressure-driven flow through a large circular pore.  


–1 << a << L
Owing to the applied pressure drop, we generate a fully developed parabolic velocity profile so familiar for laminar flow.
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The main idea is that this flow causes convection of charge in the counterion cloud which tends to generate a current.  However in the absence of electrodes in the two reservoirs, there is no way to form a complete electric circuit.  So charge tends to pile up in the reservoir — positive charges on one side of the membrane and negative charges on the other.  Coulomb's law exerts a force on these charges which tends to restore electroneutrality to the system and to prevent any steady-state rate of accumulation of charge.  

Clearly any steady-state electrical current would eventually lead to infinite charge separation and infinite attractive forces.  The only way to avoid this is to have zero currentXE "zero current" at steady state.  This is achieved by an electric field which spontaneously arises inside the bulk of the fluid which creates an electrical current equal but opposite to the convective current:


I = Iconv + Ielec = 0
macrobutton MTPlaceRef (39)

The electrostatic potential drop associated with this induced electric field is called the streaming potentialXE "streaming potential".  To calculate it, let's first calculate the current generated by convection of charges inside the cloud.
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If the charge cloud is very thin compared to the pore radius, then we need to concentrate on the velocity profile right next to the wall.  Here the velocity profile becomes linear:

for s<<a:
vz(s) = s
where 
s  a–r
and
 = –dvz/drr=a
The net current through any surface S (open or closed) is just the integral of the normal component of the current density over the surface:
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In our case, we choose a disk of radius a whose normal is parallel to the tube axis.
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Since =0 for most of the fluid (except for ra), we can approximate this integral as shown by the second equality above.  Next, we substitute Poisson's equation (24)

 for the space charge density:


 = –(/4) d2eq/ds2
macrobutton MTPlaceRef (41)

(40)

 and integrating by parts:
(41)

 into 
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The potential drop across the counterion cloud is the zeta potentialXE "zeta potential".  Thus


Iconv = –(1/8)a
macrobutton MTPlaceRef (42)

According to (39)

, this convective contribution to the current must be balanced an electrical contribution from an induced electric field.  The relationship between current and electric field is given by Ohm's lawgotobutton ZEqnNum641401  for electrolyte solutions, which takes the form of


ielec = KE
where K is called the specific conductanceXE "specific conductance" of the solution.  Integrating over the cross-section of the tube:
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where
Ez = –/z = const = –/L
is required by (39)

:
(43)

 into (42)

 and (22)

, where L is the length of the cylindrical pore.  

 = L/2aK
macrobutton MTPlaceRef (44)
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Finally, we can relate  to the applied pressure drop by performing a macroscopic force balance on the tube.  Recognizing that the shear stress on the tube wall rz is dvz/dsr=a = ,


(2aL) = p(a2)

or
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(44)

:
(45)

 into gotobutton ZEqnNum172965 
which is Smoluchowski's equationXE "Smoluchowski's equation" for streaming potential.  

* We have been using nonrationalized units for , which of course leads to 8 in the numerator of this equation.  If instead, rationalized units are used then the 8 is replaced by 2.  


* The field lines might not be straight near the entrance or exit of the capillary.  Thus what follows strictly only applies in the central region away from the ends.  


( In particular,  is the angle measured between ez and er, as shown in the figure above.


*Recall Identity F.1: 2v = (.v) - (v) = (0) - (0) = 0.


*HWK: Derive Smoluchowski's result for a particle of arbitrary shape.


*Homework: Try using 6aUel = QE to evaluate the electrophoretic mobility when a>>1.  The answer is high by a factor of a.  Why?
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