
Inductive Proofs of Computational Secrecy ?

Arnab Roy1, Anupam Datta2, Ante Derek1, John C. Mitchell1

1 Stanford University, Stanford, CA
{arnab, aderek, mitchell}@cs.stanford.edu
2 Carnegie Mellon University, Pittsburgh, PA

danupam@cmu.edu

Abstract. Secrecy properties of network protocols assert that no proba-
bilistic polynomial-time distinguisher can win a suitable game presented
by a challenger. Because such properties are not determined by trace-
by-trace behavior of the protocol, we establish a trace-based protocol
condition, suitable for inductive proofs, that guarantees a generic reduc-
tion from protocol attacks to attacks on underlying primitives. We use
this condition to present a compositional inductive proof system for se-
crecy, and illustrate the system by giving a modular, formal proof of
computational authentication and secrecy properties of Kerberos V5.

1 Introduction

Present-day Internet users and networked enterprises rely on key management
and related protocols that use cryptographic primitives. In spite of the staggering
financial value of, say, the total number of credit card numbers transmitted by
SSL/TLS in a day, we do not have correctness proofs that respect cryptographic
notions of security for many of these relatively simple distributed programs. In
light of this challenge, there have been many efforts to develop and use methods
for proving security properties of network protocols. Historically, most efforts
used an abstract symbolic model, also referred to as the Dolev-Yao model [26,
20]. More recently, in part to draw stronger conclusions from existing methods
and proofs, several groups of researchers have taken steps to connect the sym-
bolic model to probabilistic polynomial-time computational models accepted in
cryptographic studies, e.g. [2, 6, 8, 13, 27, 17, 18, 32].

A fundamental problem in reasoning about secrecy, such as computational
indistinguishability of a key from a randomly chosen value, is that such secrecy
properties are not trace properties – indistinguishability over a set of possible
runs is not defined by summing the probability of indistinguishability on each
run. As a result, it does not appear feasible to prove computational secrecy
properties by induction on the steps of a protocol. A central contribution of this
paper is a form of trace-based property, called secretive, suitable for inductive
? This work was partially supported by the NSF Science and Technology Center

TRUST and U.S. Army Research Office contract on Perpetually Available and Se-
cure Information Systems (DAAD19-02-1-0389) to CMU’s CyLab. The first author
was additionally supported by a Siebel Fellowship.

and compositional proofs, together with a form of standard cryptographic re-
duction argument which shows that any attack on a secretive protocol yields
an attack on cryptographic primitives used in the protocol. We give the cryp-
tographic reduction in a precise form, by inductively defining the operational
behavior of a simulator that simulates the protocol to the protocol adversary.
An essential problem in defining the simulator, which interacts with a game
providing access to the cryptographic primitives, is that the simulator has two
candidate secrets, but must present a view of the protocol that is consistent with
either candidate being the actual protocol secret.

After proving that secretive protocols yield black-box reductions, we present
one inductive method for showing that a protocol is secretive, based on Computa-
tional Protocol Composition Logic (CPCL) [17, 18]. In the process, we generalize
a previous induction rule, so that only one core induction principle is needed in
the logic. In contrast to proof systems for symbolic secrecy [28, 31], the induction
is over actions of honest parties and not the structure of terms. We also extend
previous composition theorems [16, 21] to the present setting, and illustrate the
power of the resulting system by giving modular formal proofs of authentica-
tion and secrecy properties of Kerberos V5 and Kerberos V5 with PKINIT. We
are also able to prove properties of a variant of the Needham-Schroeder-Lowe
protocol that are beyond the standard rank function method [22, 19].

Our approach may be compared with equivalence-based methods [6, 27, 14,
5], used in [3] to derive some computational properties of Kerberos V5 from a
symbolic proof. In equivalence-based methods, the behavior of a symbolic ab-
straction under symbolic attack must have the same observable behavior as a
computational execution under computational (probabilistic polynomial-time)
attack. In contrast, our approach only requires an implication between symbolic
reasoning and computational execution. While we believe that both approaches
have merit, the two are distinguished by (i) the need to additionally prove the
absence of a “commitment problem” in [3], which appears to be a fundamen-
tal issue in equivalence-based security [15], and (ii) the open problem expressed
in [3] of developing compositional methods in that framework. Symbolic ab-
stractions for primitives like Diffie-Hellman key exchange are also problematic
for equivalence-based approaches [4, 7], but amenable to treatment in PCL. In
contrast to other symbolic or computationally sound methods, PCL reasoning
proceeds only over action sequences of the protocol program, yet the conclu-
sions are sound for protocol execution in the presence of attack. This formalizes
and justifies a direct reasoning method that is commonly used informally among
researchers, yet is otherwise not rigorously connected to reduction arguments.

Section 2 describes the protocol process calculus and computational execution
model. A trace-based definition of “secretive protocols” and relevant computa-
tional notions are explained in section 3. The proof system, and soundness and
composition theorems are presented in section 4, and applied in the proofs for
Kerberos in section 5. Conclusions appear in section 6. Many of the proofs and
technical details in this paper are omitted due to space constraints—interested
readers can find them in the full version of this paper [29].

2

2 Syntax and Semantics

We begin by reviewing a protocol notation, protocol logic, and a security model
for key exchange developed in earlier work [16–18].

