
Legend:

Start

2

3

Text, etc.

Text, etc.

Text, etc.

State markers:

Tree construction/
argumentation

area:

Control:

Feedback content:

Main user visible
content and
interface:

Text, etc.

Navigational move:

Text, etc.

Correct move:

Text, etc.

Incorrect move:

Text, etc.

Incomplete move:

Try to construct the parse tree for the following expression in order to determine
whether or not it is a formula.

Start by selecting the main operator of an expression and creating the
appropriate number of branches. Then fill in the subexpressions at the ends of

those branches.

Once you reach a node containing an expression that cannot be further
decomposed by any syntactic rules, classify that expression as either an atomic
formula, by pressing the "Atomic" button when that node is selected, or as not

well-formed, by pressing the "Not Well-Formed" button when the node is
selected. Once all the terminal nodes have been classified correctly, you'll have

completed the exercise.

Start

Create binary
branch

Create unary
branch

Atomic Not Well-Formed

Hint

2

Create
binary
branch

(∀x)((x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c))

3

Create
unary
branch

5

Atomic/
Not

Well-
Formed

Hints

Hint

2

Main operator selected, and
is a binary connective

Unary operator selected
and is main operator

[Create branches.]

The selected [negation/quantifier] is the
main operator of that expression, but it is a

unary operator, not a binary one.

Unary operator selected,
but is not main operator

The selected [negation/quantifier] is neither
the main operator of that expression, nor is

it a binary operator.

Binary connective selected,
but is not main operator

The [name of connective] selected is not
the main operator of that expression.

Atomic formula selected,
non-equality You have selected an atomic formula.

Atomic formula selected,
equality

You have selected an atomic formula. Don't
forget that identity is syntactically just

another two-place predicate.

Nothing selected
[Prompt user to make a selection.]

3

Main operator selected, and
is negation or a quantifier

Binary connective selected,
and is main operator

[Create branch.]

The [name of connective] selected is
neither the main operator of that
expression, nor a unary operator.

Binary connective selected,
but is not main operator

The selected [negation/quantifier] is not the
main operator of that expression.

Unary operator selected,
but is not main operator

The [name of connective] selected is the
main operator of that expression, but

[name of connective] is a binary connective,
not a unary one.

Atomic formula selected,
non-equality You have selected an atomic formula.

Atomic formula selected,
equality

You have selected an atomic formula. Don't
forget that identity is syntactically just

another two-place predicate.

Nothing selected
[Prompt user to make a selection.]

4

That's right.
Well done.

Selected node is atomic,
non-equality Atomic

Not Well-Formed The expression consists of an n-
place predicate symbol, followed

by n individual constants
separated by commas and

enclosed in parentheses, so it is
a well-formed atomic formula.

Selected node is not
well-formed That's right.

Well done.

Atomic

Not Well-Formed

The expression does not consist
of an n-place predicate symbol,

followed by n individual
constants separated by commas
and enclosed in parentheses, so

it is not an atomic formula.

The expression consists of an
identity symbol, with a term on

either side, so it is a well-formed
atomic formula.

Not Well-Formed

That's right.
Well done.Atomic

Selected node is atomic,
equality

That's right.
Well done.

Selected node is atomic,
non-equality Atomic

Not Well-Formed The expression consists of an n-
place predicate symbol, followed

by n individual constants
separated by commas and

enclosed in parentheses, so it is
a well-formed atomic formula.

Selected node is not
well-formed That's right.

Well done.

Atomic

Not Well-Formed

The expression does not consist
of an n-place predicate symbol,

followed by n individual
constants separated by commas
and enclosed in parentheses, so

it is not an atomic formula.

The expression consists of an
identity symbol, with a term on

either side, so it is a well-formed
atomic formula.

Not Well-Formed

That's right.
Well done.Atomic

Selected node is atomic,
equality

Feedback for entering expressions at nodes:

Key:

Feedback is on the next page.

