
Secrecy Analysis in Protocol Composition Logic?

Arnab Roy1, Anupam Datta1, Ante Derek1, John C. Mitchell1, Jean-Pierre
Seifert2

1 Department of Computer Science, Stanford University, Stanford, CA 94305, USA
2 Institute for Computer Science, University of Innsbruck, 6020 Innsbruck, Austria

Abstract. Extending a compositional protocol logic with an induction
rule for secrecy, we prove soundness for a conventional symbolic protocol
execution model, adapt and extend previous composition theorems, and
illustrate the logic by proving properties of two key agreement proto-
cols. The first example is a variant of the Needham-Schroeder protocol
that illustrates the ability to reason about temporary secrets. The second
example is Kerberos V5. The modular nature of the secrecy and authen-
tication proofs for Kerberos makes it possible to reuse proofs about the
basic version of the protocol for the PKINIT version that uses public-key
infrastructure instead of shared secret keys in the initial steps.

1 Introduction

Two important security properties for key exchange and related protocols are authen-
tication and secrecy. Intuitively, authentication holds between two parties if each is
assured that the other has participated in the same session of the same protocol. A
secrecy property asserts that some data that is used in the protocol is not revealed to
others. If a protocol generates a fresh value, called a nonce, and sends it in an encrypted
message, then under ordinary circumstances the nonce remains secret in the sense that
only agents that have the decryption key can obtain the nonce. However, many pro-
tocols have steps that receive a message encrypted with one key, and send some of its
parts out encrypted with a different key. Since network protocols are executed asyn-
chronously by independent agents, some potentially malicious, it is non-trivial to prove
that even after arbitrarily many steps of independent protocol sessions, secrets remain
inaccessible to an attacker.

Our general approach involves showing that every protocol agent that receives data
protected by one of a chosen set of encryption keys only sends sensitive data out under
encryption by another key in the set. This reduces a potentially complicated proof
about arbitrary runs involving a malicious attacker to a case-by-case analysis of how
each protocol step might save and send data. We formalize this form of inductive
reasoning about secrecy in a set of new axioms and inference rules that are added
to Protocol Composition Logic (PCL) [14, 9, 8, 10, 11], prove soundness of the system
over a conventional symbolic protocol execution model, and illustrate its use with two
protocol examples. The extended logic may be used to prove authentication or se-
crecy, independently and in situations where one property may depend upon the other.

? This work was partially supported by the NSF TRUST Science and Technology
Center. The first author was partially supported by a Siebel Fellowship. Part of the
work was done when the first and fifth authors were at Intel Corporation.



Among other challenges, the inductive secrecy rule presented here is carefully designed
to be sound for reasoning about arbitrarily many simultaneous protocol sessions, and
powerful enough to prove meaningful properties about complex protocols used in prac-
tice. While the underlying principles are similar to the “rank function method” [18] and
work using the strand space execution model [19], our system provides precise formal
proof rules that are amenable to automation. In addition, casting secrecy induction in
the framework of Protocol Composition Logic avoids limitations of some forms of rank
function arguments and eliminates the need to reason explicitly about possible actions
of a malicious attacker. Compositional secrecy proofs are made possible by theorems
developed in this paper, extending previous composition theorems for a simpler proof
system [11, 15].

Our first protocol example is a variant of the Needham-Schroeder protocol, used
in [16] to illustrate a limitation of the original rank function method and motivate an
extension for reasoning about temporary secrets. The straightforward formal proof in
section 4 therefore shows that our method does not suffer from the limitations identified
in [16]. Intuitively, the advantage of our setting lies in the way that modal formulas
of PCL state properties about specific points in protocol execution, rather than only
properties that must be true at all points in all runs.

Our second protocol example is Kerberos [17], which is widely used for authen-
ticated client-server interaction in local area networks. The basic protocol has three
sections, each involving an exchange between the client and a different service. We
develop a formal proof that is modular, with the proof for each section assuming a
precondition and establishing a postcondition that implies the precondition of the fol-
lowing section. One advantage of this modular structure is illustrated by our proof for
the PKINIT [7] version that uses public-key infrastructure instead of shared secret keys
in the initial steps. Since only the first section of PKINIT is different, the proofs for the
second and third sections of the protocol remain unchanged. In previous work, Bella
and Paulson use theorem proving techniques to reason about properties of Kerberos
that hold in all traces containing actions of honest parties and a malicious attacker [3].
Our high-level axiomatic proofs are significantly more concise since we do not require
explicit reasoning about attacker actions. Another line of work uses a multiset rewrit-
ing model to develop proofs in the symbolic and computational model [4, 2]. However,
proofs in these papers use unformalized (though rigorous) mathematical arguments
and are not modular.