Modeling Protocols. Protocols are expressed in a process calculus by defining
a set of roles, such as “Client”, or “Server”, each given by a sequence of actions
such as sending or receiving a message, generating a new nonce, or decrypting or
encrypting a message (see [16]). In a run of a protocol, a principal may execute
one or more instances of each role, each execution constituting a thread identified
by a pair (X̂, η), where X̂ is a principal and η is a unique session identifier.

We illustrate the protocol process calculus using Kerberos V5 [25], which will
be the running example in this paper. Our formulation is based on the A level
formalization of Kerberos V5 in [12]. Kerberos provides mutual authentication
and establishes keys between clients and application servers, using a sequence of
two-message interactions with trusted parties called the Kerberos Authentication
Server (KAS) and the Ticket Granting Server (TGS).

Kerberos has four roles, Client, KAS, TGS and Server. The pre-shared
long-term keys between the client and KAS, the KAS and TGS, and the TGS
and application server, will be written as ktype

X,Y where X and Y are the principals
sharing the key. The type appearing in the superscript indicates the relationship
between X and Y : c → k indicates that X is acting as a client and Y is acting
as a KAS, t→ k for TGS and KAS and s→ t for application server and TGS.

Client = (C, K̂, T̂ , Ŝ, t) [

new n1;

send Ĉ.T̂ .n1;

receive Ĉ.tgt.enckc;

textkc := symdec enckc, k
c→k
C,K ;

match textkc as AKey.n1.T̂ ;

· · · · · ·

KAS = (K) [

receive Ĉ.T̂ .n1;

new AKey;

tgt := symenc AKey.Ĉ, kt→k
T,K ;

enckc := symenc AKey.n1.T̂ , kc→k
C,K ;

send Ĉ.tgt.enckc;

]K

In the first stage, the client (C) generates a nonce (represented by new n1)
and sends it to the KAS (K) along with the identities of the TGS (T) and itself.
The KAS generates a new nonce (AKey - Authentication Key) to be used as a
session key between the client and the TGS. It then sends this key along with
some other fields to the client encrypted (represented by the symenc actions)
under two different keys - one it shares with the client (kc→k

C,K) and one it shares
with the TGS (kt→k

T,K). The encryption with kt→k
T,K is called the ticket granting

ticket (tgt). The client extracts AKey by decrypting the component encrypted
with kc→k

C,K and recovering its parts using the match action which deconstructs
textkc and associates the parts of this plaintext with AKey, n1, and T̂ . The
ellipses (. . .) indicates further client steps for interacting with KAS, TGS, and
the application server that are omitted due to space constraints (see [31] for a
full description).

3

Action Predicates:
a ::= Send(X, t) |Receive(X, t) |SymEnc(X, t, k) |SymDec(X, t, k) |New(X, n)
Formulas:

ϕ ::= a | t = t |Start(X) |Honest(X̂) |Possess(X, t) | Indist(X, t) |
GoodKeyAgainst(X, t) |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃V. ϕ | ∀V. ϕ | ¬ϕ |ϕ ⊃ ϕ |ϕ ⇒ ϕ

Modal formulas:
Ψ ::= ϕ [Actions]X ϕ

Table 1. Syntax of the logic

In the second stage, the client gets a new session key (SKey - Service Key)
and a service ticket (st) to converse with the application server S which takes
place in the third stage. The control flow of Kerberos exhibits a staged archi-
tecture where once one stage has been completed successfully, the subsequent
stages can be performed multiple times or aborted and started over for handling
errors.

Execution Model. We use a standard two-phase protocol execution model as
in [11]. In the initialization phase, we assign roles to each principal, identify a
subset that is honest, and provide encryption keys and random coins as needed.
In the execution phase, the adversary executes the protocol by interacting with
honest principals. We assume the adversary has complete control over the net-
work, as in [11]. The length of keys and the running time of the protocol are
polynomially bounded in the security parameter.

A trace is a record of all actions executed by honest principals and the at-
tacker during protocol execution. Since honest principals execute roles defined
by a symbolic process calculus, our traces contain symbolic descriptions of the
actions of honest parties and a mapping of symbolic variables to bitstrings val-
ues. The attacker may produce and send arbitrary bitstrings, but the trace only
records the send-receive actions of the attacker, and not its internal actions. Our
traces also include the random bits (used by the honest parties, the adversary
and the distinguisher), as well as a few other elements used in defining seman-
tics of formulas over traces [17]. In section 3, which presents semantic arguments
independent of the protocol logic, we omit these additional fields and refer to a
trace as 〈e, λ〉, where e is a symbolic description of the trace and λ maps terms
in e to bitstrings.

For technical reasons, we assume that honest parties conform to certain type
conventions. These restrictions may be imposed by prefixing the values of each
type (nonces, ids, constant strings, pairs, encryptions with key k, etc.) with a
tag such as ‘constant’ or ‘encrypted with key k’ that are respected by honest
parties executing protocol roles. The adversary may freely modify or spoof tags
or produce arbitrary untagged bitrings.

Syntax of Computational PCL. The formulas of the logic are given in Table
1. Protocol proofs usually use modal formulas of the form ψ[P]Xϕ. The informal
reading of the modal formula is that if X starts from a state in which ψ holds,
and executes the program P , then in the resulting state the security property ϕ
is guaranteed to hold irrespective of the actions of an attacker and other honest

4

principals. Many protocol properties are naturally expressible in this form. Most
formulas have the same intuitive meaning as in the symbolic model [16].

