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Abstract—With the rapid increase in cloud services collecting
and using user data to offer personalized experiences, ensuring
that these services comply with their privacy policies has become
a business imperative for building user trust. However, most
compliance efforts in industry today rely on manual review
processes and audits designed to safeguard user data, and
therefore are resource intensive and lack coverage. In this paper,
we present our experience building and operating a system to
automate privacy policy compliance checking in Bing. Central
to the design of the system are (a) LEGALEASE—a language that
allows specification of privacy policies that impose restrictions
on how user data is handled; and (b) GROK—a data inventory
for Map-Reduce-like big data systems that tracks how user data
flows among programs. GROK maps code-level schema elements
to datatypes in LEGALEASE, in essence, annotating existing
programs with information flow types with minimal human input.
Compliance checking is thus reduced to information flow analysis
of big data systems. The system, bootstrapped by a small team,
checks compliance daily of millions of lines of ever-changing
source code written by several thousand developers.

I. INTRODUCTION

Web services companies, such as Facebook, Google, and

Microsoft, that use personal information of users for var-

ious functions are expected to comply with their declared

privacy policies. Companies in the US are legally required

to disclose their data collection and use practices, and the

US Federal Trade Commission (FTC) has the mandate to

enforce compliance, which it exercises by imposing penalties

on companies found to violate their own stated policies [1],

[2], [3]. In practice, these legal requirements translate to

companies creating review processes and conducting internal

audits to ensure compliance [4], [5]. Manual reviews and

audits are time-consuming, resource-intensive, lack coverage,

and, thus, inherently do not scale well in large companies;

indeed, there have been cases where internal processes have

not caught policy violations [6]. In this paper we take the

first steps toward automated checking of large-scale Map-

Reduce-like big data systems for compliance with privacy

policies that restrict how various types of personal information

flow through these systems. Our deployed prototype reduces

compliance checking time and improves coverage by orders of

magnitude, across the data analytics pipeline of Bing. Further,

the human resources needs are small — the prototype is run

Fig. 1. Privacy Compliance Workflow. Manual reviews and audits are highly
time-consuming, and resource-intensive. By encoding policy in LEGALEASE

using the GROK data inventory, we decouple interactions so policy specifica-
tion, interpretation, product development, and continuous auditing can proceed
in parallel.

by a small team, and scales to the needs of several thousands

of developers working on Bing.

To contextualize the challenges in performing automated

privacy compliance checking in a large company with tens

of thousands of employees, it is useful to understand the

division of labor and responsibilities in current compliance

workflows [4], [5]. Privacy policies are typically crafted by

lawyers in a corporate legal team to adhere to all applicable

laws and regulations worldwide. Due to the rapid change

in product features and internal processes, these policies are

necessarily specified using high-level policy concepts that may

not cleanly map to the products that are expected to comply

with them. For instance, a policy may refer to “IP Address”

which is a high-level policy concept, and the product may

have thousands of data stores where data derived from the

“IP Address” is stored (and called with different names) and

several thousand processes that produce and consume this

data, all of which have to comply with policy. The task of

interpreting the policy as applicable to individual products

then falls to the tens of privacy champions embedded in

product groups. Privacy champions review product features

at various stages of the development process, offering specific

requirements to the development teams to ensure compliance



with policy. The code produced by the development team is

expected to adhere to these requirements. Periodically, the

compliance team audits development teams to ensure that the

requirements are met.

We illustrate this process with a running example we use

throughout this paper. Let us assume that we are interested

in checking compliance for an illustrative policy clause that

promises “full IP address will not be used for advertising.”.

The privacy champion reviewing the algorithm design for, say

online advertisement auctions, may learn in a meeting with

the development team that they use the IP address to infer the

user’s location, which is used as a bid-modifier in the auction.

The privacy champion may point out that this program is not

compliant with the above policy and suggest to the develop-

ment team to truncate the IP address by dropping the last octet

to comply with the policy, without significantly degrading the

accuracy of the location inference. The development team then

modifies the code to truncate the IP address. Periodically,

the audit team may ask the development team whether the

truncation code is still in place. Later, the advertising abuse

detection team may need to use the IP address. This may

result in a policy exception, but may come with a different

set of restrictions, e.g., "IP address may be used for detecting

abuse. In such cases it will not be combined with account

information." The entire process (Fig. 1 left panel) is highly

manual, with each step sometimes taking weeks to identify the

right people to talk to and multiple meetings between different

groups (lawyers, champions, developers, auditors) that may as

well be communicating in different languages.

Our central contribution is a workflow for privacy compli-

ance in big data systems. Specifically, we target privacy com-

pliance of large codebases written in languages that support

the Map-Reduce programming model [7], [8], [9]. This focus

enables us to apply our workflow to current industrial-scale

data processing applications, in particular the data analytics

backend of Bing, Microsoft’s web search engine [10]. This

workflow leverages our three key technical contributions: (1)

a language LEGALEASE for stating privacy policies, which is

usable by policy authors and privacy policy champions, but has

precise semantics and enables automated checking for compli-

ance, (2) a self-bootstrapping data inventory mapper GROK,

which maps low level data types in code to high-level policy

concepts, and bridges the world of product development with

the world of policy makers, and (3) a scalable implementation

of automated compliance checking for Bing. We describe each

of these parts below.

The LEGALEASE language. LEGALEASE is an usable, expres-

sive, and enforceable privacy policy language. The primary

design criteria for this language were that it (a) be usable by

the policy authors and privacy champions; (b) be expressive
enough to capture real privacy policies of industrial-scale sys-

tems, e.g., Bing; (c) and should allow compositional reasoning
on policies.

As the intended users for LEGALEASE are policy au-

thors and privacy champions with limited training in for-

mal languages, enabling usability is essential. To this end,

LEGALEASE enforces syntactic restrictions ensuring that en-

coded policy clauses are structured very similarly to policy

texts. Specifically, building on prior work on a first order

privacy logic [11], policy clauses in LEGALEASE allow (resp.

deny) certain types of information flows and are refined

through exceptions that deny (resp. allow) some sub-types of

the governed information flow types. This structure of nested

allow-deny rules appears in many practical privacy policies,

including privacy laws such the Health Insurance Portability

and Accountability Act (HIPAA) and the Gramm-Leach-Bliley

Act (GLBA) (as observed in prior work [11]), as well as

privacy policies for Bing and Google. A distinctive feature of

LEGALEASE (and a point of contrast from prior work based

on first-order logic and first order-temporal logic [12], [11])

is that the semantics of policies is compositional: reasoning

about a policy is reduced to reasoning about its parts. This

form of compositionality is useful because the effect of adding

a new clause to a complex policy is locally contained (an ex-

ception only refines its immediately enclosing policy clause).

Section III presents the detailed design of the language. To

validate the usability of LEGALEASE by its intended users,

we conduct a user study among policy writers and privacy

champions within Microsoft. On the other hand, by encoding

Bing and Google’s privacy policies regarding data usage on

their servers, we demonstrate that LEGALEASE retains enough

expressiveness to capture real privacy policies of industrial-

scale systems. Section VI presents the results of the usability

study and the encoding of Bing and Google’s privacy policies.

The GROK mapper. GROK is a data-inventory for Map-

Reduce-like big data systems. It maps every dynamic schema-

element (e.g., members of a tuple passed between mappers

and reducers) to datatypes in LEGALEASE. This inventory can

be viewed as a mechanism for annotating existing programs

written in languages like Hive [7], Dremel [8], or Scope [9]

with the information flow types (datatypes) in LEGALEASE.

Our primary design criteria for this inventory were that it

(a) be bootstrapped with minimal developer effort; (b) reflect

exhaustive and up-to-date information about all data in the

Map-Reduce-like system; and (c) make it easy to verify (and

update) the mapping from schema-elements to LEGALEASE

datatypes. The inventory mappings combine information from

a number of different sources each of which has its own char-

acteristic coverage and quality. For instance, syntactic analysis

of source code (e.g., applying pattern-matching to column

names) has high coverage but low confidence, whereas explicit

annotations added by developers has high confidence but low

coverage. Section IV details the design of the system, and

Section V presents how the automated policy checker performs

conservative analysis while minimizing false positives over

imperfect mappings.