The rest of the paper is organized as follows. Some background on PCL is given
in section 2, followed by the secrecy-related axioms and proof rules in section 3. The
first protocol example is presented in section 4. Composition theorems are developed
in section 5, and applied in the proofs for Kerberos in section 6. Finally, we conclude
in section 7.

2 Background

Protocol Composition Logic (PCL) is developed in [14, 9, 8, 10], with [11] providing a
relatively succinct presentation of the most current form. A simple protocol program-
ming language is used to represent a protocol by a set of roles, such as “Initiator”,
“Responder” or “Server”, each specifying a sequence of actions to be executed by an
honest participant. Protocol actions include nonce generation, encryption, decryption
and communication steps (sending and receiving). Every principal can be executing
one or more copies of each role at the same time. We use the word thread to refer to



Action formulas
a ::= Send(X, t) |Receive(X, t) |New(X, t) |Encrypt(X, t) |Start(X)
Formulas

ϕ ::= a |Has(X, t) |Honest(X̂) |ϕ ∧ ϕ | ¬ϕ | ∃V. ϕ
Modal form
Ψ ::= ϕ [Actions]X ϕ

Table 1. Syntax of the logic

a principal executing one particular instance of a role. Each thread X is a pair (X̂, η)
where X̂ is a principal and η is a unique session id. A run is a record of all actions exe-
cuted by honest principals and the attacker during protocol execution. The set of runs
of a protocol is determined by the operational semantics of the protocol programming
language.

Table 1 summarizes the syntax of the logic used in this paper. Protocol proofs
usually use modal formulas of the form ψ[P ]Xϕ. The informal reading of the modal
formula is that if X starts from a state in which ψ holds, and executes the program P ,
then in the resulting state the security property ϕ is guaranteed to hold irrespective
of the actions of an attacker and other honest principals. The formulas of the logic
are interpreted over protocol runs. We say that protocol Q satisfies formula ϕ, denoted
Q � ϕ, if in all runs R of Q the formula ϕ holds, i.e., Q, R � ϕ. For example, Send(X, t)
holds in a run where the thread X has sent the term t. For every protocol action, there
is a corresponding action predicate which asserts that the action has occurred in the
run. Action predicates are useful for capturing authentication properties of protocols
since they can be used to assert which principals sent and received certain messages.
Encrypt(X, t) means that X computes the encrypted term t, while New(X,n) means X
generates fresh nonce n. Honest(X̂) means that X̂ is acting honestly, i.e., the actions
of every thread of X̂ precisely follows some role of the protocol. Start(X) means that
the thread X did not execute any actions in the past. Has(X, t) means X can compute
the term t using symbolic Dolev-Yao rules, e.g. receiving it in the clear or receiving it
under encryption where the decryption key is known.

To illustrate the terminology used in this section we describe the formalization of
Kerberos V5, which is a protocol used to establish mutual authentication and a shared
session key between a client and an application server [17]. It involves trusted principals
known as the Kerberos Authentication Server (KAS) and the Ticket Granting Server
(TGS). There are pre-shared long term keys between the client and the KAS, the KAS
and the TGS, and the TGS and the application server. Typically, the KAS shares
long-term keys with a number of clients and the TGS with a number of application
servers. However, there is no pre-shared long term secret between a given client and
an application server. Kerberos achieves establishment of mutual authentication and
a shared session key between the client and the application server using the chain of
trust leading from the client to the KAS and the TGS to the application server.

Kerberos has four roles, one for each kind of participant - Client, KAS, TGS and
Server. The long-term shared keys are written here in the form ktype

X,Y where X and Y
are the principals sharing the key. The type appearing in the superscript indicates the
relationship between X and Y in the transactions involving the use of the key. There



are three types required in Kerberos: c → k indicates that X is acting as a client and
Y is acting as a KAS, t → k is for TGS and KAS and s → t is for application server
and TGS. Kerberos runs in three stages with the client role participating in all three.
The description of the roles is based on the A level formalization of Kerberos V5 in [5].
We describe the formalization of the first stage in some detail so that the rest is easy
to follow.

In the first stage, shown below, the client thread (C) generates a nonce (n1) and
sends it to the KAS (K̂) along with the identities of the TGS (T̂ ) and itself. The
KAS generates a new nonce (AKey - Authentication Key) to be used as a session
key between the client and the TGS. It then sends this key along with some other
fields to the client encrypted (represented by the match actions) under two different
keys - one it shares with the client (kc→k

C,K ) and one it shares with the TGS (kt→k
T,K ).