For every protocol action, there is a corresponding action predicate which
asserts that the action has occurred in the run. For example, Send(X, t) holds in
a run where the thread X has sent the term t. Honest(X̂) means that the prin-
cipal X̂ is acting honestly, i.e., the actions of every thread of X̂ precisely follows
some role of the protocol. Start(X) means that the thread X did not execute
any actions in the past. Indist(X, t) means that agent X cannot tell the bitstring
representation of the term t from another bitstring chosen at random from the
same distribution. The logical connectives have standard interpretations, except
that conditional implication (⇒), related to a form of conditional probability, ap-
pears essential for reasoning about cryptographic reductions (see [17] for further
discussion).

Semantics of Computational PCL. Intuitively, a protocol Q satisfies a for-
mula ϕ, written Q |= ϕ if for all adversaries and sufficiently large security pa-
rameters, the probability that ϕ “holds” is asymptotically close to 1 (in the
security parameter). Intuitively, the meaning of a formula ϕ on a set T of com-
putational traces is usually a subset T ′ ⊆ T that respects ϕ in some specific
way. For example, an action predicate such as Send selects a set of traces in
which a send occurs. More precisely, the semantics JϕK (T,D, ε) of a formula ϕ
is inductively defined on the set T of traces, with distinguisher D and tolerance
ε. The distinguisher and tolerance are only used in the semantics of Indist and
GoodKeyAgainst, where they determine whether the distinguisher has more than
a negligible chance of distinguishing the given value from random or winning
an IND-CCA game, respectively. The precise inductive semantics for formulas is
given in [17].

The semantics of the predicate GoodKeyAgainst(X, k) is defined using a stan-
dard cryptographic-style game condition. It captures the intuition that a key
output by a secure key exchange protocol should be suitable for use in some
application protocol of interest (e.g. as a key for an IND-CCA secure encryp-
tion scheme) [18]. Formally, JGoodKeyAgainst(X, k)K(T,D, ε) is the complete set
of traces T if the distinguisher D, who is given X’s view of the run has an
advantage less than ε in winning the IND-CCA game [9] against a challenger
using the bitstring corresponding to term k as the key, and ∅ otherwise. Here
the probability is taken by choosing a uniformly random trace t ∈ T (which
includes the randomness of all parties, the attacker and the distinguisher). The
same approach can be used to define other game conditions.

A trace property is a formula ϕ such that for any set of protocol traces T ,
JϕK (T) =

⋃
t∈T JϕK ({t}). The distinguisher and tolerance are omitted since they

are not used in defining semantics for such predicates. Thus all action formulas,
such as Send(X,m), are trace properties whereas aggregrate properties such as
Indist(X, k) and GoodKeyAgainst (X, k) are not.

5

3 Secretive Protocols

In this section, we define a trace property of protocols and show that this prop-
erty implies computational secrecy and integrity. The computational secrecy
properties include key indistinguishability and key usability for IND-CCA se-
cure encryption. These results are established first for the simple case when
secrets are protected by pre-shared “level-0” keys (Theorem 1), then generalized
(Theorems 2-3) under the condition that each key is protected by predecessor
keys in an acyclic graph3. The proofs use standard cryptographic reductions.

Let s and K be the symbolic representations of a nonce and a set of keys
associated with a specific thread in a trace 〈e, λ〉. Define Λ(K) to be the set of
bitstrings corresponding to the keys in K, i.e., {λ(k) | k ∈ K}.

Definition 1 (Secretive Trace). A trace 〈e, λ〉 is a secretive trace with respect
to s and K if the following properties hold for every thread belonging to honest
principals:

– a thread which generates a new nonce r in e, with λ(r) = λ(s), ensures that
r is encrypted with a key k with bitstring representation λ(k) ∈ Λ(K) in any
message sent out.

– whenever a thread decrypts a message with a key k with λ(k) ∈ Λ(K), which
was produced by encryption with key k by an honest party, and parses the
decryption, it ensures that the results are encrypted with some key k′ with
λ(k′) ∈ Λ(K) in any message sent out.

To lift this definition of secretive traces to secretive protocols we need a way
to identify the symbol s and the set of symbols K in each protocol execution
trace. We do this by assuming functions s̄ and K̄ that map a trace to symbols in
the trace corresponding to s and the set of keys in K respectively. In applications,
these mappings will be given by the semantics of logical formulas.

Definition 2 (Secretive Protocol). Given the mappings s̄ and K̄, a protocol
Q is a secretive protocol with respect to s and K if for all probabilistic poly-time
adversaries A and for all sufficiently large security parameters η, the probability
that a trace t, generated by the interaction of A with principals following roles
of Q, is a secretive trace with respect to s̄(t) and K̄(t) is overwhelmingly close
to 1, the probability being taken over all adversary and protocol randomness.

In proving properties of secretive protocols, we focus on the subset of proto-
col traces that are secretive. Adversary advantages retain the same asymptotic
behavior over this set because non-secretive traces are a negligible fraction of all
traces.

The general structure of the proofs of the secrecy theorems is by reduc-
tion of the appropriate protocol secrecy game to a multi-party IND-CCA game:
given protocol adversary A, we construct an adversary A′ against a multi-party
IND-CCA challenger which provides |K|-party Left-or-Right encryption oracles
3 Some of the results here were presented in the informal WITS’07 [30] workshop.

