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Theory(1)-  Immobile Stern layer 

Before describing transport in the Stern layer, we give a brief review of the theory developed by 
O’Brien and White.  
 
Consider a particle immersed in an electrolyte composed of N ionic species of charge  , bulk 
density and drag coefficient 

iz e
0 ( )in ∞ ( 1 . .i i Nλ = .  

 
To describe the system we require the electrostatic potential, (r )Ψ , the ion number densities ni(r) 
and  drift velocities vi  (r)   and the fluid velocity u(r), and pressure P(r).   The axes of the co-ordinate 
system are fixed at the centre of the particle, so that fluid velocity is zero at the particle surface 
and far from the particle moves with velocity Eµ− , where ( )    as  rr E∇Ψ →− →∞ . Since ions cannot 
penetrate the particle surface, the component of the ion drift velocity normal to the particle surface 
must vanish at the particle surface, iv 0   ar t  r  =  a⋅ = . In what follows  and ε η  are the  medium’s 
permitivity and viscosity respectively. 
 
These quantities are governed by the following equations:- 
 
Poisson’s Equation  
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Navier Stokes equation (Steady, incompressible, low Reynolds number flow) 
 

2 u  P =  w ith      .u = 0η ρ∇ − ∇ ∇ Ψ ∇  
 
Ion Force  Balance 
 

( ) l ni i i B iv u z e k T nλ− − − ∇ Ψ − ∇ =  
 
Ion Continuity Equation 
 

( v ) 0i in∇ ⋅ =    
 
These equations form a coupled set of non-linear partial differential equations. To solve them they 
must be linearised, and the problem decomposed into two simpler ones – the particle held fixed in 
the flow field - U the particle held fixed in an electric field E. For a spherical particle the problem 
can then be reduced to a set of ordinary differential equations that may be solved numerically. 



 
 
 
 
 

Theory (2) – Dynamic Stern Layer

 
To go beyond the model described earlier, more assumptions have to made about the Stern layer. 
The classical model of the region behind the slipping surface, is illustrated in fig.0. 
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      Figure 0 
 
 
The true particle interface 0σ  has a ‘titratable’ charge density due to fixed ionic species on the 
surface. The slipping plane at 1 2β β+  represents the closest approach of double layer ions. The 
plane 1β  represents the distance of closest approach of an ion that has lost part of its hydration 
sheath and having some strong surface interaction. In this model, the surface charge 0σ is 
confined to plane at  0, whilst the Stern layer charge density sσ  is confined to the plane at 1β . It is 
implicitly assumed that the Stern layer is thin compared with the particle dimensions or the double 
layer thickness, and that consequently the fluid velocity is approximately zero within the Stern 
layer, but ions may move behind the slipping plane. The equations governing the motion of ions 
within the Stern layer can be converted into boundary conditions on the slipping plane, and the 
formalism of O’Brien and White previously described can be used in its entirety with modified 
boundary conditions relating to the ion velocities at the slipping plane. The formalism is completely 
general. The only thing specific to a particular model is the description of the Stern layer charge 
density  - hence the only difference between models is in the nature of the Stern layer adsorption 
isotherm. There are two main classes of model– those where adsorption is onto available free 
surface area and those where counter ions are adsorbed is onto specific surface sites. 
The theory is in one sense more ambitious than the original model of O’Brien and White, in that it 
seeks to provide quantitative insight into the Stern region.  It does so at a cost – there are a 
significant number of additional parameters that must provided. For each ion, its maximum Stern-
layer charge, ion drag coefficient ratio, and pK of dissociation must be known.  In addition to these, 
the outer Stern-layer capacitance must also be provided. However the model is now able to 
calculate the Stern-layer charge density as well as the diffuse layer charge, allowing the surface 
charge σ0 to be deduced directly. 



 
 
 
 
 

Results: Immobile Stern Layer 
In this section we compare the model predictions of the theory using an immobile Stern layer with 
electrophoretic mobility data obtained from the literature. After all, if the standard electrokinetic 
model can adequately describe data, there is little justification for using a more complicated model 
requiring extra assumptions. 
 