The encryption with kt→k
T,K is called the ticket granting ticket (tgt). The client extracts

AKey by decrypting the component encrypted with kc→k
C,K .

Client = (C, K̂, T̂ , Ŝ, t) [

new n1;

send Ĉ.T̂ .n1;

receive Ĉ.tgt.enckc;

match enckc

as Esym[kc→k
C,K ](AKey.n1.T̂ );

· · · · · ·

KAS = (K) [

receive Ĉ.T̂ .n1;

new AKey;

match Esym[kt→k
T,K ](AKey.Ĉ) as tgt;

match Esym[kc→k
C,K ](AKey.n1.T̂ )

as enckc;

send Ĉ.tgt.enckc;

]K

In the second stage (not shown), the client uses the session key AKey and the ticket
granting ticket to interact with the TGS and gets a new session key SKey and a service
ticket (st). In the third stage, the client encrypts its identity and a timestamp with
SKey and sends it to the application server along with the service ticket. The server
decrypts st and extracts the SKey. It then uses the session key to decrypt the client’s
encryption, matches the first component of the decryption with the identity of the
client and extracts the timestamp. It then encrypts the timestamp with the session key
and sends it back to the client. The client decrypts the message and matches it against
the timestamp it used. The control flow of Kerberos exhibits a staged architecture
where once one stage has been completed successfully, the subsequent stages can be
performed multiple times or aborted and started over for handling errors.

3 Proof System for Secrecy Analysis

In this section, we extend PCL with new axioms and rules for establishing secrecy.
Secrecy properties are formalized using the Has(X, s) predicate and requiring that X̂
refer only to honest principals who share the secret s. In a typical two party protocol,
X̂ is one of two honest agents and s is a nonce generated by one of them. As an
intermediate step, we establish that all occurrences of the secret on the network are
protected by keys. This property can be proved by induction over possible actions by
honest principals and reasoning that no action leaks the secret if it was not compromised
already.



We introduce the predicate SafeMsg(M, s,K) to assert that every occurrence of
s in message M is protected by a key in the set K. Technically speaking, for each
n > 0, there is an (n + 2)-ary predicate SafeMsgn(M, s,K), with n corresponding to
the size of set K. However, we suppress this syntactic detail in this paper. The semantic
interpretation of this predicate is defined by induction on the structure of messages. It
is actually independent of the protocol and the run.

Definition 1 (SafeMsg). Given a run R of a protocol Q, we say Q, R � SafeMsg(M, s,
K) if there exists an i such that SafeMsgi(M, s, K) where SafeMsgi is defined as follows:

SafeMsg0(M, s,K) if M is an atomic term different from s

SafeMsg0(HASH(M), s,K) for any M

SafeMsgi+1(M0.M1, s,K) if SafeMsgi(M0, s,K) and SafeMsgi(M1, s,K)

SafeMsgi+1(Esym[k](M), s,K) if SafeMsgi(M, s,K) or k ∈ K
SafeMsgi+1(Epk[k](M), s,K) if SafeMsgi(M, s,K) or k̄ ∈ K

The axioms SAF0 to SAF5 below parallel the semantic clauses and follow immediately
from them. Equivalences follow as the term algebra is free.

SAF0 ¬SafeMsg(s, s,K) ∧ SafeMsg(x, s,K),

where x is an atomic term different from s

SAF1 SafeMsg(M0.M1, s,K) ≡ SafeMsg(M0, s,K) ∧ SafeMsg(M1, s,K)

SAF2 SafeMsg(Esym[k](M), s,K) ≡ SafeMsg(M, s,K) ∨ k ∈ K
SAF3 SafeMsg(Epk[k](M), s,K) ≡ SafeMsg(M, s,K) ∨ k̄ ∈ K
SAF4 SafeMsg(HASH(M), s,K)

The formula SendsSafeMsg(X, s,K) states that all messages sent by threadX are “safe”
while SafeNet(s,K) asserts the same property for all threads. These formulas may
be written as SendsSafeMsg(X, s,K) ≡ ∀M. (Send(X,M) ⊃ SafeMsg(M, s,K)) and
SafeNet(s,K) ≡ ∀X. SendsSafeMsg(X, s,K).

In secrecy proofs, we will explicitly assume that the thread generating the secret and
all threads with access to a relevant key belong to honest principals. This is semantically
necessary since a dishonest principal may reveal its key, destroying secrecy of any data
encrypted with it. These honesty assumptions are expressed by the formulas KeyHonest
and OrigHonest respectively. KOHonest is the conjunction of the two.