6

Eki
(LoR (·, ·, b)) parameterized by a challenge bit b and decryption oracles Dki

(·)
for all ki ∈ K (Following [9], LoR(m0,m1, b) is a function which returns mb).
We use multi-party security definitions due to Bellare, Boldyreva and Micali [9]
applied to symmetric encryption schemes. 4

The strategy of A′ is to provide a simulation of the secretive protocol to A by
using these oracles such that the capability of A to break the indistinguishability
or key usability of the nonce can be leveraged in some way to guess the challenge
bit b of the multi-party IND-CCA challenger. To this end, A′ employs a bilateral
simulator S which randomly chooses two bit-strings s0, s1 as alternate represen-
tations of the putative secret s and then simulates execution of the protocol to
the protocol adversary A for both the representations.

As with the execution of the actual protocol, S receives messages and schedul-
ing information from A and acts according to the roles of the given protocol.
The difference from a normal protocol execution is that in computing bitstring
representations of terms that involve s, S does so for both representations of
s. We will show that for secretive protocols the representation of s that A sees
is determined by the challenge bit b of the CCA challenger. The operational
semantics of the bilateral simulator is formally described in the full version of
[30]. We explain the form of the definition using an example.

. m′ . m′′ m := pair m′, m′′;

. m, lv(m) = pair(lv(m′), lv(m′′)), rv(m) = pair(rv(m′), rv(m′′))

The notation . m means that the symbol m has been computationally evaluated
according to the semantics. The premise of the rule requires that the symbols
m and m′ have already been evaluated and we are considering the action m :=
pair m′,m′′ in some thread. The functions lv and rv map a symbol to its bit-
string values corresponding to the representations s0 and s1 of s respectively.
The function pair is the actual computational implementation of pairing. The
conclusion of the rule states that lv(m) is evaluated by pairing the bit-strings
lv(m′) and lv(m′′) and similarly for rv(m). In simulating the protocol to the
protocol adversary, the simulator executes each action of the currently scheduled
thread following this definition.

Suppose m is a term explicitly constructed from s. As S is simulating a
secretive protocol, this term is to be encrypted with a key k in K to construct
a message to be sent out to A. So, S asks the encryption oracle of the |K|-
IND-CCA challenger to encrypt (lv(m), rv(m)) with k. In addition, this pair
of bitstrings is recorded and the result of the query is logged in the set qdbk.
If a message construction involves decryption with a key in K, S first checks
whether the term to be decrypted was produced by an encryption oracle by
accessing the log qdbk—if not, then the decryption oracle is invoked; if yes, then
S uses the corresponding encryption query as the decryption. In the second
case the encryption query must have been of the form (m0,m1). Following the
definition of secretive protocol, terms constructed from this decryption will be
re-encrypted with a key in K before sending out. Thus we note here that all
4 In [9], IND-CCA2 security and multi-party IND-CCA security are shown to be as-

ymptotically equivalent.

7

such replies will be consistent to A with respect to any choice of b. The situation
becomes trickier when encryption or decryption of a term is required with s as
the key. In this case S encrypts or decrypts with s0. We therefore always have
lv(m) = rv(m) for any message m being sent out.

One subtle issue arises when we consider term deconstructors such as un-
pairings, decryptions, and pattern matching actions: we need to ensure that
the success of such actions are independent of the challenge bit b The type
information carried by terms (mentioned in Section 2) ensures this consistency
in an overwhelming number of traces. The proofs proceed by induction over the
operational semantics of the simulator.

Theorem 1 (CCA security - level 1). Assume that a probabilistic poly-time
adversary interacts with a secretive protocol with respect to nonce s and a set of
level-0 keys K.

– Key indistinguishability: If s is not used as a key by the honest principals,
the adversary has negligible advantage at distinguishing s from random after
the interaction provided the encryption scheme is IND-CCA secure.

– Key usability: If the honest principals use s as a key, the adversary has negli-
gible advantage at winning an IND-CCA game against a symmetric encryp-
tion challenger using the key s after the interaction provided the encryption
scheme is IND-CCA secure.

A level-0 key for a protocol execution is an encryption key which is only
used as a key but never as a payload. We now extend Theorem 1 to directed key
hierarchies to reason about key distribution protocols such as Kerberos.

Let K be the symbolic representations of nonces and keys associated with a
specific thread in a trace 〈e, λ〉. The key graph of K in a protocol is a directed
graph with keys in K as vertices. There is an edge from key k1 to k2 if the
protocol is secretive with respect to k2 and a key set which includes k1. Consider
a directed acyclic key graph. Keys at the root are level 0 keys. The level of any
other key is one more than the maximum level among its immediate predecessors.
For a set of keys K from a directed acyclic key graph, we define its closure C(K)
to be the union of sets of keys at the root which are predecessors of each key in
K.

Theorem 2 (CCA security - Key DAGs). Assume that a probabilistic poly-
time adversary interacts with a secretive protocol with respect to nonce s and a
set of keys K in a DAG (Directed Acyclic Graph) of finite and statically bounded
level.

– Key indistinguishability: If s is not used as a key by the honest principals,
the adversary has negligible advantage at distinguishing s from random after
the interaction provided the encryption scheme is IND-CCA secure.

– Key usability: If the honest principals use s as a key, the adversary has negli-
gible advantage at winning an IND-CCA game against a symmetric encryp-
tion challenger using the key s after the interaction provided the encryption
scheme is IND-CCA secure.

