Field- and Shear-Driven Collective Phenomena in Suspensions

Boris Khusid

New Jersey Institute of Technology

Andreas Acrivos

The Levich Institute at CUNY

Support

NASA, NSF, DARPA

Dielectrophoresis

The force acting on a particle subject to a gradient electric field is

 $\mathbf{F}_{e} = \mathbf{Q}\mathbf{E} + (\mathbf{P} \cdot \nabla)\mathbf{E}$

Electrophoresis is the motion of a charged particle in a DC field

Dielectrophoresis is the motion of a neutral particle in gradient DC and AC fields

The time average dielectrophoretic force in an AC field

$$\left\langle \mathbf{F}_{\mathbf{d}} \right\rangle = 2\pi \varepsilon_{0} \varepsilon_{f} a^{3} \operatorname{Re}(\beta(\omega)) \nabla \mathbf{E}_{\mathrm{rms}}^{2}$$
$$\beta = \frac{\varepsilon_{\mathrm{p}}^{*}(\omega) - \varepsilon_{\mathrm{f}}^{*}(\omega)}{\varepsilon_{\mathrm{p}}^{*}(\omega) + 2\varepsilon_{\mathrm{f}}^{*}(\omega)}$$

Field-induced Phase Transition

A homogeneous random arrangement of particles

$$\mathbf{E} = \mathbf{0}$$

A variety of ordered aggregation patterns

$$W_{el} \ge k_B T$$

Measuring the Particle Polarization

Dussaud, Khusid, Acrivos, J Appl Phys, 88, 2000

 Dielectric spectroscopy for measuring particle polarization for E~1 V/mm

The Maxwell-Wagner model

$$\frac{\varepsilon_{s}^{*}(\omega,c) - \varepsilon_{f}^{*}}{\varepsilon_{s}^{*}(\omega,c) + 2\varepsilon_{f}^{*}} = c\beta(\omega)$$

 Validated the equation for dielectrophoretic force for E~ 1 kV/mm

Dielectric Spectroscopy

DS measures the relation between time-varying voltage and current through a sample

NJIT W.M. Keck Laboratory

Field-induced Phase Separation

Microscopic theory for field-induced phase transitions

Dielectrophoretic Particle Concentrator

 $40 \,\mu m \,(W) \times 6 \,\mu m \,(H) \times 570 \,\mu m \,(L)$ 10 Vptp, 15-30 MHz

Source: Bennett, Khusid, Galambos, James, Okandan, TRANSDUCERS'03, Boston, MA

Experimental Results

1µm polystyrene spherical beads in DI water, 0.1% (v/v)

Particle polarization $\beta = -0.45 - 0.27i$

Flow rate 0.24 pL/s to 9.6 pL/s; Re~10⁻⁵-10⁻³

Dielectrophoretic

Source: Bennett, Khusid, Galambos, James, Okandan, Jacqmin, Acrivos, Appl Phys Lett, 2003

Flowing Heterogeneous Mixture

Beads and bacterial cells (heat-killed staphylococcus aureus)

10 V_{ptp}, 15 MHz

Flow rate 0.24 pL/s to 9.6 pL/s

Source: Bennett, Khusid, Galambos, James, Okandan, Jacqmin, Acrivos, Appl Phys Lett, 2003

Electro-hydrodynamic Model

Chemical potential (Phys Rev E, 1995-9)

 $\mu_{p} = \frac{\mathbf{k}_{B} \mathbf{T}}{\mathbf{v}_{m}} \frac{d\mathbf{t}_{0}}{d\mathbf{c}} - \boldsymbol{\varepsilon}_{0} \left(\frac{\partial \boldsymbol{\varepsilon}_{s}'}{\partial \mathbf{c}} \right) \quad \left\langle \frac{\mathbf{E}^{2}}{2} \right\rangle$ **Entropic factor** $f_0 = c(lnc-1) + c \int [(Z-1)/c] dc$ **Quasi-steady electrodynamic equations** $\langle \mathbf{E}^2 \rangle = \frac{1}{2} |\mathbf{E}_{\omega}^*(\mathbf{r})|^2$ $\nabla \mathbf{D}_{\omega}^{*}(\mathbf{r}) = 0$ $\nabla \times \mathbf{E}_{\omega}^{*}(\mathbf{r}) = 0$ Electric displacement $\mathbf{D}_{\omega}^{*} = \varepsilon_{0}\varepsilon_{s}^{*}(\omega, c)\mathbf{E}_{\omega}^{*}$ **Suspension flow** $\rho_{s}\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v}\nabla\mathbf{v}\right) = -\nabla p + \nabla \mathbf{s}^{\text{vis}} - c\nabla\mu_{p} + c(\rho_{p} - \rho_{f})\mathbf{g} \qquad \nabla \mathbf{v} = 0$ Shear stress $s_{ij}^{\text{vis}} = \eta_{s}\left(\frac{\partial v_{i}}{\partial x_{j}} + \frac{\partial v_{j}}{\partial x_{i}}\right) \qquad \mathbf{Viscosity} \qquad \eta_{s} = \eta_{f}\left(1 + \frac{1.5c}{1 - c/c_{m}}\right)^{2}$ Particle balance $\frac{\partial c}{\partial t} + \nabla(c\mathbf{v} + \mathbf{j}_{p}) = 0 \qquad \mathbf{j}_{p} = \frac{c(1 - c)^{2}v_{p}}{6\pi a\eta_{s}}\left[-\nabla\mu_{p} + (\rho_{p} - \rho_{f})\mathbf{g}\right]$