(∀x)((x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c))

((x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c))

(x=a v (∃y)(¬y=a & x=y)) (¬x=b & ¬x=c)

¬x=b ¬x=c(∃y)(¬y=a & x=y)

(¬y=a & x=y)

¬y=a x=y

x=b x=c

y=a

(x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c)
anything else C

((x=a v (∃y)(¬y=a & x=y))
x=a v (∃y)(¬y=a & x=y)

(¬x=b & ¬x=c))
¬x=b & ¬x=c

anything else A anything else B

x=a

anything else A

(x=a (∃y)(¬y=a & x=y))
anything else B

(¬x=b ¬x=c)
anything else A anything else B

anything else Danything else D¬y=a & x=y
anything else C

anything else A anything else B

anything else D

That's right!

Don't forget that the outermost parentheses are added by the application of a syntactic rule, so the
outermost parentheses of an expression higher in the tree will not appear again in the branches below.

We never omit outermost parentheses in parse trees, but other than that you have the right formula.

A For a binary branch, the left-hand subexpression will always consist of that portion of the original
expression between the leftmost outer parenthesis and the connective that was added by the
application of the syntactic rule.

B For a binary branch, the right-hand subexpression will always consist of that portion of the original
expression between the rightmost outer parenthesis and the connective that was added by the
application of the syntactic rule.

C

For a unary branch corresponding to an application of the rule for negation, the subexpression will
always consist of the original expression minus the leftmost negation that was added by the
application of the syntactic rule.

D

For a unary branch corresponding to an application of one of the quantifier rules, the subexpression
will always consist of the original expression minus the outermost quantifier that was added by the
application of the syntactic rule.

Don't forget that the outermost parentheses are added by the application of a syntactic rule, so the
outermost parentheses of an expression higher in the tree will not appear again in the branches below.

We never omit outermost parentheses in parse trees, but other than that you have the right formula.

For a binary branch, the left-hand subexpression will always consist of that portion of the original
expression between the leftmost outer parenthesis and the connective that was added by the
application of the syntactic rule.

For a binary branch, the right-hand subexpression will always consist of that portion of the original
expression between the rightmost outer parenthesis and the connective that was added by the
application of the syntactic rule.

For a unary branch corresponding to an application of the rule for negation, the subexpression will
always consist of the original expression minus the leftmost negation that was added by the
application of the syntactic rule.

For a unary branch corresponding to an application of one of the quantifier rules, the subexpression
will always consist of the original expression minus the outermost quantifier that was added by the
application of the syntactic rule.

Solution:

Atomic terminal nodes are circled in green, and non-well-formed
nodes in red (in this case, all the terminal nodes are atomic).
Additionally, the main connective of each expression is circled in
blue.

Recall that all terminal nodes must be classified correctly by the
user before the activity is complete.

For reference:

Operator Name

Conjunction

Disjunction

Conditional

Negation

Universal
Quantifier

Existential
Quantifier

Symbol

&

v

→
¬

(∀x)

(∃x)

Type

Binary

Binary

Binary

Unary

Unary

Unary

x=a

(∀x)((x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c))

((x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c))

(x=a v (∃y)(¬y=a & x=y)) (¬x=b & ¬x=c)

¬ x=b ¬ x=c(∃y)(¬y=a & x=y)

(¬y=a & x=y)

¬ y=a x=y

x=b x=c

y=a

Hints

Click here to get help on how to construct the tree.

Click here to view the syntactic rules
and parse tree rules.

Links should be to the following files, respectively:

parsetreeconstruction6help.gif
parsetreeconstruction6hint.gif

The latter is already done, but I'll wait on the help images until after the interface
has been finalized.

(∀x) (top node)

Start by selecting the main operator of the formula.

If the leftmost symbol of the expression is a negation, then that is
the main connective, and if the expression has a quantifier at its
far left, then that is the main operator. If not, look for a binary
connective with a parenthesis to either side (a right parenthesis

on its left, and a left parenthesis on its right).

In this expression, the universal quantifier is the main operator.

Click here to highlight the operator.

((x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c))

textbox The expression that should go at the end of a unary branch
corresponding to the application of one of the syntactic rules for

the quantifiers is just the portion of the original expression
remaining after the quantifier is removed.

For this branch, the parent expression is
(∀x)((x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c)),

so the expression that should go at the end of this branch is the
portion of the expression remaining after removing the quantifier.

The expression you should enter here is
((x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c)).

v If multiple connectives occur in an expression, the one with
highest scope will be enclosed in only a single set of parentheses.
If an occurrence has only a single unmatched parenthesis of either

kind to one side, that is the occurrence to select.