8

The following theorem establishes the integrity of encryptions done with nonces
protected by key hierarchies. The security definition INT-CTXT for ciphertext
integrity is due to [10] and also referred to as existential unforgeability of cipher-
texts in [23].

Theorem 3 (CTXT integrity). Assume that a probabilistic poly-time adver-
sary interacts with a secretive protocol with respect to nonce s and a set of keys K
in a DAG of finite, statically bounded levels. During the protocol run, if an honest
principal decrypts a ciphertext with key s successfully, then with overwhelming
probability the ciphertext was produced by an honest principal by encryption with
s provided the encryption scheme is IND-CCA and INT-CTXT secure.

4 Proof System

In this section, we present a general induction rule, axiomatize the informal de-
finition of a secretive protocol given in Section 3 and formulate axioms stating
that secretive protocols guarantee certain computational properties. The sound-
ness proofs of these axioms are based on the theorems in Section 3.

4.1 Establishing Secretive Protocols

We introduce the predicate Good(X,m, s,K) to assert that the thread X con-
structed the term m in accordance with the rules allowing a secretive proto-
col with respect to nonce s and set of keys K to send out m. More formally,
JGood(X,m, s,K)K(T,D, ε) is the collection of all traces t ∈ T where thread X
constructs the term m in a ‘good’ way. Received messages, data of atomic type
different from nonce or key, nonces different from s are all ‘good’ terms. Con-
structions that are ‘good’ consist of pairing or unpairing good terms, encrypting
good terms, encrypting any term with a key in K and decrypting good terms
with keys not in K. The following axioms formalize reasoning about the Good
predicate by induction on actions in protocol roles.

G0 Good(X, a, s,K), if a is of an atomic type different from nonce

G1 New(Y, n) ∧ n 6= s ⊃ Good(X, n, s,K)

G2 [receive m;]X Good(X, m, s,K)

G3 Good(X, m, s,K) [a]X Good(X, m, s,K), for all actions a

G4 Good(X, m, s,K) [match m as m′;]X Good(X, m′, s,K)

G5 Good(X, m0, s,K) ∧ Good(X, m1, s,K) [m := pair m0, m1;]X Good(X, m, s,K)

G6 Good(X, m, s,K) [m′ := symenc m, k;]X Good(X, m′, s,K)

G7 k ∈ K [m′ := symenc m, k;]X Good(X, m′, s,K)

G8 Good(X, m, s,K) ∧ k /∈ K [m′ := symdec m, k;]X Good(X, m′, s,K)

In the following lemma, the additional field σ in the trace definition refers to
an environment that maps free variables in a formula to bitstrings. The proof is
by induction on the construction of ‘good’ terms.

9

Lemma 1. If Good(X,m, s,K) holds for a trace 〈e, λ, · · · , σ〉, then any bilateral
simulator with parameters s,K, executing symbolic actions e produces identical
bitstring representations for m on both sides of the simulation, i.e., we will have
. m and lv(m) = rv(m).

The formula SendGood(X, s,K) asserts that all messages that thread X sends
out are good and Secretive(s,K) asserts that all honest threads only send out
good messages. Formally,

SendGood(X, s,K) ≡ ∀m. (Send(X, m) ⊃ Good(X, m, s,K))

Secretive(s,K) ≡ ∀X. (Honest(X̂) ⊃ SendGood(X, s,K))

The axioms SG0− 2 are based on the definition of SendGood:

SG0 Start(X) []X SendGood(X, s,K)

SG1 SendGood(X, s,K) [a]X SendGood(X, s,K), where a is not a send.

SG2 SendGood(X, s,K) [send m;]X Good(X, m, s,K) ⊃ SendGood(X, s,K)

SG1 is obviously valid for nonce generation, message receipt, encryption and
pairing actions. Soundness for unpairing and decryption requires consistency of
deconstructions in the bilateral simulation, e.g. unpairing should succeed on one
side iff it succeeds on the other. Soundness of SG2 follows from the operational
semantics of the simulator on a send action and Lemma 1.

The INDGOOD rule which follows states that if all honest threads executing
some basic sequence in the protocol locally construct good messages to be sent
out, given that they earlier also did so, then we can conclude Secretive(s,K).

INDGOOD ∀ρ ∈ Q.∀P ∈ BS(ρ).

SendGood(X, s,K) [P]X Φ ⊃ SendGood(X, s,K)
Q ` Φ ⊃ Secretive(s,K)

(∗)

(∗): [P]X does not capture free variables in Φ, K, s,

and Φ is a prefix closed trace formula.

A set of basic sequences (BS) of a role is any partition of the sequence of actions
in a role such that if any element sequence has a receive then it is only at its
beginning. The formula Φ has to be prefix closed which means that it is a formula
such that if it is true at some point in a trace, it is also true at all earlier points.
This rule is an instance of a more general induction rule IND which is obtained
by replacing SendGood(X, s,K) by a general trace formula Ψ(X) and requiring
that Start(X) []X Φ ⊃ Ψ(X). The instance of the latter formula, the base case
of the induction, is trivially satisfied when Ψ(X) is SendGood(X, s,K) because
of axiom SG0.