By using automated data-inventory mapping and adding

precise semantics to the policy specification, we reduce time-

consuming meetings by decoupling the interactions between

the various groups so policy specification, policy interpreta-



Fig. 2. Example scenario showing a partially-labeled data dependency graph
between three files and programs.

tion, product development, and continuous auditing can pro-

ceed in parallel. Since we use automation to bridge code-level

details to policy concepts, meetings are needed only when our

automated privacy compliance checker (conservatively) detects

potentially sensitive scenarios, and are hence more focused,

especially on actionable items (dotted lines in Fig. 1).

Scale. Our scalability criteria are in (a) the amount of data over

which we perform automated privacy compliance checking;

(b) the time we take to do so; and (c) the number of people

resources needed for the entire effort. As we quantify in

Section VI, our deployed system scales to tens of millions

of lines of source code written by several thousand developers

storing data in tens of millions of files containing over hundred

million schema-elements, of which a substantial fraction is

changing or added on a day-to-day basis. Our data inventory

takes twenty minutes (daily), and evaluating the complete

LEGALEASE encoding of Bing’s privacy policy over the entire

data takes ten minutes. The entire effort was bootstrapped from

scratch by a team of five people.

II. MOTIVATING EXAMPLE

In this section, we use an example to highlight salient fea-

tures of our programming model and typical privacy policies

that these programs have to respect. These features motivate

the design of our privacy policy language LEGALEASE de-

scribed in Section III, the data inventory GROK described in

Section IV, and provide intuition on how privacy compliance

checking is reduced to a form of information flow analysis.

Consider the scenario in Fig. 2. There are three programs

(Jobs 1, 2, 3) and three files (Files A, B, C). Let us assume

that the programs are expected to be compliant with a privacy

policy that says: “full IP address will not be used for advertis-

ing. IP address may be used for detecting abuse. In such cases

it will not be combined with account information.” Note that

the policy restricts how a certain type of personal information

flows through the system. The restriction in this example is

based on purpose. Other common restrictions include storage

restrictions (e.g., requiring that certain types of user data

are not stored together) and, for internal policies, role-based

restrictions (e.g., requiring that only specific product team

members should use certain types of user data). While our pol-

icy language is designed in a general form enabling domain-

specific instantiations with different kinds of restrictions, our

evaluation of Bing is done with an instantiation that has

exactly these three restrictions—purpose, role, and storage—

on flow of various types of personal information. We interpret

information flow in the sense of non-interference [13], i.e.,

data not supposed to flow to a program should not affect the

output of the program.

The data dependence graph depicted for the example in

Fig. 2 provides a useful starting point to conduct the infor-

mation flow analysis. Nodes in the graph are data stores,

processes, and humans. Directed edges represent data flowing

from one node to another. To begin, let us assume that

programs are labeled with their purpose. For example, Job

1 is for the purpose of AbuseDetect. Furthermore, let us

also assume that the source data files are labeled with the

type of data they hold. For example, File A holds data

of type IPAddress. Given these labels, additional labels can

be computed using a simple static dataflow analysis. For

example, Job 1 and Job 2 both acquire the datatype label

IPAddress since they read File A; File C (and hence Job

3) acquires the datatype label IPAddress:Truncated. Given a

labeled data dependence graph, a conservative way of checking

non-interference is to check whether there exists a path from

restricted data to the program in the data dependence graph.

In a programming language such as C or Java, this approach

may lead to unmanagable overtainting. Fortunately, the data

analytics programs we analyze are written in a restricted

programming model without global state and with very limited

control flow based on data. Therefore, we follow precisely this

approach. Languages like Hive [7], Dremel [8], or Scope [9]

that are used to write big data pipelines in enterprises adhere

to this programming model (Section IV provides additional

details). Note, that for the search engine that we analyze, the

data dependence graph does not come with these kinds of

labels. Bootstrapping these labels without significant human

effort is a central challenge addressed by GROK (Section IV).

III. POLICY SPECIFICATION LANGUAGE

We present the design goals for LEGALEASE, the language

syntax and formal semantics, as well a set of illustrative policy

examples.

A. Design Goals
As mentioned, we intend legal teams and privacy champions

to encode policy in LEGALEASE. Therefore, our primary goal

is usability by individuals with typically no training in first-

order or temporal logic, while being sufficiently expressive for

encoding current policies.

a) Usability: Policy clauses in LEGALEASE are struc-

tured very similarly to clauses in the English language policy.

This correspondence is important because no single individual

in a large company is responsible for all policy clauses;

different sub-teams own different portions of the policy and



Policy Clause C ::= D | A

Deny Clause D ::= DENY T1 · · · Tn EXCEPT A1 · · · Am
| DENY T1 · · · Tn

Allow Clause A ::= ALLOW T1 · · · Tn EXCEPT D1 · · · Dm
| ALLOW T1 · · · Tn

Attribute T ::= 〈attribute-name〉 v1 · · · vl
Value v ::= 〈attribute-value〉

TABLE I
GRAMMAR FOR LEGALEASE

any mapping from LEGALEASE clauses to English clauses that

do not fall along these organizational bounds would neces-

sitate (time-consuming) processes to review and update the

LEGALEASE clauses. By designing in a 1-1 correspondence

to policies in English, LEGALEASE clauses can be added,

reviewed, and updated at the same time as the corresponding

English clauses and by the same individuals.

b) Expressivity: LEGALEASE clauses are built around an

attribute abstraction (described below) that allows the language

to evolve as policy evolves. For instance, policies today tend

to focus on access control, retention times, and segregation of

data in storage, [14], [15], [16]. However, information flow

properties [17] provide more meaningful restrictions on infor-

mation use. Similarly, the externally-visible policy may be at a

higher level while the internal policy may be more restrictive

and nuanced. LEGALEASE allows transitioning between these

policies with minimal policy authoring overhead, and provides

enforcement techniques so as to enable stronger public-facing

policy promises.

c) Compositional Reasoning: When the whole policy is

stated as a monolithic logic formula, it may be more difficult

to naturally reason about the effects of the policy, due to

unexpected interactions between different parts of the formula

[18]. LEGALEASE provides meaningful syntactic restrictions

to allow compositional reasoning where the result of checking

the whole policy is a function of reasoning on its parts.

B. LEGALEASE Language Syntax
A LEGALEASE policy (Table I) is rooted in a single top-

level policy clause. A policy clause is a layered collection

of (alternating) ALLOW and DENY clauses where each clause

relaxes or constricts the enclosing clause (i.e., each layer de-

fines an exception to the enclosing layer). Each clause contains

a set of domain-specific attributes that restrict to which data

dependency graph nodes the policy applies. Attributes are

specified by their name, and one or more values. Attribute

values are picked from a concept lattice [19] for that attribute

(explained below). The absence of an attribute implies that

there no restrictions for that attribute. The policy author defines

new attributes by providing an attribute name and a lattice of

values. In III-D, we describe the particular instantiation of

attributes we use to specify information flow restrictions on

programs.

Checking: LEGALEASE policies are checked at each node in

the data dependency graph. Each graph node is labeled with

the domain-specific attribute name and set of lattice values.

For instance, in our setting, we assume that the data inventory

phase labels programs with data that flows to it, a purpose

attribute and a user attribute. Informally, an ALLOW clause

permits graph nodes labeled with any subset of the attribute

values listed in the clause, and a DENY clause forbids graph

nodes labeled with any set that overlaps with the attribute

values in the clause. The layering of clauses determines the

context within which each clause is checked. We define the

formal evaluation semantics in Section III-E.

C. LEGALEASE, by example

We illustrate LEGALEASE through a series of examples

that build up to a complex clause. In the examples we

use two user-defined attributes: DataType and UseForPurpose
(our deployment uses two additional ones AccessByRole and

InStore). We define the concept lattice for each of these four

attributes in the next subsection.

The simplest LEGALEASE policy is DENY. The policy

contains a single clause; the clause contains no exceptions

and no attribute restrictions. The policy, rather uninterestingly,

simply denies everything. We next add a restriction along the

DataType attribute for graph nodes to which IP address flows.