– KeyHonest(K) ≡ ∀X. ∀k ∈ K. (Has(X, k) ⊃ Honest(X̂))
– OrigHonest(s) ≡ ∀X. (New(X, s) ⊃ Honest(X̂)).
– KOHonest(s,K) ≡ KeyHonest(K) ∧ OrigHonest(s)

We now have the necessary technical machinery to state the induction rule. At a
high-level, the NET rule states that if each “possible protocol step” P locally sends
out safe messages, assuming all messages in the network were safe prior to that step,
then all messages on the network are safe. A possible protocol step P is drawn from
the set of basic sequences BS for all roles of the protocol. A set of basic sequences of
a role is any partition of the sequence of actions in the role such that if any element
sequence has a receive action then it is only at the beginning.

NET ∀ρ ∈ Q.∀P ∈ BS(ρ).

SafeNet(s,K) [P ]X Honest(X̂) ∧ Φ ⊃ SendsSafeMsg(X, s,K)
Q ` KOHonest(s,K) ∧ Φ ⊃ SafeNet(s,K)

(∗)



(∗): [P ]A does not capture free variables in Φ and K and the variable s. Φ should be
prefix closed .

The axioms NET0 to NET3 below are used to establish the antecedent of the
NET rule. Many practical security protocols consist of steps that each receive a mes-
sage, perform some operations, and then send a resulting message. The proof strategy
in such cases is to use NET1 to reason that messages received from a safe network
are safe and then use this information and the SAF axioms to prove that the output
message is also safe.

NET0 SafeNet(s,K) [ ]X SendsSafeMsg(X, s,K)

NET1 SafeNet(s,K) [receive M ]X SafeMsg(M, s,K)

NET2 SendsSafeMsg(X, s,K) [a]X SendsSafeMsg(X, s,K), where a is not a send.

NET3 SendsSafeMsg(X, s,K) [send M ]X SafeMsg(M, s,K) ⊃ SendsSafeMsg(X, s,K)

Finally, POS and POSL are used to infer secrecy properties expressed using the Has
predicate. The axiom POS states that if we have a safe network with respect to s and
key-set K then the only principals who can possess an unsafe message are the generator
of s or possessor of a key in K. The POSL rule lets a thread use a similar reasoning
locally.

POS SafeNet(s,K) ∧ Has(X,M) ∧ ¬SafeMsg(M, s,K)

⊃ ∃k ∈ K. Has(X, k) ∨ New(X, s)

POSL
ψ ∧ SafeNet(s,K) [S]X SendsSafeMsg(X, s,K) ∧ Has(Y,M) ∧ ¬SafeMsg(M, s,K)

ψ ∧ SafeNet(s,K) [S]X ∃k ∈ K. Has(Y, k) ∨ New(Y, s)
,

where S is any basic sequence of actions.

Following are useful theorems which follow easily from the axioms.

SREC SafeNet(s,K) ∧ Receive(X,M) ⊃ SafeMsg(M, s,K)

SSND SafeNet(s,K) ∧ Send(X,M) ⊃ SafeMsg(M, s,K)

We write Γ ` γ if γ is provable from the formulas in Γ and any axiom or inference
rule of the proof system except the honesty rule HON from previous formulations of
PCL and the secrecy rule NET. We write Q ` γ if γ is provable from the axioms and
inference rules of the proof system including the rules HON and NET for protocol Q.

Given a set of messages M, let us denote by M̃ to be the minimal set containing
M and closed under pairing, unpairing, encryption with any public key or symmetric
key, decryption with a private key or a symmetric key not in K and hashing.

Theorem 1. If M is a set of messages, all safe with respect to secret s and key-set
K, then M̃ also contains only safe messages.

Proof. Any element m ∈ M̃ can be constructed from elements in M using a finite
sequence of the operations enumerated. From the semantics of SafeMsg it is easily seen
that all the operations preserve safeness. Hence by induction, all the elements of M̃
will be safe. ut

Lemma 1. If a thread X, at any point in any protocol, possesses an unsafe message
with respect to secret s and key-set K then either X received an unsafe message earlier,
or X generated s, or X possesses a key in K.



Proof. Suppose thread X does not satisfy any of the conditions enumerated. Then the
set of messages M it initially knows and has received are safe messages. Since it does
not have a key in K, M̃ is a superset of all the messages it can construct from M (in
the Dolev-Yao model). Hence, by theorem 1, X cannot compute any unsafe message.
So it cannot possess an unsafe message – a contradiction. ut

Theorem 2 (Soundness). If Q ` γ, then Q � γ. Furthermore, if Γ ` γ, then Γ � γ.