4.2 Relating Secretive Protocols to Good Keys

The remaining axioms relate the concept of a secretive protocol, which is trace-
based, to complexity theoretic notions of security. As defined in section 3, a
level-0 key is only used as a key. Note that this is a syntactic property and is

10

evident from inspection of the protocol roles. Typically, a long-term key shared
by two principals is level-0. A nonce is established to be a level-1 key when the
protocol is proved to be a secretive protocol with respect to the nonce and a set
of level-0 keys. This concept is extended further to define level-2 keys.

The formula InInitSet(X, s,K) asserts X is either the generator of nonce s or
a possessor of some key in the closure C(K). GoodInit(s,K) asserts that all such
threads belong to honest principals. Formally,

InInitSet(X, s,K) ≡ ∃k ∈ C(K). Possess(X, k) ∨ New(X, s)

GoodInit(s,K) ≡ ∀X. (InInitSet(X, s,K) ⊃ Honest(X̂))

Our objective is to state that secrets established by secretive protocols, where
possibly the secrets are also used as keys, are good keys against everybody except
the set of people who either generated the secret or are in possession of a key
protecting the secret. The formula GoodKeyFor expresses this property. For level-
0 keys that we want to claim are possessed only by honest principals we use the
formula GoodKey.

GoodKeyFor(s,K) ≡ ∀X. (GoodKeyAgainst(X, s) ∨ InInitSet(X, s,K))

GoodKey(k) ≡ ∀X. (Possess(X, k) ⊃ Honest(X̂))

For protocols employing an IND-CCA secure encryption scheme, the soundness
of the following axiom follows from theorems 1 and 2:

GK Secretive(s,K) ∧ GoodInit(s,K) ⇒ GoodKeyFor(s,K)

If the encryption scheme is both IND-CCA and INT-CTXT secure then, the
soundness of the following axioms follow from Theorem 3:

CTX0 GoodKey(k) ∧ SymDec(Z, Esym[k](m), k) ⇒ ∃X. SymEnc(X, m, k),

for level-0 key k.

CTXL Secretive(s,K) ∧ GoodInit(s,K) ∧ SymDec(Z, Esym[s](m), s)

⇒ ∃X. SymEnc(X, m, s)

The soundness theorem is proved by showing that every axiom is a valid
formula and that all proof rules preserve validity. Proofs for selected axioms are
given in the full version of the paper [29].

Theorem 4 (Soundness). ∀Q, ϕ. if Q ` ϕ then Q � ϕ

Compositional Reasoning We develop composition theorems that allow secre-
tive-ness proofs of compound protocols to be built up from proofs of their parts.
We consider three kinds of composition operations on protocols—parallel, se-
quential, and staged—based on our previous work [16, 21]. However, adapting
that approach for reasoning about secrecy requires new insights. One central
concept in these compositional proof methods is the notion of an invariant. An
invariant for a protocol is a logical formula that characterizes the environment in
which it retains its security properties. While in previous work [16] the “honesty

11

rule” HON is used for establishing invariants, reasoning about secretive-ness re-
quires a more general form of induction, captured in this paper by the IND rule.
Also, in proving that a protocol step does not violate secretive-ness, we need to
employ derivations from earlier steps executed by the principal. In the technical
presentation, this history information shows up as preconditions in the secrecy
induction of the sequential and staged composition theorems. The statement of
the theorems is similar to the theorems proved for the symbolic model in earlier
work [31], but the proofs use the computational semantics. In particular we need
a staged composition operation that extends sequential composition by allowing
self loops and arbitrary backward arcs in this chain. This control flow structure
is common in practice, e.g., Kerberos [25], IEEE 802.11i [1], and IKEv2 [24],
with backward arcs usually corresponding to error handling or rekeying.

5 Analysis of Kerberos

Table 2 lists the security properties of Kerberos that we prove. The security
objectives are of two types: authentication and secrecy. The authentication ob-
jectives take the form that a message of a certain format was indeed sent by some
thread of the expected principal. The secrecy objectives take the form that a pu-
tative secret is a good key for certain principals. For example, AUTHclient

kas states
that when C finishes executing the Client role, some thread of K̂ indeed sent the
expected message; SECclient

akey states that the authorization key is good after ex-
ecution of the Client role by C; the other security properties are analogous.
We abbreviate the honesty assumptions by defining Hon(X̂1, X̂2, · · · , X̂n) ≡
Honest(X̂1) ∧Honest(X̂2) ∧ · · ·Honest(X̂n). The formal proofs are omitted from
this paper but present in the full version [29].

The overall proof structure demonstrates an interleaving of authentication
and secrecy properties, reflecting the intuition behind the protocol design. We
start with proving some authentication properties based on the presumed secrecy
of long-term shared symmetric keys. As intended in the design, these authentica-
tion guarantees enable us to prove the secrecy of data protected by the long-term
keys. This general theme recurs further down the protocol stages. Part of the
data is used in subsequent stages as an encryption key. The secrecy of this trans-
mitted encryption key lets us establish authentication in the second stage of the
protocol. The transmitted key is also used to protect key exchange in this stage
- the secrecy of which depends on the authentication established in the stage.

Theorem 5 (KAS Authentication). On execution of the Client role by a
principal, it is guaranteed with asymptotically overwhelming probability that the
intended KAS indeed sent the expected response assuming that both the client and
the KAS are honest. A similar result holds for a principal executing the TGS
role. Formally, KERBEROS ` AUTHclient

kas , AUTHtgs
kas.

Authentication is achieved by the virtue of ciphertext integrity offered by the
symmetric encryption scheme. At a high level, we reason that a ciphertext could
have been produced only by one of the possessors of the corresponding key.