DENY DataType IPAddress
As discussed in our running example, there is often a need

to capture some limited form of history of the data flow (e.g.,

that the IP address has been truncated before it can be used).

We capture this notion of typestate in the concept lattice for the

DataType attribute (described below). The lattice contains an

element IPAddress:Truncated meant to represent the truncated

IP address, and the lattice element for IP address IPAddress,

such that IPAddress:Truncated ≤ IPaddress, where ≤ is the

partial order for the lattice. We next add the exception that

allows us to use the truncated IP address. The added lines are

marked with ⊳.

DENY DataType IPAddress
EXCEPT ⊳

ALLOW DataType IPAddress:Truncated ⊳
The above policy contains a clause with an exception. The

first disallows any use of IP address, while the exception

relaxes the first allowing use when the IP address is truncated.

Next, we restrict the policy to advertising uses only by adding

a restriction along the UseForPurpose attribute for the value

Advertising, while retaining the exception that allows the use

of IP Address when truncated.

DENY DataType IPAddress
UseForPurpose Advertising ⊳

EXCEPT
ALLOW DataType IPAddress:Truncated

The above policy corresponds to the English clause “full

IP address will not be used for advertising”. Note that since

the first clause is restricted only to advertising use, and the

second rule does not relax that attribute, the net effect is that

the clause applies only to use of IP address for advertising

and says nothing about non-advertising uses (consistent with

the English clause).



(a) InStore lattice (b) UseForPurpose lattice (c) AccessByRole lattice

Fig. 3. Concept lattice [19] examples for three of the domain-specific attributes we define.

Attribute Name Concept Defined In Example Lattice
InStore Storage Section III-D1 Fig. 3a

UseForPurpose Use for purpose Section III-D2 Fig. 3b

AccessByRole Access control Section III-D3 Fig. 3c

DataType Information Section III-D4 Fig. 4c

TABLE II
ATTRIBUTES USED IN OUR DEPLOYMENT

Finally, consider the English policy “full IP address will not

be used for advertising. IP address may be used for detecting

abuse. In such cases it will not be combined with account

information.” This policy is encoded in LEGALEASE below.

The first, second, and third sentences correspond respectively

to lines 1–4, 5–6, and 7–8. DENY DataType IPAddress
UseForPurpose Advertising

EXCEPT
ALLOW DataType IPAddress:Truncated
ALLOW DataType IPAddress ⊳

UseForPurpose AbuseDetect ⊳
EXCEPT ⊳

DENY DataType IPAddress, AccountInfo ⊳
The last clause (in lines 7-8) mentions that the combination

of IPAddress and AccountInfo is denied, but these elements can

be used individually. It turns out that giving formal semantics

to such exceptions where combinations are disallowed whereas

individual elements are allowed is non-trivial. We revisit this

issue when we give formal semantics to LEGALEASE.

In Section VI, we encode the entirety of the externally-

visible privacy policies for Bing and Google, as it pertains to

backend data processing and storage. Therefore, LEGALEASE

satisfies our goal of being able to express current policy in a

way that there is a natural 1-1 correspondence with the policy.

We also show through a user study that LEGALEASE is easy

for privacy champions to learn and use.

D. Domain-Specific Attributes
LEGALEASE derives its expressiveness and extensibility

through domain-specific attributes that can be suitably instan-

tiated to specify policy restrictions specific to the application

at hand. The attribute values must be organized as a concept
lattice [19], which is a complete lattice1 of values that the

attribute can take.

The concept lattice serves three purposes in LEGALEASE:

first, it abstracts away semantics (e.g., policy datatype and

typestate, use for purpose, access control) in a way that the rest

of LEGALEASE and language tools do not have to be modified

as long as a new concept can be encoded as a lattice, and the

GROK data mapper can label nodes in the data dependency

graph with the label corresponding to the semantic meaning

of that attribute. In practice we have found the need for only

four concepts (Table II), all of which can be encoded as a

lattice and labeled by the GROK mapper. Second, the lattice

structure allows the user to concisely define (and refer to)

sets of elements through their least upper bound. Finally, the

lattice structure allows us to statically check the policy for

certain classes of errors (e.g., exceptions that have no effect

as they do not relax or constrict the enclosing clause).

LEGALEASE does not assign any particular semantic mean-

ing to these attributes. In our context, however, we instantiate

the language to specify restrictions on information flow in

our programming model. In particular, the policy datatype

labels denote the information that flows to a particular node

in the data dependency graph, and the typestate labels record

a limited history of declassification actions during that flow.

We now define the four domain-specific attributes and their

corresponding concept lattices that we use in our deployment.

1) InStore attribute: We define the InStore attribute to

encode certain policies around collection and storage of data.

For instance, consider the policy “Ads will not store full IP

address”. A privacy champion may interpret that policy as

forbidding storing the entire IP address on any data store

designated for Ads. The concept lattice, illustrated in Fig. 3a,

contains all data stores in the bottom half (e.g., AuctionLogs,

1Recall, a complete lattice is a structure of the form (L, ≤, ∧, ∨, ⊤, ⊥)
where L is a partially ordered set of elements under the ordering relation ≤,
meet (∧) and join (∨) are operators that result respectively in the least upper
bound and the greatest lower bound, and top (⊤) and bottom (⊥) are the
maximal and minimal element.



AdClickLogs, WebIndex) and a coarser grained classification in

the top half (e.g., AdsData, SearchData). The policy-writer can

use any lattice element in LEGALEASE clauses. As we describe

in the formal semantics section, the policy then applies to all

elements below the mentioned element. Thus by choosing the

AdsData element the policy-writer would cover all data stores

designated for Ads.

The InStore attribute adds a storage restriction in the policy

clause as follows:

DENY DataType IPAddress
InStore AdsData ⊳

EXCEPT
ALLOW DataType IPAddress:Truncated

The policy above disallows storing IP addresses in any data

store designated as Ads unless it has been truncated. The

GROK mapper labels all data stores (e.g., files) with the InStore
attribute value (e.g., AdClickLogs) so that the above clause is

triggered whenever the non-truncated IP address flows to a file

designated for storing advertising data.

In LEGALEASE, a use-oriented policy is expressed very

similarly by changing InStore AdsData in the policy above to

UseForPurpose Advertising. With this low editing overhead,

LEGALEASE satisfies our expressivity design goal of enabling

seamless transitions towards meaningful restrictions on infor-

mation use.

2) UseForPurpose Attribute: In earlier examples we show

how the UseForPurpose attribute helps encode certain policies

around use of data. In examples so far we have discussed

using data in various products (Advertising) or product features

(AbuseDetect). The use, however, need not be restricted purely

to products. Indeed, policy often seeks to disallow sharing

certain data with third-parties; here Sharing is another use of

the data. All these uses are captured in the concept lattice for

the UseForPurpose attribute (Fig. 3b).

3) AccessByRole Attribute: Internal policies often further

restrict data use based on which team is accessing the data.

These access-control oriented roles often do not show up in

externally-facing policies because they make sense only within

the organizational structure. To encode internal access-control

based policies we define the AccessByRole attribute where the

lattice (Fig. 3c) is the role-based hierarchy which includes the

org-reporting hierarchy (solid black lines in the figure), virtual-

teams that may span different parts of the organization (dotted

lines), as well as job-titles (gray lines). The lattice is populated

from the organizational directory service. An example internal

policy may be:

DENY DataType IPAddress
EXCEPT

ALLOW AccessByRole AbuseTeam ⊳
EXCEPT ⊳

DENY AccessByRole Intern ⊳
The above policy allows the abuse detection team to use

the IP address, which from the lattice in Fig. 3c includes a

team in the ads organization, one in the search organization,

and some individuals in the research organization. The policy

then explicitly denies access to interns. Note that the layered

specification (explicitly) breaks ties — both the allow and the

nested deny clause apply to data dependency nodes labeled

with AccessByRole Dave, but the more deeply nested DENY
clause takes precedence. We show in the formal semantics

section how all LEGALEASE policies can be interpreted un-

ambiguously.

(a) Policy datatype lattice (b) Typestate lat-
tice

(c) DataType lattice (product of 4a and 4b); only
part of lattice shown.

