

International Electrokinetics Conference Elkin 2004

Influence of the polyelectrolyte and base addition sequence on the suspension properties and electrophoretic deposition behaviour of ceramic powders

A.M. Popa^a, J. Vleugels^a, J. Vermant^b, O. Van der Biest^a

^aMTM & ^bCIT, Katholieke Universiteit Leuven, Belgium

Goal: Influence of sequence addition of BA and DC on the properties of Al_2O_3 and Ce-Zr O_2 deposits

Outline

Suspension characterisation:ViscosityBA content & sequence addition

Electrophoretic deposition: Yield, Deformability Drying Density

Suspension preparation

- Al₂O₃ (Baikowski SM8) powder
- Ce-ZrO₂ (Daiichi CEZ-12) powder
- Ethanol (to avoid gas evolution during EPD)
- Darvan C (DC) ammonium polymethacrylate MW= 10000 - 16000 BA (base) ↑ → degree of dissociation (α) ↑: -COO-NH₄⁺→-COO⁻
- n-Butylamine (BA) (for DC dissociation)

Suspension viscosity investigated as function of the addition sequence of BA and DC

Suspension characteristics

Influence of BA and DC addition sequence on η at ↑ BA content Suspensions: 2.5 vol % Al₂O₃, 1.5 vol % Ce-ZrO₂

When BA first added compound $\rightarrow \uparrow \eta$, unstable suspension When DC first added compound $\rightarrow \downarrow \eta$, stable suspension

Influence of BA and DC addition sequence on η at \downarrow BA content

 $\downarrow \eta$ with $\downarrow BA$, lower BA content, stable suspensions BA content influences η more then the DC content and the addition sequence

Suspension characteristics

Suspension for a deformable deposit: chemical stability in time

Constant conductivity and η in time \rightarrow good chemical stability

EPD conditions

• 300 V

- Magnetic stirring during EPD
- Vertical electrodes
- Stainless steel electrodes distance 3.5 cm surface 9 cm²

Deposit characteristics

	-			
			10	
		-		
-	-			
		St. St.		

BA first added compound → deformable deposit DC first added compound → rigid deposit

Electrophoretic deposition

Current: BA first added > DC first added BA constant and DC $\uparrow \rightarrow$ Current \uparrow , Yield \uparrow

Drying

Drying time when BA added first >> DC added first BA first added compound BA constant drying time ↑ with ↑ DC content

Density

- Small influence of BA & DC addition sequence or content
- Large influence of particle characteristics

Relative density Al₂O₃ deposits ~40% Relative density Ce-ZrO₂ deposits ~20%

Al₂O₃ is μ m sized (0.6 μ m) \rightarrow packing \uparrow Ce-ZrO₂ is nm sized \rightarrow packing \downarrow

Conclusions

- Suspension stability
 - At ↑ BA content:

BA first added: unstable suspensions (possible network formation by free polymer bridges)

DC first added: stable suspensions

• At \downarrow BA content:

no influence of addition sequence, stable suspensions

Conclusions

> Deposit characteristics

- BA first added \rightarrow deformable deposit
- DC first added \rightarrow rigid deposit
- drying time \uparrow as BA and/or DC \uparrow
- Similar behavior of Al₂O₃ and Ce-ZrO₂ suspensions

Acknowledgements

EU for Marie Curie Fellowship

Flemish National Scientific Foundation