12

SECakey : Hon(Ĉ, K̂, T̂) ⊃ (GoodKeyAgainst(X, AKey) ∨ X̂ ∈ {Ĉ, K̂, T̂})

SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (GoodKeyAgainst(X, SKey) ∨ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), Ĉ.Esym[kt→k
T,K](AKey.Ĉ).Esym[kc→k

C,K](AKey.n1.T̂))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SECclient
akey : [Client]C SECakey AUTHclient

kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SECkas
akey : [KAS]K SECakey AUTHtgs

kas : [TGS]T Hon(T̂ , K̂) ⊃ ∃n1. AUTHkas

SECtgs
akey : [TGS]T SECakey

AUTHclient
tgs : [Client]C Hon(Ĉ, K̂, T̂) ⊃ AUTHtgs

SECclient
skey : [Client]C SECskey AUTHserver

tgs : [Server]S Hon(Ŝ, T̂)

SECtgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

Table 2. Kerberos Security Properties

Theorem 6 (Authentication Key Secrecy). On execution of the Client
role by a principal, the Authentication Key is guaranteed to be good, in the sense
of IND-CCA security, assuming that the client, the KAS and the TGS are all
honest. Similar results hold for principals executing the KAS and TGS roles.
Formally, KERBEROS ` SECclient

akey , SECkas
akey, SEC

tgs
akey.

Proof Sketch. Observe that in the first stage, the KAS sends out AKey
encrypted under two different keys - kc→k

C,K and kt→k
T,K , and the client uses AKey

as an encryption key. As a first approximation we conjecture that in the entire
protocol execution, AKey is either protected by encryption with either of the
keys in K = {kc→k

C,K , k
t→k
T,K } or else used as an encryption key in messages sent to

the network by honest principals. This seems like a claim to be established by
induction. As a base case, we establish that the generator of AKey (some thread
of the KAS) satisfies the conjecture. The induction case is: whenever an honest
principal decrypts a ciphertext with one of the keys in K, it ensures that new
terms generated from the decryption are re-encrypted with some key in K in any
message sent out. The results (of the appropriate type) from such a decryption
are however, allowed to be used as encryption keys, which as you can note is the
case in the first stage of the client.

When we are reasoning from the point of view of the KAS (as in SECkas
akey),

we already know the initial condition - that the KAS sent out AKey encrypted
under only these keys. However, when arguing from the point of view of the
client and the TGS (as in SECclient

akey and SECtgs
akey), we need to have some

authentication conditions established first. These conditions are generally of the
form that the KAS indeed behaved in the expected manner. Reasoning from this
premise, we prove that our initial conjecture is correct.

In the formal proof, we show that Kerberos is a secretive protocol with respect
to the nonce AKey and the set of keys K. The induction idea is captured,

13

in its simplest form, by the proof rule INDGOOD. However, as Kerberos has
a staged structure we use the staged composition theorem which builds upon
the rule INDGOOD. The core of the proof is the secrecy induction which is an
induction over all the basic sequences of all the protocol roles. The authentication
condition Φ is easily derived from the KAS Authentication theorem (theorem 5).
The staged composition theorem allows us to facilitate the secrecy induction by
obtaining inferences from the information flow induced by the staged structure
of Kerberos in a simple and effective way. The secrecy induction is modular as
the individual basic sequences are small in themselves. Goodness of AKey now
follows from theorem 1 (CCA security - level 1), which is formally expressed by
axiom GK.

Theorem 7 (TGS Authentication). On execution of the Client role by a
principal, it is guaranteed with asymptotically overwhelming probability that the
intended TGS indeed sent the expected response assuming that the client, the
KAS and the TGS are all honest. A similar result holds for a principal executing
the Server role. Formally, KERBEROS ` AUTHclient

tgs , AUTHserver
tgs .

Theorem 8 (Service Key Secrecy). On execution of the Client role by a
principal, the Service Key is guaranteed to be good, in the sense of IND-CCA
security, assuming that the client, the KAS, the TGS and the application server
are all honest. A similar result holds for a principal executing the TGS role.
Formally, KERBEROS ` SECclient

skey , SECtgs
skey.

The proof of AUTHserver
tgs is similar to the proof of theorem 5. The proof of

AUTHclient
tgs depends on the ‘goodkey’-ness of AKey established by theorem 6.

For theorem 8, the idea is that the Service Key SKey is protected by level-0
key ks→t

S,T and level-1 key AKey. The proof of ‘Secretive’-ness proceeds along the
same line as for theorem 6 and uses derivations from theorem 7. Then we invoke
axiom GK to establish KERBEROS ` SECclient

skey , SECtgs
skey.

Kerberos with PKINIT. In the first stage of Kerberos with PKINIT [33], the
KAS establishes the authorization key encrypted with a symmetric key which in
turn is sent to the client encrypted with its public key. Since the protocol uses
both public and symmetric keys at level 0, we formulate a definition of a joint
public-symmetric key game. We then extend the proof system and prove all the
syntactically analogous properties of the PKINIT version.

6 Conclusion

Computational secrecy properties, such as indistinguishability and suitability
of a key (“GoodKey”), are not trace-based properties, making it awkward to
reason inductively or compositionally about them. We therefore formulate the
secretive trace-based property and prove that any secretive protocol can be used
to construct a generic reduction from protocol attacks to attacks on underlying

14

primitives. This allows computational secrecy to be established by direct induc-
tive reasoning about a relatively natural and intuitive trace-based property.