Fig. 4. Concept lattice construction for the DataType attribute.

4) DataType Attribute: Lastly, we define the DataType at-

tribute and concept lattice. The interesting aspect is the notion

of increasing or decreasing the sensitiveness of a datatype

(e.g., encryption decreases sensitiveness, opting-out increases).

Since policy may disallow use of data at one sensitiveness level

and allow use at another, there is a need to track a limited

history of the policy datatype. We track history with a notion

we call typestate (defined below).

a) Policy datatypes: The policy datatypes are organized

in a lattice (Fig. 4a). For example, IP address is both a

unique identifier as well as a form of location information. The

ordering relationship (≤T ) defines t ≤T t′ if t “is of type” t′.

e.g., IPAddress ≤T UniqueID and IPAddress ≤T Location.

b) Limited typestate: The typestate is a limited way of

tracking history. Consider the typestate :OptOut, which we

use to refer to data from users that have opted-out of certain

products, or :Expired that tracks data past its retention time and

scheduled for deletion (highly sensitive). The GROK mapper

determines the typestate of nodes in the data dependency graph

as defined in Section V. Fig. 4b lists some other typestates that

we use in our deployment. These typestates are organized in

a lattice ordered by the “is less sensitive than” relation (≤S);



the sensitiveness levels are decided by privacy champions.

c) Combining policy datatypes and typestates: The con-

cept lattice (D) for the DataType attribute is defined over tuples

of the form t:s where t is picked from the lattice of policy

datatypes, and s is picked from the lattice of typestates. The

ordering relationship (≤) for set element t:s ∈ D is defined

as t:s ≤ t′:s′ iff t ≤T t′ ∧ s ≤S s′. Intuitively it is the lattice

formed by flattening the result of replacing each element of

one lattice with a copy of the other lattice. Fig. 4c shows a part

of the DataType lattice formed by replacing the :, :Encrypted,

and :Truncated elements from the typestate lattice with the

policy datatype lattice; black lines encode the ≤T ordering

relationship, and grey lines encode ≤S .

E. Formal Semantics

Our third goal is to enable compositional reasoning of

policies. We now present the formal semantics of LEGALEASE

that satisfies this goal.

The semantics uses vectors of attributes. We use the notation

T (with suitable superscripts) to denote a vector of sets of

lattice elements (representing the label of a node in the data

dependency graph or a clause during policy evaluation), and

the notation Tx to denote the value of attribute x in T , which

is a set of lattice elements. Recall that LEGALEASE policies

are checked at each graph node. Each graph node G is labeled

with a vector TG. Similarly, policy clauses contain a vector

TC .

In order to define how policies are checked, we define the

partial order ⊑ over vectors of sets of lattice elements, as

pointwise ordering over all the attributes in the vector. More

precisely, we define T ⊑ T ′ iff ∀x.Tx ⊑x T ′

x, where ⊑x is

defined as ∀v∈Tx∃v′∈T ′
x
.v ≤x v′ and ≤x is the partial order

associated with the attribute x. Using DeMorgan’s law, we

have that T 6⊑ T ′ iff ∃x.Tx 6⊑x T ′

x. Intuitively, a policy clause

ALLOW TC applies to a graph node labeled with a vector TG

if TG ⊑ TC .

We also define T ⊓T ′ pointwise, where for each x, Tx⊓xT
′

x
is {

∨
v∈Tx

v ∧x v′|v′ ∈ T ′

x}. We use the notation ⊥ ∈ T as

shorthand for ∃x.⊥ ∈ Tx. A policy clause DENY TC applies

to a graph node labeled with a vector TG if ⊥ 6∈ TG ⊓ TC ,

which intuitively means that the overlap between the denied

elements TG and the node labels TC is not empty.

Missing attributes: If for some attribute x the set of lattice

elements is not specified, it is taken to be a singleton set with

top (⊤), as missing attributes imply all.

Finally, the judgment C allows TG, read as policy clause

C allows data dependency graph node labeled with attribute

set TG, characterizes which nodes are allowed. Similarly, the

judgment C denies TG characterizes which graph nodes

are denied. These two judgments, defined formally in Table

III, provide a recursive procedure to check whether a data

dependency graph node satisfies a policy, given its attributes.

Intuitively, a graph node is allowed by an ALLOW clause if

and only if the clause applies and is allowed by each exception

(rules A1-A3 in Table III). A graph node is denied by a DENY

T G 6⊑ T C

ALLOW T C EXCEPT D1 · · · Dm denies T G
(A1)

T G ⊑ T C ∃iDi denies T G

ALLOW T C EXCEPT D1 · · · Dm denies T G
(A2)

T G ⊑ T C ∀iDi allows T G

ALLOW T C EXCEPT D1 · · · Dm allows T G
(A3)

⊥ ∈ T G ⊓ T C

DENY T C EXCEPT A1 · · · Am allows T G
(D1)

⊥ 6∈ T G ⊓ T C ∃iAi allows T G ⊓ T C

DENY T C EXCEPT A1 · · · Am allows T G
(D2)

⊥ 6∈ T G ⊓ T C ∀iAi denies T G ⊓ T C

DENY T C EXCEPT A1 · · · Am denies T G
(D3)

TABLE III
INFERENCE RULES FOR LEGALEASE

clause if and only if the clause applies and is denied by each

exception (rules D1-D3).

As an example, consider the following policy clause that al-

lows everything except for the use of IPAddress and AccountID
in the same program. Note that individually, using either may

be allowed.

ALLOW DataType ⊤
EXCEPT

DENY DataType IPAddress, AccountID
For ease of exposition, we demonstrate policy evaluation

only for the DataType attribute here and elide DataType
subscripts. The DataType attribute of top level clause is {⊤}
and as for any TG, TG ⊑ {⊤}, one of rules A2 or A3
applies and we need to check the exception. The exception

has DataType attribute TC = {IPAddress,AccountID}. Now

consider two nodes with its DataType attributes being TG
1 =

{IPAddress} and TG
2 = {IPAddress,AccountID}. In the first

case TC ⊓ TG = {IPAddress,⊥}, and therefore, the node is

allowed by the policy. In the second case, on the other hand,

TC ⊓ TG = {IPAddress,AccountID}, and therefore, the node

is denied by the policy.

F. LEGALEASE Properties
We now use the formal definition of LEGALEASE to state

some of its properties. Appendix A of [20] contains a more

detailed discussion and proofs.

The first two are safety properties that ensure that checking

is defined uniquely for each policy and graph node.

Proposition 1 (Totality): For each vector of sets of lattice

elements T , and policy clause C, C allows T or C denies T .

Proposition 2 (Unicity): For each vector of sets of lattice

elements T , and policy clause C, C allows T and C

denies T , are not both true.

We then show that LEGALEASE respects a syntactic notion

of weakening. Our notion of weakening captures the standard
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ALLOW T C
1

� ALLOW T C
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C1 � C2 C2 � C3

C1 � C3

Dn � D′

n

ALLOW T C EXCEPT D1 · · · Dn � ALLOW T C EXCEPT D1 · · · D′

n

TABLE IV
SELECTED RULES FOR WEAKENING LEGALEASE POLICIES

modes of editing a policy in LEGALEASE i.e., relaxing a

clause, weakening an exception or removing an exception.

Table IV contains selected rules for defining the weakening

relation �. The intuitive idea that weakening a policy should

make it more permissive, is stated as follows:

Proposition 3 (Monotonicity): If C1 � C2, then for any

TG, C1 allows TG implies that C2 allows TG and C2
denies TG implies C1 denies TG.

IV. DATA INVENTORY

Inference rules of LEGALEASE assume a data dependency

graph labeled with the domain-specific attributes. Constructing

such a graph in reality is a difficult process. In this section we

present GROK which constructs and labels a data dependency

graph over big data pipelines with data flow, storage, access,

and purpose labels with minimal manual effort.

A. Design Goals
Our primary goal in designing the GROK mapper is to scale

to the needs of a large big data system, i.e., it must scale to

millions of lines of ever-changing source code, storing data in

tens of millions of data files.

a) Exhaustive and up-to-date: We target Map-Reduce-

like big data systems that store data and run processing jobs.