Proof. Soundness for this proof system is proved, by induction on the length of proofs
of the axioms and rules, the most interesting of which are sketched below.

NET : Consider a run R of protocol Q such that the consequent of NET is false. We
will show that the antecedent is false too. We have Q, R � KOHonest(s,K) ∧ Φ, but
Q, R 2 SafeNet(s,K). This implies that Q, R � ∃m,X.Send(X,m)∧¬SafeMsg(m, s,K).
Note that there must be a first instance when an unsafe message is sent out - let m̃
be the first such message. Hence, we can split R into R0.R1.R2 such that Q, R0 �
SafeNet(s,K) and R1 = 〈X sends m̃;Y receives m̃〉, for some Y .

Since this is the first send of an unsafe message, therefore X could not have received
an unsafe message earlier. Therefore, by the lemma, either X generated s or, X has
a key in K. In both cases, KOHonest(s,K) implies Honest(X̂). Therefore the fragment
[send m̃]X must be part of a sequence of actions [P ]X such that P is a basic sequence
of one of the roles in Q - but, this violates the premise of NET. Hence the theorem.
The need for Φ to be prefix-closed comes from a more detailed version of this proof .

POS : SafeNet(s,K) implies no thread sent out an unsafe message in the run. Hence
no thread received an unsafe message. Therefore, by lemma 1, any thread X possessing
an unsafe message must have either generated s or possesses a key in K.

POSL : The premise of the rule informally states that starting from a “safe” network
and additional constraints ψ thread X concludes that some thread Y possesses an
unsafe message M in all possible runs of any protocol. Specifically this should be true
for a run where thread X executes the basic sequence [S]X uninterspersed with the
actions of any other thread except the receipt of messages sent by X. Now the premise
implies that X only sends safe messages - also since S is a basic sequence, the only
message that X can receive in [S]X will be only at its beginning, which, due to the
starting “safe” network precondition will be a safe message. Hence we can conclude
that thread Y possessed an unsafe message before X started executing [S]X i.e., when
SafeNet(s,K) was true. Therefore using axiom POS we derive that thread Y either
generated s or possesses a key in K, which establises the conclusion of POSL. ut

4 Analysis of a variant of NSL

In this section we use the proof system developed in section 3 to prove a secrecy prop-
erty of a simple variant NSLV AR of the Needham-Schroeder-Lowe protocol, proposed
in [16], in which parties A and B use an authenticated temporary secret na to estab-
lish a secret key k that is in turn used to protect the actual message m. The main
difference from the original NSL protocol is that the initiator’s nonce is leaked in the
final message. Reasoning from A’s point of view, nonce na should be secret between A
and B at the point of the run in the protocol where A is just about to send the last



message. This protocol was originally used to demonstrate a limitation of the original
rank function method in reasoning about temporary secrets. Modal formulas in PCL
allow us to naturally express and prove properties that hold at intermediate points of
a protocol execution.

Formally, NSLV AR is a protocol defined by roles {Init,Resp}, with the roles,
written using the protocol program notation, given below.

Init = (A, B̂,m) [

new na;

match Epk[kB ](Â.na) as encr1;

send encr1;

receive enci;

match enci as Epk[kA](na.B̂.k);

match Esym[k](m) as encr2;

send encr2.na;

]A

Resp = (B) [

receive encr1;

match encr1 as Epk[kB ](Â.na);

new k;

match Epk[kA](na.B̂.k) as enci;

send enci;

receive encr2.na;

match encr2 as Esym[k](m);

]B

Theorem 3. Let ˜Init denote the initial segment of the initiator’s role ending just
before the last send action. The nonce na is a shared secret between A and B in every
state of the protocol where A has executed ˜Init and no further actions, as long as both
Â and B̂ are honest. Formally,

NSLV AR ` [ ˜Init]A Honest(Â) ∧ Honest(B̂) ⊃ (Has(X,na) ⊃ X̂ = Â ∨ X̂ = B̂)

Proof Sketch. To prove the secrecy property, we start off by proving an authentication
property [ ˜Init]AHonest(Â)∧Honest(B̂) ⊃ Φ, where Φ is the conjunction of the following
formulas:

Φ1 : ∀X, Ŷ . New(X,na) ∧ Send(X,Epk[kY ](X̂.na)) ⊃ Ŷ = B̂

Φ2 : ∀X, Ŷ , n. New(X,na) ⊃ ¬Send(X,Epk[kY ](n.X̂.na))

Φ3 : ∀X, e. New(X,na) ⊃ ¬Send(X, e.na)