A second contribution of the paper is a proof system for secrecy, in a formal
logic based on inductive reasoning about protocol actions carried out by honest
parties (only). We illustrate the power of this system by giving a modular, formal
proof of computational authentication and secrecy properties of the Kerberos V5
protocol, thus addressing an open problem posed in [3]. Other proofs have been
carried out, such as for a protocol that poses a challenge for the rank function
method [19], but are omitted due to space constraints.

References

1. IEEE P802.11i/D10.0. Medium Access Control (MAC) security enhancements,
amendment 6 to IEEE Standard for local and metropolitan area networks part
11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifica-
tions., April 2004.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,
2002.

3. M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptograph-
ically sound security proofs for basic and public-key kerberos. In Proceedings of
11th European Symposium on Research in Computer Security, 2006. To appear.

4. M. Backes and B. Pfitzmann. Limits of the cryptographic realization of XOR.
In Proc. of the 10th European Symposium on Research in Computer Security.
Springer-Verlag, 2005.

5. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. In
Proc. IEEE Symposium on Security and Privacy, pages 171–182. IEEE, 2005.

6. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable crypto-
graphic library. Cryptology ePrint Archive, Report 2003/015, 2003.

7. M. Backes, B. Pfitzmann, and M. Waidner. Limits of the reactive simulatability/uc
of dolev-yao models with hashes. In Proc. of the 11th European Symposium on
Research in Computer Security. Springer-Verlag, 2006.

8. M. Baudet, V. Cortier, and S. Kremer. Computationally Sound Implementations
of Equational Theories against Passive Adversaries. In Proceedings of the 32nd
ICALP, 2005.

9. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Advances in Cryptology - EURO-
CRYPT 2000, Proceedings, pages 259–274, 2000.

10. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In ASIACRYPT, pages
531–545, 2000.

11. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Pro-
ceedings of the 13th Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO ’93), pages 232–249. Springer-Verlag, 1994.

12. F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. Verifying confidentiality
and authentication in kerberos 5. In ISSS, pages 1–24, 2003.

13. R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual
authentication and key-exchange protocols. In Proceedings of TCC 2006, pages
380–403, 2006.

15

14. V. Cortier and B. Warinschi. Computationally sound, automated proofs for se-
curity protocols. In Proceedings of 14th European Symposium on Programming
(ESOP), pages 157–171, 2005.

15. A. Datta, A. Derek, J. Mitchell, A. Ramanathan, and A. Scedrov. Games and the
impossibility of realizable ideal functionality. In Theory of Cryptography Confer-
ence - Proceedings of TCC 2006, 2006.

16. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and
compositional logic for security protocols. Journal of Computer Security, 2005.

17. A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic
polynomial-time semantics for a protocol security logic. In Proceedings of ICALP
’05, pages 16–29, 2005.

18. A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Computationally sound com-
positional logic for key exchange protocols. In Proceedings of 19th IEEE Computer
Security Foundations Workshop, pages 321–334. IEEE, 2006.

19. R. Delicata and S. A. Schneider. Towards the rank function verification of protocols
that use temporary secrets. In WITS, 2004.

20. F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security
protocol correct? In Proceedings of the 1998 IEEE Symposium on Security and
Privacy, pages 160–171, Oakland, CA, May 1998. IEEE Computer Society Press.

21. C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular
correctness proof of IEEE 802.11i and TLS. In CCS ’05: Proceedings of the 12th
ACM conference on Computer and communications security, 2005.

22. J. Heather. Strand spaces and rank functions: More than distant cousins. In
Proceedings of CSFW, page 104, 2002.

23. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In FSE, pages 284–299, 2000.

24. C. Kauffman. Internet key exchange (IKEv2) protocol. IETF Internet draft, 1994.
25. J. Kohl and B. Neuman. The Kerberos network authentication service (version 5).

IETF RFC 1510, September 1993.
26. C. Meadows. A model of computation for the NRL protocol analyzer. In Proceed-

ings of 7th IEEE Computer Security Foundations Workshop, pages 84–89. IEEE,
1994.

27. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Proceedings of TCC, 2004.

28. D. Pavlovic and C. Meadows. Deriving secrecy properties in key establishment
protocols. In Proceedings of ESORICS, 2006.

29. A. Roy, A. Datta, A. Derek, and J. C. Mitchell. Inductive proofs of computational
secrecy. http://www.stanford.edu/∼arnab/rddm-InductiveProofs.pdf, 2007.

30. A. Roy, A. Datta, A. Derek, and J. C. Mitchell. Inductive trace
properties for computational security. WITS, 2007. Full version at
http://www.stanford.edu/∼arnab/rddm-IndTraceProps.pdf.

31. A. Roy, A. Datta, A. Derek, J. C. Mitchell, and J.-P. Seifert. Secrecy analysis
in protocol composition logic. In Proceedings of 11th Annual Asian Computing
Science Conference, 2006. To appear.

32. B. Warinschi. A computational analysis of the Needham-Schroeder(-Lowe) proto-
col. In Proceedings of 16th Computer Science Foundation Workshop, pages 248–
262. ACM Press, 2003.

33. L. Zhu and B. Tung. Public key cryptography for initial authentication in kerberos,
2006. Internet Draft.

16