We first use the data of Midmore, Pratt and Herrington5, who reported linear plots of Zeta potential 
against ionic strength and three sizes of latex. They used O’Brien’s closed form approximation 
rather than the full computer solution.  We show the results of our fit in figure 2. As can be seen, 
the fits are linear with slopes approximating the Nernst constant : -53.5 ,-51.9 and –59.9mV for the 
1060, 378 and 692 nm lattices respectively. 
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Figure 1: Particle diameter  378nm
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Figure 2: Particle diameter  692nm
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Figure 3: Particle diameter  1060nm

 
 
Next we use the data of Borkevec, Behrens and Semmler6. They measured mobilities  of 5 
different sizes of latex with varying ionic strengths of electrolyte concentration. They reported that 
whilst the agreement between experiment and the standard electrokinetic model  were acceptable 
for larger particles, for smaller particles the agreement was less satisfactory.  We show the results 
of our calculations in figures 4,5,6,7,8, where we attempt to plot zeta potential against ionic 
strength. As can be seen, the results for the points of lowest ionic strength consistently fail to fit 
well (ie at concentrations less than 0.001 mol/dm3) for the smaller particles, and for the very 
smallest particle size the working concentration range was even less. It is interesting to note that 
in this was also reported and attributed to anomalous surface conduction3. Indeed, Borkevec et al 
themselves,  speculated that the discrepancies they observed could be explained by surface 
conduction. Another problem, discussed by Herrington et al3 , is the choice of which branch of the 
solution to use to obtain the solution and without any other information there is some degree of 
arbitrariness  as to what points correspond to the ‘correct’ zeta potential. The general rationale has 
been where possible to use points which remove the maximum by taking the zeta potential from 
the upper branch. In the case of points low ionic strength, where they clearly do not form part of a 
trend, we do not include them in the fitting process. 
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Figure 4: Particle Radius 34.0 nm
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Figure 5: Particle Radius 60.0 nm
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Figure 6: Particle Radius 97.0 nm
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Figure 7: Particle Radius 235.0 nm
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Figure 8: Particle Radius 450.0 nm

 
 
 
 
 

Results: Dynamic Stern Layer 

We now repeat our calculations using a Dynamic Stern layer model with the data of Borkevec et 
al. In view of the large number of parameters that must be specified we make the following 
assumptions:- 

• Coion adsorption is is relatively un-important:– the model is relatively insensitive to the 
corresponding Stern-layer parameters (eN+, λ+ and pK+)4 

• The mobility is insensitive to variations in the outer Stern-layer capacitance4 
• The surface charge is fixed6 

 

We found that to obtain a constant surface charge for all ionic strengths we had to use a value of 
pK- of 2 or  greater and that model was insensitive to the choice of pK in this range. 
This leaves the choice of eN- and λ- .These two parameters appear in the model as a product – 
hence the mobility is independent of variations of either parameter provided their product is 
remains invariant. To obtain the correct surface charge, eN- was the key parameter, particularly 
with pK- values we used, the Stern-layer charge became saturated at the zeta values we were 
working with. The rationale then, for the choice of these parameters was to find values which gave 
a surface charge independent of ionic strength and in agreement with values determined by 
conductometric titration, whilst giving a straight line on a zeta against ionic strength plot.  
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Figure 9 : Particle Radius 34.0 nm
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Figure 10 : Particle Radius 60.0 nm
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Figure 11 : Particle Radius 97.0 nm
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Figure 12 : Particle Radius 235.0 nm

-4 -3.5 -3 -2.5 -2 -1.5 -1
0

50

100

150

200

250

[KCL] (mol.dm-3)

ζ 
(m

V
)

Figure 13 : Particle Radius 450.0 nm

 
 
Finally we show the fitted Nernst slopes (with and without a Dynamic Stern layer), the fitted 
surface charge and  the actual surface charge for the various lattices. 
 
Radius (nm) Nernst slope (mV) (DSL) Nernst slope (mV)(SSL) Cond. Charge (C/m2) Fit. Charge (C/m2) 
34 -38.2 -23.2 0.048 0.048 
60 -78.3 -39.0 0.081 0.080 
97 -67.7 -81.3 0.083 0.088 
235 -79.4 -95.2 0.159 0.153 
450 -67.3 -48.5 0.223 0.220 

              
 
 
 

Conclusion 

 
The data of Borkevic et al demonstrated that whilst the standard electrokinetic model can describe 
electrophoretic mobility data quite creditably, there are instances where agreement breaks down. 
One tentative explanation given was that the discrepancies could be explained by surface 
conduction. We found  that Dynamic Stern-layer extensions to the standard model could give 
agreement  over a broad range of electrolyte concentrations and particle sizes. However for the 
smallest sizes at the lowest salt concentrations agreement appeared to break down, indicating that 
surface conduction did not provide a complete explanation. Moreover the number of extra 
parameters necessary make its use ambiguous and from a scientific point of view not entirely 
satisfactory. Nevertheless we believe that  Dynamic Stern-layer models are a useful addition to the 
standard theory particularly if a number of transport properties can be measured and thus provide 
unambiguous inference of surface electrokinetic properties.  
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