Φ4 : Honest(X̂) ∧ Send(X,Esym[k0](m0).n) ⊃ New(X,n)

Φ5 : Honest(X̂) ∧ EncSend(X,Epk[kY ](X̂ ′.n)) ⊃ X̂ ′ = X̂

Informally, Φ1 and Φ2 hold because from the thread A’s point of view it is known
that it itself generated the nonce na and did not send it out encrypted with any other
principal’s public key except B̂’s and that too in a specific format described by the
protocol. Φ3 holds because we are considering a state in the protocol execution where A
has not yet sent the last message - sending of the last message will make Send(A, e.na)
true with e = Esym[k](m). These intuitive explanations can be formalized using a
previously developed fragment of PCL but we will omit those steps in this paper. Φ4

and Φ5 follow from a straightforward use of the honesty rule.
In the next step we prove the antecedents of the NET rule. We take K = {k̄A, k̄B}

where the bar indicates private key which makes KeyHon(K) ≡ Honest(Â)∧Honest(B̂).



In addition, since thread A generates na, therefore KOHonest(na,K) ≡ Honest(Â) ∧
Honest(B̂). We show that all basic sequence of the protocol send “safe” messages, as-
suming that formula Φ holds and that the predicate SafeNet holds at the beginning of
that basic sequence. Formally, for every basic sequence P ∈ {Init1, Init2,Resp1,Resp2}
we prove that: SafeNet(na,K)[P]A′ Honest(Â′) ∧ Φ ⊃ SendsSafeMsg(A′, na,K) ut

Some secrecy proofs using the CSP [18] or strand space [19] protocol execution
model use inductive arguments that are similar to the form of inductive reasoning cod-
ified in our formal system. For example, within CSP, properties of messages that may
appear on the network have been identified by defining a rank function [18, 16], with an
inductive proof used to show that rank is preserved by the attacker actions and all hon-
est parties. In comparison, arguments in our formal logic use a conjunction involving
the SafeNet predicate and protocol specific properties Φ in our inductive hypotheses.
These two formulas together characterize the set of possible messages appearing on the
network and can be viewed as a symbolic definition of a rank function. We believe that
our method is as powerful as the rank function method for any property expressible
in our logic. However, it is difficult to prove a precise connection without first casting
the rank function method in a formal setting that relies on a specific class of message
predicates.

One drawback of the rank function approach is that the induction is performed by
“global” reasoning. While analyzing a protocol, all relevant properties of the system
(such as authentication and secrecy, for example) are modelled using a single rank
function and proved to hold simultaneously. This makes the method somewhat less
applicable since it cannot handle protocols which deal with temporary secrets or use
authentication to ensure secrecy properties. In contrast, PCL allows separation and
incremental proofs of different properties. Although some of these issues can be resolved
by extensions of the rank function method [13, 12], the PCL approach seems more
general and may be better suited for some applications.

5 Compositional Reasoning for Secrecy

In this section, we present composition theorems that allow secrecy proofs of compound
protocols to be built up from proofs of their parts. An application of this method to the
Kerberos protocol is given in the next section. We consider three kinds of composition
operations on protocols—parallel, sequential, and staged—as in our earlier work [11,
15]. However, adapting that approach for reasoning about secrecy requires some work.
One central concept in our compositional proof methods is the notion of an invariant.
An invariant for a protocol is a logical formula that characterizes the environment
in which it retains its security properties. While in previous work we had one rule
for establishing invariants (the HON rule [11]), reasoning about secrecy requires, in
addition, the NET rule introduced in this paper. A second point of difference arises
from the fact that reasoning about secrecy requires a certain degree of global knowledge.
Specifically, while proving that a protocol step does not violate secrecy, it is sometimes
necessary to use information from earlier steps. In the technical presentation, this
history information shows up as preconditions in the secrecy induction of the sequential
and staged composition theorems.

Definition 2 (Parallel Composition). The parallel composition Q1 ⊗Q2 of proto-
cols Q1 and Q2 is the union of the sets of roles of Q1 and Q2.



The parallel composition operation allows modelling agents who simultaneously
engage in sessions of multiple protocols. The parallel composition theorem provides
a method for ensuring that security properties established independently for the con-
stituent protocols are still preserved in such a situation.

Theorem 4 (Parallel Composition). If Q1 ` Γ and Γ ` Ψ and Q2 ` Γ then
Q1 ⊗Q2 ` Ψ , where Γ denotes the set of invariants used in the proof of Ψ .