Such systems have complete visibility into all data, accesses,

and processing. Any data entering (or leaving) the system

can do so only though a narrow set of upload (or download)

APIs that require users to authenticate themselves to the

system. Similarly, all jobs run on the system are submitted

by authenticated users.

b) Bootstrapping: At the scale in which we are inter-

ested, bootstrapping a GROK is highly non-trivial. We cannot

assume extra effort on the part of the developer (e.g., labeling

schema-elements with policy datatypes). There are thousands

of developers and any change affecting more than a few tens

requires creating a new organizational process (awareness,

trainings, code reviews, process audits, and so on). Thus,

we are constrained in using purely automated approaches or

approaches involving a small team to bootstrap a labeled data

flow graph.

c) Verifiable and robust: As a result of bootstrapping

without any developer effort, it is inevitable that there will

be false-positives and false-negatives in our attribute labels.

At a minimum we must be able to verify the correctness of

inferred labels. At the same time, it is unreasonable to assume

that the team will be able to verify correctness of all labels.

We therefore expose an explicit confidence-level associated

with any attribute label. Our privacy policy checker uses the

Fig. 5. A coarse-grained GROK data flow graph over users, files, and jobs.

GROK confidence values to rank violations so that we can

direct auditor attention to violations it is more certain about.

B. GROK System
A GROK data flow graph (Fig. 5) contains a node for every

principal (processes, data stores, entities) handling data in a

system, and a directed edge between principals when data

flows from one to another. Nodes are labeled with the domain-

specific attributes mentioned in the previous section (callouts

in the figure). The graph is updated with new nodes and

edges as new principals and data flows are encountered. GROK

associates a confidence score with each attribute label (labeled

in the figure as high or low). Confidence values are based on

how the attribute value was inferred.

Granularity: The finer the granularity of GROK, the more

precision with which it can track data flows, but the higher

the scalability cost of using that information. For example,

at a fine granularity, there may be a process node for every

line of executable code in every job; a data store node for

every file; and an entity node for every human accessing the

system. At coarse granularity there may be one process node

for every job run on the cluster; one data store node for every

logical separation of data (e.g., sub-directory); and one entity

node for every functional team. Having one node per sub-

directory is more scalable, but it conflates file level attributes

that may not otherwise appear together on the same node thus

trading off precision. Ultimately, the required precision is a

function of the privacy policy — if the policy “We will not

store account information with advertising data” is interpreted

as not storing in the same sub-directory, then a coarse-grained

GROK is precise enough.

Our GROK prototype is at a finer granularity than the exam-

ples above. There is a data node for each individual column in

each file that contains tabular data, a process node for every

field in every sub-expression in a statement of code, and entity

nodes for each computer a user connects to the system with.

For scalable use of the graph, we dynamically materialize a

coarse-grained view by combining related columns (at the cost

of precision), but allow any algorithm access to the underlying

fine-grained graph as needed. By scalably targeting the finest

granularity, we allow policy interpretations to change over time

without having to change GROK.



Clicks =
EXTRACT GUID, ClientIP
FROM “/adsdata/clicks/20131113” ;

UserAgents =
EXTRACT GUID, UserAgent
FROM “/adsdata/uadata/20131113” ;

Suspect =
SELECT Encrypt(ClientIP, “...”) AS EncryptedIP
FROM Clicks INNER JOIN UserAgents ON GUID
WHERE MaybeFraud(UserAgent);

OUTPUT Suspect TO “/users/alice/output” ;

Fig. 6. Example of big data analysis code written in Scope [9].

C. Language Restrictions in Big Data Languages

Before we can describe how we bootstrap GROK, we explain

semantics common to the three languages commonly used in

industry for big data analysis — Hive, Dremel, and Scope.

All three languages have the same basic data abstraction of a

table. A table is a rectangle of data with a fixed number of

columns, and an arbitrary number of rows. Each column has a

name and a type (e.g., int, string). Jobs are a sequence of SQL-

like expressions. Each expression of the language operates on

one or more tables, and returns a resultant table that may be

used in other expressions. Thus, the result of every expression

(or sub-expression) in the program is also a table with named

columns. The languages provide a mechanism to read a flat

file (e.g., tab delimited) into a table; and a mechanism to write

a table out as a flat file.

Implicit flow of data in these languages is very limited.

There is no global state. User-defined functions (UDFs) are

restricted to using only their input parameters columns, and

their output is restricted only to the output column(s). UDFs

cannot directly access the data store. Implicit flows due to

WHERE clauses are made explicit by considering the columns

referenced in the clause as input columns. The language

itself does not have data dependent loops. The pre-processor

provides syntactic sugar to write repetitive or conditional code

driven by compile-time macros. The resulting code is straight-

line code that explicitly tracks all flow of data.

Fig. 6 lists the SQL-like Scope source code for an analysis

job we’ll use as a running example in this section. The

first statement reads in a flat file “/adsdata/clicks/20131113” ,

which contains tabular data, into the Clicks variable using the

column schema (GUID, ClientIP) provided. The second line

similarly reads another file into UserAgents with the given

schema (GUID, UserAgent). The third statement joins the two

tables on the GUID column, retains the rows where the UDF

call MaybeFraud(UserAgent) returns true, computes the output

table containing a single schema column named EncryptedIP
populated with the result of the UDF call Encrypt(ClientIP,
“...”), and binds it to the Suspect variable. The last statement

outputs this table to “/user/alice/output” as a flat file.

Fig. 7. Coarse-grained labeled data flow graph nodes for Fig. 6.

D. Data Flow Edges and Labeling Nodes
We use a variety of complementary approaches to construct

the fine-grained data flow graph, and label it. We begin by

constructing a coarse-grained data flow graph with InStore and

AccessByRole attributes by analyzing logs. We then use ex-

tensive syntactic analysis of programs to add limited DataType
and UseForPurpose attributes. Next, we use semantic analysis

of programs to replace coarse-grained process and data store

nodes with fine-grained internals. In the process we also use

static data flow analysis to expand the coverage of DataType
attributes. Finally, we identify a small set (few hundred)

of bottleneck nodes that, if verified manually, allows us to

increase the confidence score of the majority of the nodes in

the graph. We describe each approach in detail.

1) Log Analysis: Inferring data flows at a coarse-granularity

(job, file, user) is trivial given a log that contains all jobs that

were run on the cluster, all the files the job accessed for read

and write, and all users that downloaded (or uploaded) files

from (to) the cluster. If this log is exhaustive and updated

regularly, the corresponding GROK is also exhaustive and up-

to-date, satisfying our first design goal.

In our deployment we use one such log to bootstrap the

coarse-grained data flow graph. We also use this log to label

file nodes with the InStore attribute, and entity nodes (and

job nodes run by a user) with the AccessByRole attribute. We

associate a high confidence score with these labels since the

corresponding information is tracked explicitly; e.g., mapping

between data store names and directories is created by the

cluster admin, and as mentioned, only authenticated users

can run jobs or access data. Lastly, since our org-hierarchy

usually reflects the functional hierarchy (i.e., jobs for purpose

AbuseDetect are run (only) by the AbuseTeam and vice versa),

we associate a UseForPurpose attribute for each job based

on the role of the user running the job. We associate a low
confidence value for UseForPurpose attributes since it is based

on a heuristic.

Fig. 7 illustrates the data flow information we glean just

through log analysis. The data flow information includes the

file and job nodes and the edges between them, and the non-

DataType attributes attached to these nodes. We next discuss

how we label DataType attributes.

2) Program Analysis (Syntactic): A scalable way of la-

beling nodes with the DataType attribute is to syntactically

analyze the source code of the job that read or wrote data.



By syntactic analysis we mean inferring DataType attributes

for job nodes based on the identifiers (e.g., tuple field names,

column names) used in the source code to refer to data.

Good coding practices enforced rigorously in engineering

teams through code reviews, variable naming conventions, etc.

require the developer to use comprehensible variable names in

their programs. We use a set of regular expressions to infer a

limited set of policy datatypes (and sometimes typestate) from

identifiers in the source code. As before, we associate a low
confidence to such inferences.