In this expression, the rightmost disjunction is the main
connective.

Click here to highlight the connective

(x=a v (∃y)(¬y=a & x=y))
(¬x=b & ¬x=c)

textbox The expression that should go at the end of a binary branch is
just that portion of the parent expression that comes between
the outermost parenthesis on the same side as the branch and

the connective itself.

For this branch, the parent expression is
((x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c)), so
the expression that should go at the end of this branch is the

portion of that between the [left/right] outer parenthesis and the
disjunction.

The expression you should enter here is
(x=a v (∃y)(¬y=a & x=y))

(¬x=b & ¬x=c).

operator If multiple connectives occur in an expression, the one with
highest scope will be enclosed in only a single set of parentheses.
If an occurrence has only a single unmatched parenthesis of either

kind to one side, that is the occurrence to select.

If an expression is enclosed in parentheses and contains only a
single binary connective, then that connective is the one to select.

In this expression, the disjunction is the main connective.
Click here to highlight the connective

In this expression, the disjunction is the main connective.
Click here to highlight the connective

(∃y)(¬y=a & x=y)

textbox The expression that should go at the end of a binary branch is
just that portion of the parent expression that comes between
the outermost parenthesis on the same side as the branch and

the connective itself.

For this branch, the parent expression is
(x=a v (∃y)(¬y=a & x=y)), so the expression that should

go at the end of this branch is the portion of that between the
right outer parenthesis and the disjunction.

The expression you should enter here is (∃y)(¬y=a & x=y).

operator

If an expression has a quantifier at its far left, with no parenthesis
to the left of the quantifier's left parenthesis, then the quantifier is

the main operator for the expression.

In this expression, the quantifier is the main connective.

Click here to highlight the connective

(¬y=a & x=y)
(¬x=b & ¬x=c)

textbox The expression that should go at the end of a binary branch is
just that portion of the parent expression that comes between
the outermost parenthesis on the same side as the branch and

the connective itself.

For this branch, the parent expression is
(∃y)(¬y=a & x=y)

((x=a v (∃y)(¬y=a & x=y)) v (¬x=b & ¬x=c)),
 so the expression that should go at the end of this branch is the

portion of that between the right outer parenthesis and the
disjunction.

The expression you should enter here is
(¬y=a & x=y)

(¬x=b & ¬x=c).

operator

If an expression contains only one occurrence of a binary
connective and is enclosed in parentheses, then that binary

connective is the main operator for the expression.

In this expression, the conjunction is the main connective.

Click here to highlight the connective

x=a y=a x=y
x=b x=c

textbox The expression that should go at the end of a binary branch is
just that portion of the parent expression that comes between
the outermost parenthesis on the same side as the branch and

the connective itself.

For this branch, the parent expression is
(x=a v (∃y)(¬y=a & x=y))/¬y=a/(¬y=a & x=y)/
¬x=b/¬x=c, so the expression that should go at the end of this

branch is the portion of that between the [left/left/right/left/right]
outer parenthesis and the disjunction.

The expression you should enter here is
x=a y=a x=y

x=b x=c.

formula
If an expression contains no connectives and no quantifier

symbols, then that expression cannot be further decomposed
according to the syntactic rules, and should be classified as either

atomic or not well-formed.

Since x=a/y=a/x=y/x=b/x=c contains no connectives and
no quantifier symbols, and since it consists of two terms with the

identity predicate between them, it is a well-formed atomic
formula.

¬x=b
¬x=c
¬y=a

textbox The expression that should go at the end of a binary branch is
just that portion of the parent expression that comes between
the outermost parenthesis on the same side as the branch and

the connective itself.

For this branch, the parent expression is
(¬x=b & ¬x=c)/(¬x=b & ¬x=c)/(¬y=a & x=y),

so the expression that should go at the end of this branch is the
portion of that between the [left/right/left] outer parenthesis and

the disjunction.

The expression you should enter here is
¬x=b
¬x=c
¬y=a.

operator

If the leftmost symbol in an expression is a negation symbol, then
the expression could have been produced by an application of the

syntactic rule for negation.

In this expression, the negation is the main connective.

Click here to highlight the connective.