 \rightarrow Re(β)

The particle polarization can be measured at low fields

Electric Field Configuration

Neutrally buoyant suspension

Polyalphaolefin spheres (0.92 g/cm³, 90 mm) in corn oil (0.92 g/cm³, 0.06 Pa·s, eps=2.2)

Particle polarization in low field ~ 1V/mm

The Maxwell-Wagner model

$$\frac{\varepsilon_{s}^{*}(\omega,\phi) - \varepsilon_{f}^{*}}{\varepsilon_{s}^{*}(\omega,\phi) + 2\varepsilon_{f}^{*}} = \phi\beta(\omega) \qquad \text{Re}(\beta) = -0.15$$

for 100-1000 Hz

Field-induced Segregation

Top view, **10%**

Source: Kumar, Qiu, Khusid, Jacqmin, Acrivos, Phys. Rev. E, 2004

Neutrally buoyant polyalphaolefin spheres in corn oil

6mm

 $Re(\beta) = -0.15$ for 100-1000 Hz

5kv, 100Hz, without flow

 $V_{rms}/d = 2.5 \text{ kV/mm}$

Front Formation

Comparison with Experiments

Field Strength and Frequency Effects

Top view, 10% suspension

5kV, 100Hz	3kV, 100Hz	3kV, 2000Hz
t=20.5min	t=54.5min	t=52.5min
$t/\tau_{d} = 63.4$	$t/\tau_{\rm d} = 60.8$	$t/\tau_{d} = 58.6$

Multi-Channel Apparatus

electrodes Source: Markarian, Yeksel, Khusid, Farmer, Acrivos, Appl Phys Lett, 82, 2003

Model for Dilute Suspensions

Qiu, Markarian, Khusid, Acrivos, J Appl Phys, 92, 2002 Dussaud, Khusid, Acrivos, J Appl Phys, 88, 2000

The balance of drag, dielectrophoretic, and gravitational forces $6\pi\eta_{f}a(\mathbf{u} - \mathbf{v}_{f}) = 2\pi\epsilon_{0}\epsilon_{f}a^{3}\operatorname{Re}(\beta)\nabla E_{rms}^{2} + \frac{4}{3}\pi(\rho_{p} - \rho_{f})a^{3}ge$

 $\lambda = \frac{\varepsilon_0 \varepsilon_f E^2 v_p}{\mathbf{k} \mathbf{T}}$

The field-induced particle displacement

 $\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \mathbf{u} \qquad \mathbf{r}|_{t=0} = \mathbf{r}_0$

The asymptotic expression for the spinodal

$$\varphi \lambda \Psi_{\omega} \approx 1 \qquad \Psi_{\omega} \sim 3 \operatorname{Re}(\beta)^2$$

The particle polarization can be measured at low fields \longrightarrow Reference to the second s

Experimental Results

Dioctyl Terephthalate: $_{f}=0.98 \text{ g/cm}^{3}$, $\mathbf{h}_{f}=76 \text{ cp}$ Al₂O₃: $_{p}=3.8 \text{ g/cm}^{3}$ a = 0.5-2 mm Re(**b**) = 0.35 for 1-10 kHz AC Field: 20V, 1kHz 0.1% (v/v); Q = 0.05 µl/min; Re=10⁻⁵

0 sec

Particle Positioning

Particle radius is 0.5-2.3 µm

Source: Markarian, Yeksel, Khusid, Farmer, Acrivos, Appl Phys Lett, 82, 2003

Quantitative Comparison

$$\alpha \int_{z} (GL_0 - GL) dz$$
 (empty triangles) vs. $P(z)$ (filled circles)

L

P is the fraction of particles that had traveled beyondα, fitting parametera certain length of the channelR², the correlation coefficient

Source: Markarian, Yeksel, Khusid, Farmer, Acrivos, J Appl Phys, 2003