From our example in Fig. 6, we would extract the iden-

tifier names Clicks, GUID, ClientIP, UserAgents, UserAgent,
EncryptedIP. Using regular expression patterns (see Section V)

we may associate the DataType labels IPAddress with ClientIP,

IPAddress:Encrypted with EncryptedIP, and UniqueID with

GUID. All with low confidence.

Using regular expressions to label identifiers is a heuristic

borne out of the necessity of bootstrapping GROK without

access to the underlying data, without requiring developer

effort, and in an environment where variable names, while

comprehensible to humans, are not standardized; nevertheless

it is a heuristic. Fortunately, a small set of patterns (3200)

curated manually in a one-time effort allows us to label tens

of millions of schema elements daily for which we would oth-

erwise have no information. Having bootstrapped the GROK,

we discuss in Section V how we reduce our dependence on

this bootstrapping approach using highly targeted developer

annotations going forward.

3) Program Analysis (Semantic): Next we leverage pro-

gram semantics to refine coarse-grained file nodes to a collec-

tion of column nodes for that file, and refine coarse-grained

job nodes to a sub-graph of nodes over the columns in the

sub-expressions in the job.

a) File to schema refinement: Given the language seman-

tics to read/write files into/from tables, we infer the columns

in the file from the column names in the table. By applying the

syntactic technique above on the column names, we ascribe

low-confidence DataType labels to these columns. We then

refine the file node in the catalog with the inferred columns,

and update the edges in the graph so there is an edge only

from the columns read to the job (or from the job to columns

written).

b) Job to expressions, expressions to columns refine-
ment: We refine a job node by including a node for each

expression in the job. We then refine each expression node

into a collection of columns, and analyze the source code

to identify the other columns that are used to compute the

current column and add the corresponding edges. We make

conservative assumptions for UDFs — we conservatively add

edges from all inputs to the output. The sub-graph representing

the job reflects a conservative data flow through all columns

in all sub-expressions in the job.

This refinement step is illustrated in Fig. 8. The file nodes

have been replaced with multiple column nodes, and the job

node has been replaced with a sub-graph of columns in the

three expressions (from Fig. 6). The edges track data from

which column (file or expression) flows into which column.

Finally, we apply the syntactic analysis for each column to

label it with low confidence DataType attribute values.

Note that output columns from one job is another job’s

input columns. Thus, this semantic analysis step allows us

to construct a complete data flow graph at the granularity of

columns that tracks the flow of all data across all jobs and all

files in the big data system.

E. Data Flow Analysis
Next, we perform data flow analysis over the entire graph.

We do this by copying the DataType attribute on one node

to all nodes that data flows to (as long as the destination

doesn’t already have a higher confidence attribute). If the

destination already has an attribute with the same confidence

value, we replace it with the lattice join of the two attributes.

If the data flow is through a UDF, we look for patterns in the

UDF name to infer if the UDF modifies the typestate of the

policy datatype (e.g., the UDF Encrypt(...) converts an input

IPAddress to IPAddress:Encrypted); if a typestate transition is

performed we force the confidence value to low.

Assuming our initial labels are correct, we compute the

attributes along any path conservatively. Therefore, after the

the data flow analysis, we know that if an input column with

policy datatype attribute t, and confidence c interferes in state

s with an output column with DataType attribute t′:s′ and

confidence less than c, then we must have that t:s ≤ t′:s′ in

the DataType lattice.

Fortunately, the restrictive programming model helps us

side-step the most common problem with information flow

analysis where everything quickly gets saturated. Recall that

data flows in Scope are very restricted (no global state or

data driven loops) and UDFs are allowed in very specific

settings and confined to operate only on the input columns and

their results captured only in the output column. As a result,

even with conservative treatment of UDFs (where all inputs

flow to all outputs), DataType labels do not get saturated.

Furthermore, the limited verification step below allows us to

add high confidence labels at key points that limit the low
confidence data flows, thus further containing the saturation

effect.

F. Verifying Labels
While the approaches above give us high coverage for

DataType attributes, they are all with low confidence due to

the heuristics involved. Contacting the developer who wrote

a piece of code for ultimate verification is usually a time-

consuming process. Using the following greedy algorithm,

we use GROK to minimize the number of developers we

need to contact for verification. For each low confidence

connected component in the data dependency graph where the

syntactic analysis labeled at least one column, we identify

all source code files (including shared code modules) that

contributed a column node to that connected component. We

then invert the mapping to determine the aggregate size of

connected components a given source code file contributed



Fig. 8. Fine-grained labeled data flow graph nodes for Fig. 6.

columns to. We then contact the author of the highest-ranked

source code file, verify and update the DataType attributes

with high confidence and use the data flow analysis to label

the connected components. We then repeat the process for the

remaining low confidence connected components until we hit

diminishing returns. We show during validation (Section VI)

that by contacting only 12 developer teams and having them

verify, on average, 18 nodes each we are able to attribute high

confidence DataType labels to 60% of the data dependency

graph (28 million nodes daily).

V. PRAXIS

We describe in this section our implementation of

LEGALEASE and GROK, and lessons learned from deployment

of our tool in practice.

A. Implementation

GROK: Is implemented as two components: a massively-

parallel standalone static semantic analyzer for the Scope

language, and a massively-scalable data flow analyzer. Both

components run on the big data system itself. The semantic

analyzer processes individual jobs from the cluster log into

the nodes and edges in the data dependency graph without

any attributes. This component is stateless, and executed in a

massively parallel manner processing tens of thousands of jobs

per minute (we present scalability numbers in the validation

section). The second component collates all the graph nodes

(for any arbitrary number of days past) at the granularity

desired for checking the privacy policy, performs syntactic

analysis and conservative data flow analysis over the entire

graph, and outputs graph nodes augmented with the DataType
and other attributes. The two components together comprise

6143 lines of C# code, 988 lines of Scope code, and take as

input a 3203 line configuration file that contains the regular

expression patterns used for the syntactic analysis phase, and

the manual verification results from prior runs.

LEGALEASE: The policy checker is implemented in 652

lines of C# code, takes as input the LEGALEASE privacy

policy specification (Table V), evaluates it over GROK’s out-

put, and outputs a ranked list of graph nodes for subsequent

manual verification. The output is ranked based on the GROK

confidence values for the labels that resulted in the violation.

B. Experience and Lessons Learned

We discuss three lessons we learned during the process of

bootstrapping the complete system. First, defining patterns for

syntactic analysis, while laborious, has a tremendous payoff.

Second, our light-weight solution to checking simple temporal

properties like data retention. And third, our solution to min-

imizing the verification effort through developer annotations.

a) Defining patterns for syntactic analysis: To define

patterns for syntactic analysis, we manually analyzed around

150K unique column and variable names (from a day’s worth

of jobs). We identified on the order of 40 regular expressions

for roughly as many lattice elements for policy datatypes

(e.g., %email% for columns that might contain an Email),
and on the order of 400 exact matches based on domain

knowledge. We found that these regular expressions had some

false-positives, for instance, labeling the column emailRe-
sponseRate, a floating-point value, as an email address. We

enforced type restrictions (available during semantic analysis).

While this helped reduce false-positives, it did not eliminate

them (e.g., column emailProvider , which is a string). We

manually examined the column names to identify obvious

false-positives, and defined a set of around 2500 negative exact

matches (across all policy datatypes). Finally, during the first



manual verification we found cases where the inference was

correct (i.e., the column entityEmail did indeed have email),

but that they were for business listing in publicly crawlable

web data (and that the team followed a naming convention).

We added such conventions we discovered through developer

interactions to the set of negative patterns. Thus in our current

deployment, a column is labeled Email if it matches any

positive pattern or exact match defined for email, and does

not match any negative pattern or negative exact match.

Overall this process was laborious, taking one person one

full week to construct the GROK configuration file. Having

spent that one-time effort, however, the 3203 lines in the

configuration file today label with high precision (based on

verifying a random sample) on the order of millions of graph

nodes daily.

b) Retention and limited temporal properties: While

the big data system offers developers three mechanisms for

ensuring that data is deleted after the retention period elapses,

the underlying log data on which GROK is built gives us

visibility into developers using only one of those mechanisms.