One way to understand the parallel composition theorem is to visualize the proof
tree for Ψ for protocol Q1 in red and green colors. The steps which use the invariant
rules are colored red and correspond to the part Q1 ` Γ , while all other proof steps
are colored green and correspond to the part Γ ` Ψ . While composing protocols, all
green steps are obviously preserved since they involve proof rules which hold for all
protocols. The red steps could possibly be violated because of Q2. For example, one
invariant may state that honest principals only sign messages of a certain form, while
Q2 may allow agents to sign other forms of messages. The condition Q2 ` Γ ensures
that this is not the case, i.e., the red steps still apply for the composed protocol.

Definition 3 (Sequential Composition). A protocol Q is a sequential composition
of two protocols Q1 and Q2, if each role of Q is obtained by the sequential composition
of a role of Q1 with a role of Q2.

In practice, key exchange is usually followed by a secure message transmission
protocol which uses the resulting shared key to protect data. Sequential composition is
used to model such compound protocols. Formally, the composed role P1;P2 is obtained
by concatenating the actions of P1 and P2 with the output parameters of P1 substituted
for the input parameters of P2 (cf. [11]).

Theorem 5 (Sequential Composition). If Q is a sequential composition of proto-
cols Q1 and Q2 then we can conclude Q ` KOHonest(s,K) ∧ Φ ⊃ SafeNet(s,K) if the
following conditions hold for all P1;P2 in Q, where P1 ∈ Q1 and P2 ∈ Q2:

1. (Secrecy induction)
– ∀i.∀S ∈ BS(Pi). θPi∧SafeNet(s,K)[S]XHonest(X̂)∧Φ ⊃ SendsSafeMsg(X, s,K)

2. (Precondition induction)
– Q1 ⊗Q2 ` Start(X) ⊃ θP1 and Q1 ⊗Q2 ` θP1 [P1]X θP2

– ∀i.∀S ∈ BS(Pi). θPi [S]X θPi .

The final conclusion of the theorem is a statement that secrecy of s is preserved
in the composed protocol. The secrecy induction is very similar to the NET rule.
It states that all basic sequences of the two roles only send out safe messages. This
step is compositional since the condition is proved independently for steps of the two
protocols. One point of difference from the NET rule is the additional precondition
θPi . This formula usually carries some information about the history of the execution,
which helps in deciding what messages are safe for A to send out. For example, if θPi

says that A received some message m, then it is easy to establish that m is a safe
message for A to send out again. The precondition induction proves that the θPi ’s
hold at each point where they are assumed in the secrecy induction. The first bullet
states the base case of the induction: θP1 holds at the beginning of the execution and
θP2 holds when P1 completes. The second bullet states that the basic sequences of
P1 and P2 preserve their respective preconditions. This theorem is existential in the
preconditions, i.e., the theorem holds if there exist any set of formulas θPi satisfying
the conditions.



Definition 4 (Staged Composition). A protocol Q is a staged composition of pro-
tocols Q1,Q2, . . . ,Qn if each role of Q is of the form RComp(〈R1, R2, . . . , Rn〉), where
Ri is a role of protocol Qi.

Consider the representation of sequential composition of n protocols as a directed
graph with edges fromQi toQi+1. The staged composition operation extends sequential
composition by allowing self loops and arbitrary backward arcs in this chain. This
control flow structure is common in practice, e.g., Kerberos [17], IEEE 802.11i [1], and
IKEv2 [6]. A role in this composition, denoted RComp(〈...〉) corresponds to a possible
execution path in the control flow graph by a single thread (cf. [15]). Note that the
roles are built up from a finite number of basic sequences of the component protocol
roles.

Theorem 6 (Staged Composition). If Q is a staged composition of protocols Q1,
Q2, · · · , Qn then we can conclude Q ` KOHonest(s,K) ∧ Φ ⊃ SafeNet(s,K) if for all
RComp(〈P1, P2, · · · , Pn〉) ∈ Q:

1. (Secrecy induction)

– ∀i.∀S ∈ BS(Pi). θPi∧SafeNet(s,K)[S]XHonest(X̂)∧Φ ⊃ SendsSafeMsg(X, s,K)

2. (Precondition induction)

– Q1 ⊗Q2 · · · ⊗Qn ` Start(X) ⊃ θP1 and Q1 ⊗Q2 · · · ⊗Qn ` ∀i. θPi [Pi]X θPi+1

– ∀i.∀S ∈
S

j≥i BS(Pj). θPi [S]X θPi .