For coverage, we use the data dependency graph to trace back

the origin of any piece of data and when it was first seen

in GROK. We automatically compute the day when that data

should be deleted, subtract a two week buffer, and update

GROK setting the typestate to :Expired; any subsequent use

of this near-expiry data is output as a verification task item.

Labelling data with :Expired allows the audit team to identify

teams using data that is near-expiry and ensure that the teams

are using one of the other two mechanisms to delete the data

on time.

c) Reducing verification time through developer code
annotations: Our current bottleneck is auditor bandwidth since

following up with (even a small number of) developers is time-

consuming. Instead of a manual audit process, we are currently

piloting code annotations that a small number of developers

can add (proactively) to disambiguate the policy datatypes they

access.

VI. VALIDATION

We experimentally validate our approach along two axes:

first, the scalability and coverage of the GROK data inven-

tory, and second, the usability and expressiveness of the

LEGALEASE language.

A. Scale
Fig. 9 shows the number of new nodes added to the GROK

each day over a 100 day period for our operational system.

On average, we process over 77 thousand jobs each day,

submitted by over 7 thousand entities in over 300 functional

units. We process daily, on average, 1.1 million unique lines

of code (including generated code), 21% of which changes (on

average) on a day-to-day basis, covering 46 million dynamic

table schemas. These jobs process tables persisted to 32

million files. Building the fine-grained column-level GROK

data dependency graph takes, on average, 20 minutes daily

on our production cluster. Performing data flow analysis over
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Fig. 10. Coverage of labeling by successive phases of GROK bootstrapping.

all data use on the cluster in a four week period takes 10

minutes.

Note that this last number, 10 minutes, is the time it

takes the system to take an unlabeled data dependency graph

over the past several weeks, label it with attributes based

on syntactic analysis and past verification, perform data flow

analysis, and evaluate the configured policy over historical

data. This quick turnaround allows us to perform rapid what-
if analysis for proposed policy changes; a capability that is

unattainable with manual reviews and audits that operate at

the time-scale of months.

B. Coverage
We seek to understand the overall coverage of accurate

DataType labels in GROK. The overall coverage depends on

the coverage of the bootstrap syntactic analysis, improvements

we get from data flow analysis, and boost in coverage and

confidence values we get from manual verification. Fig. 10

plots how data flow analysis, and targeted manual verification

improve the GROK coverage relative to the baseline.

We establish a baseline by simulating a syntactic analysis

with varying degrees of coverage on our real-world data

dependency graph. Specifically, we first pick x% of all unique
column names uniformly at random, and flag them in our

simulation as correctly labeled. We note first that a linear

baseline is not a trivial result since the overall graph nodes

labeled correctly is a function of the popularity of column
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Fig. 11. Summary of the Usability Survey

names. There is no knee or shoulder that would imply a sweet-

spot for the coverage vs. effort trade-off in syntactic analysis.

Improvements in coverage of accurate labels in syntactic

analysis translate linearly to overall improvement.

The overall coverage is improved using data flow analysis.

This improvement is because correctly labeling a node in a

connected component allows the entire connected component

to be labeled. The dataflow line in Fig. 10 shows overall

coverage as a function of connected components, ordered by

size, that are labeled correctly using syntactic analysis and

then the label flowed using data flow analysis. We find that

by focusing on only 10% of the top connected components,

we can boost overall coverage to 50%. However, we observe

that labeling more connected components leads to diminishing

returns.

The biggest improvement to overall coverage comes from

limited manual verification. As mentioned, we analyze jobs to

identify columns in sub-expressions in shared code modules

that, if verified, allow us to flow the labels most broadly. The

verification line in Fig. 10 shows that manual verification of

only 0.2% of code modules (maintained by 12 teams) and

adding code annotations to 182 lines of source code (out

of several millions), combined with data flow and syntactic

analysis, increases overall coverage of accurate DataType
labels to 60%.

C. Usability
To develop a preliminary understanding of the ability for

non-technical subject matter experts in privacy to understand

and use the LEGALEASE language, we conducted an online

survey targeting privacy champions in Microsoft. In the survey,

we described the LEGALEASE language and asked participants

to encode clauses of a privacy policy that we found online.

Survey design: We provided a 1-page definition of

LEGALEASE terms, example clauses, and lattice elements

(Fig. 11a); this single page of text and tables was our sole

training tool2. After reading through the training informa-

tion, participants were presented with 9 policy clauses to

encode. The clauses increased in complexity as they pro-

gressed through the survey. For each question, participants

were provided with a set of lattice elements to choose from

2Particpants had the ability to open the page of training information in a
new window while completing the encoding tasks.

(so that participants would not be required to memorize the

lattice presented on the training page), and a text box to type

in the LEGALEASE policy clause.

Participants: Participants (n = 12) were recruited via a

company mailing list and were not provided with compensa-

tion. They were primarily privacy champions who had been

in their position from 2 weeks to over 6 years. As shown

in Fig. 11b, in general, based on their ratings of how much

coding experience they had ranging from “No experience

at all” (1) to “Expert” (5), they were not experienced in

coding (mean 2.25)3. As privacy champions, they did have

more experience reading privacy policies (mean 3.83)4, and

were neither experienced nor inexperiened in writing privacy

policies (mean 3.17)5 on the same scale. After the coding

tasks, participants were neutral about the difficulty of the task

(mean 3.17)6 on the scale of "Very Difficult” (1) to "Very

Easy” (5).

Results: After reading the training information (the average

time spent on the tutorial page was 2.4 minutes), the majority

of participants were able to code each policy clause with the

correct answer (see Fig. 11c for a question by question break-

down of correctness, ranging from “Incorrect” (1) to “Correct”

(5).) The overall correctness rating for all participants was 4.65
(standard deviation 0.48). The time spent on encoding clauses

was 14.3 minutes on average. Overall, our sample of privacy

champions was able to use LEGALEASE to code policy clauses

at a high level of correctness with very little training in a short

amount of time.

D. Expressiveness

To demonstrate the expressiveness of LEGALEASE, We

now present a complete encoding of externally-visible privacy

policies7 of Google and Bing that applies to data storage and

use. We also demonstrate the LEGALEASE goal of usability

through 1-1 correspondence with the English policy clauses

by presenting a side-by-side view (Tables V and VI).

Note that the policies in Table V were part of the survey

above. The LEGALEASE clauses for them are the actual (ma-

3M=2.25, t(11)=3, p=0.01, as compared to the midpoint in a one-sample t-test
4M=3.83, t(11)=2.59, p=0.03, as compared to the midpoint in a one-sample t-test
5M=3.17, t(11)=0.39, p=0.7, as compared to the midpoint in a one-sample t-test
6M=3.17, t(11)=0.56, p=0.59, as compared to the midpoint in a one-sample t-test
7As of 14th October 2013



ALLOW
EXCEPT

DENY DataType IPaddress:Expired ⊳ “we remove the entirety of the IP address after 6 months”

DENY DataType UniqueIdentifier:Expired ⊳ “[we remove] cookies and other cross session identifiers, after 18 months”

DENY DataType SearchQuery, PII InStore Store
DENY DataType UniqueIdentifier, PII InStore Store

⊳ “We store search terms (and the cookie IDs associated with search terms)

separately from any account information that directly identifies the user, such

as name, e-mail address, or phone numbers.”

DENY DataType BBEPData UseForPurpose Advertising ⊳ “we do not use any of the information collected through the Bing Bar

Experience Improvement Program to identify, contact or target advertising to

you”

DENY DataType BBEPData, PII InStore Store ⊳ “we take steps to store [information collected through the Bing Bar

Experience Improvement Program] separately from any account information

we may have that directly identifies you, such as name, e-mail address, or

phone numbers”

DENY DataType BBEPData:Expired ⊳ “we delete the information collected through the Bing Bar Experience

Program at eighteen months.”

DENY DataType UserProfile, PII InStore Store ⊳ “we store page views, clicks and search terms used for ad targeting separately

from contact information you may have provided or other data that directly

identifies you (such as your name, e-mail address, etc.).”

DENY DataType PII UseForPurpose Advertising
DENY DataType PII InStore AdStore

⊳ “our advertising systems do not contain or use any information that can

personally and directly identify you (such as your name, email address and

phone number).”

DENY DataType SearchQuery UseForPurpose Sharing
EXCEPT

ALLOW DataType SearchQuery:Scrubbed

⊳ “Before we [share some search query data], we remove all unique identifiers

such as IP addresses and cookie IDs from the data.”

TABLE V
AN ENCODING OF PRIVACY PROMISES BY BING AS OF OCTOBER 2013

ALLOW
EXCEPT

DENY DataType PII UseForPurpose Sharing ⊳ “We do not share personal information with companies, organiza-

tions and individuals outside of Google unless one of the following

circumstances apply:”

EXCEPT
ALLOW DataType PII:OptIn

⊳ “We require opt-in consent for the sharing of any sensitive

personal information.”

EXCEPT
ALLOW AccessByRole Affiliates

⊳ “We provide personal information to our affiliates or other trusted

businesses or persons to process it for us”

EXCEPT
ALLOW UseForPurpose Legal

⊳ “We will share personal information [if necessary to] meet any

applicable law, regulation, legal process or enforceable governmen-

tal request.”

DENY DataType DoubleClickData, PII
EXCEPT

ALLOW DataType DoubleClickData, PII:Optin

⊳ “We will not combine DoubleClick cookie information with

personally identifiable information unless we have your opt-in

consent”

TABLE VI
AN ENCODING OF PRIVACY PROMISES BY GOOGLE AS OF OCTOBER 2013

jority) response provided by the surveyed privacy champions,

who are the intended target users of LEGALEASE.

VII. DISCUSSION

In this section we discuss some non-goals of LEGALEASE

and GROK, some limitations and mitigating factors.

Expressiveness: LEGALEASE does not support expressing

policies based on first-order temporal-logic. It supports a

restricted form of temporal policies, implemented with help

from the GROK. LEGALEASE is intended as a bridge between

developers and policy makers in Web service companies like

Bing and its expressiveness is restricted to policy elements

encountered in practice that apply to the big data system. In

particular, policies such as those related to cookie management

and the use of secure communication channels are beyond the

scope of our analysis.

Inference of Sensitive Data: Sensitive data can often be

inferred from non-sensitive data [21], [22]. Unless explicitly

labeled, GROK cannot detect such inferences. A careful choice

of the DataType lattice may help reduce some of these risks

by classifying together data that can be reasonably inferred

from each other.

Precision: The information flow analysis in GROK is con-

servative, but not necessarily precise. A major source of im-

precision is our overly conservative treatment of user defined

functions. In the future, we hope to leverage static code

analysis of C# user defined functions in the flavor of [23],

[24] to make GROK more precise.

False Negatives: The semantics of LEGALEASE are precise

and the information flow analysis in GROK is conservative.

Therefore, bootstrapping that leads to more coverage of the

graph with labels, would generally imply a reduction in

false positives. However, due to the lack of ground truth for

labels, we are unable to characterize the exact nature of false

negatives in our system.

Assurance: Our system provides weak guarantees in the face



of adversarial developer behavior such as incorrect annotations

and intentional flouting of naming conventions to mislead our

bootstrap analysis. However, we expect independent redundant

annotations in conjunction with the data flow analysis to sig-

nificantly enhance correctness and confidence of these labels

over time.

VIII. RELATED WORK

Recall that we focus on privacy policies that impose re-

strictions on how various types of personal information flow

amongst programs. There are two main lines of work that are

closely related to ours—information flow analysis of programs
and privacy policy enforcement over executions. Furthermore,

we also describe related work on usable policy languages.

a) Information flow analysis of programs: There has

been significant research activity in restricting information

flows in programs over the last three decades [25] and on

language-based methods that support these restrictions, in-

cluding languages like Jif [26], which augments Java with

information flow types, and Flow Caml, which augments

ML [27] (see [17] for a survey of these and other language-

based methods). These languages can enforce information

flow properties like non-interference with mostly static type

checking. Taking Jif as one example language, we note that

prior work has shown that Jif principals can be used to model

role-based [26] and purpose-based [28] restrictions on infor-

mation flow. Additionally, recognizing that non-interference

is too strong a requirement, the theory of relaxed non-

interference through declassification [29], [30], [31], allows

expressing policies that, for instance, do not allow disclosure

of individual ages, but allow the disclosure of average age.

This line of work also includes techniques for automated

inference of declassification policies [32], [33] with minimal

programmer annotations. While these ideas have parallels in

our work, there are also some significant differences. First, our

policy language LEGALEASE enables explicit specification of

policies separately from the code whereas in language-based

approaches like Jif the policies are either expressed implicitly

via typed interface specifications or explicitly via conditionals

on program variables. The separation of high-level policy spec-

ification from code is crucial in our setting since we want the

first task to be accessible to privacy champions and lawyers.

Second, since our goal is to bootstrap compliance checking on

existing code, we do not assume that the code is annotated with

information flow labels. A central challenge (addressed by

GROK) is to bootstrap these labels without significant human

effort. Once the labels are in place, information flow analysis

for our restricted programming model is much simpler than it

is for more complex languages like Jif. Note that we (as well

as Hayati and Abadi [28]) assume that programs are correctly

annotated with their purposes. A semantic definition of what it

means for an agent (a program or human) to use information

for a purpose is an orthogonal challenge, addressed in part in

other work [34].

b) Privacy policy enforcement over executions: A second

line of work checks executions of systems (i.e., traces of

actions produced by programs or humans) for compliance

with privacy policies that restrict how personal information

may flow or be used. This line of work includes auditing,

run-time monitoring, and logic programming methods for

expressive fragments of first-order logic and first-order tem-

poral logics [12], [35], [36], [37] applied to practical policies

from healthcare, finance and other sectors. These results are

different from ours in two ways. First, their language of

restrictions on information flow is more expressive than ours—

they can encode role-based and purpose-based restrictions

much like we do, but can express a much larger class of

temporal restrictions than we can in LEGALEASE with our

limited typestates on data. Second, since their enforcement

engines only have access to executions and not the code of

programs, they can only check for direct flows of information

and not non-interference-like properties. Such code analysis is

also a point of difference from enforcement using reference

monitors of access control and privacy policy languages—

an area in which there is a large body of work, including

languages such as XACML [38] and EPAL [39].

c) Usable policy languages: To author policy statements,

several interfaces and tools have been tested for their usability.

Rarely have the raw languages been evaluated on their own

for ease of use without some kind of UI-based authoring tool.

Thus, a direct comparison with our work is difficult. Never-

theless, we mention three efforts along these lines since our

goals are similar to theirs. The Expandable Grids interface was

used to test the ability for people to author P3P policies (P3P

(Platform for Privacy Preferences) is the W3C standard for

creating XML-based machine-readable privacy policies). An

empirical study found that Expadable Grids did not improve

the usability beyond users’ abilities to express policies using

natural language statements [40]. Another example is SPAR-

CLE [41], a web-based policy authoring tool that generates

XML based on the users’ selection of user categories, actions,

data categories, purposes, and conditions based on natural

language policy clauses, with promising usability results. We

view the need for authoring tools such as SPARCLE as being

complementary to a language that can be used by policy

authors, as such automated translation tools usually entail

inaccuracies, and therefore, need to be validated. In a language

such as LEGALEASE, one can hope that the translation is

verified by the authors themselves.

IX. CONCLUSION

In this paper, we demonstrate a collection of techniques

to transition to automated privacy compliance compliance

checking in big data systems. To this end we designed the

LEGALEASE language, instantiated for stating privacy policies

as a form of restrictions on information flows, and the GROK

data inventory that maps low level data types in code to high-

level policy concepts. We show that LEGALEASE is usable

by non-technical privacy champions through a user study.

We show that LEGALEASE is expressive enough to capture

real-world privacy policies with purpose, role, and storage

restrictions with some limited temporal properties, in particular



that of Bing and Google. To build the GROK data flow graph

we leveraged past work in program analysis and data flow

analysis. We demonstrate how to bootstrap labeling the graph

with LEGALEASE policy datatypes at massive scale. We note

that the structure of the graph allows a small number of

annotations to cover a large fraction of the graph. We report

on our experiences and learnings from operating the system

for over a year in Bing.
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