The secrecy induction for staged composition is the same as for sequential composi-
tion. However, the precondition induction requires additional conditions to account for
the control flows corresponding to backward arcs in the graph. The technical distinction
surfaces in the second bullet of the precondition induction. It states that precondition
θPi should also be preserved by basic sequences of all higher numbered components, i.e.,
components from which there could be backward arcs to the beginning of Pi. Again,
the theorem holds if there exist any set of formulas θPi satisfying the conditions.

6 Analysis of Kerberos

In this section we analyze Kerberos V5, which was described in section 2. The security
properties of Kerberos that we prove are listed in table 2. We abbreviate the honesty
assumptions by defining Hon(X̂1, · · · , X̂n) ≡ Honest(X̂1)∧· · ·Honest(X̂n). The security
objectives are of two types: authentication and secrecy. The authentication objectives
take the form that a message of a certain format was indeed sent by some thread of
the expected principal. The secrecy objectives take the form that a putative secret
is known only to certain principals. For example, AUTHclient

kas states that when the
thread C finishes executing the Client role, some thread of K̂ (the KAS) indeed
sent the expected message; SECclient

akey states that the authorization key is secret after
execution of the Client role by C; the other security properties are analogous.

Theorem 7 (KAS Authentication). On execution of the Client role by a principal
it is guaranteed that the intended KAS indeed sent expected response assuming that the
both the client and the KAS are honest. Similar result holds for a principal executing
the TGS role. Formally, KERBEROS ` AUTHclient

kas , AUTHtgs
kas



SECakey : Hon(Ĉ, K̂, T̂ ) ⊃ (Has(X,AKey) ⊃ X̂ ∈ {Ĉ, K̂, T̂})

SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (Has(X,SKey) ⊃ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), Ĉ.Esym[kt→k
T,K ](AKey.Ĉ).Esym[kc→k

C,K ](AKey.n1.T̂ ))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SECclient
akey : [Client]C SECakey AUTHclient

kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SECkas
akey : [KAS]K SECakey AUTHtgs

kas : [TGS]T Hon(T̂ , K̂) ⊃ ∃n1. AUTHkas

SECtgs
akey : [TGS]T SECakey

AUTHclient
tgs : [Client]C Hon(Ĉ, K̂, T̂ ) ⊃ AUTHtgs

SECclient
skey : [Client]C SECskey AUTHserver

tgs : [Server]S Hon(Ŝ, T̂ )

SECtgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

Table 2. Kerberos Security Properties

Proof Sketch. At a high level, the authentication proofs start by reasoning that a
ciphertext could have been produced only by one of the possessors of the corresponding
key. As an example, observe that in the first stage of Kerberos (described in section 2),
the client decrypts a ciphertext encrypted with a key shared only between itself and
the KAS (kc→k

C,K ). Hence we can infer that one of them did the encryption. However,
it is still not obvious that the client itself did not produce the ciphertext! Some other
thread of the client could have potentially created the ciphertext which could have been
fed back to the thread under consideration as a reflection attack. We discount this case
by observing that the client role of Kerberos never encrypts with a key of type c→ k.
This property is an invariant of Kerberos proved by induction over all the protocol role
programs. The HON rule enables us to perform this induction in the proof system.
Thus, so far, we have reasoned that the encryption was done by the KAS. We again
observe that any role of Kerberos which does an encryption of the specific form as in
stage one also sends out a message of the intended form (AUTHkas in table 2). This
is also an invariant of Kerberos. This concludes the proof of AUTHclient

kas . The proof of
AUTHtgs

kas follows the same high level reasoning. ut

Theorem 8 (Authentication Key Secrecy). On execution of the Client role by
a principal, secrecy of the Authentication Key is preserved assuming that the client,
the KAS and the TGS are all honest. Similar results hold for principals executing the
KAS and TGS roles. Formally, KERBEROS ` SECclient

akey , SECkas
akey, SEC

tgs
akey

Proof Sketch. This theorem states a secrecy property for the Authentication Key
AKey. Observe that in the first stage, the KAS sends out AKey encrypted under two
different keys - kc→k

C,K and kt→k
T,K , and the client uses AKey as an encryption key. As

a first approximation we conjecture that in the entire protocol execution, AKey is
either protected by encryption with either of the keys in K = {kc→k

C,K , k
t→k
T,K } or else

used as an encryption key in messages sent to the network by honest principals. This



seems like a claim to be established by induction. As a base case, we establish that the
generator of AKey (some thread of the KAS) satisfies the conjecture. The induction
case is: whenever an honest principal decrypts a ciphertext with one of the keys in K,
it ensures that new terms generated from the decryption are re-encrypted with some
key in K in any message sent out.

When we are reasoning from the point of view of the KAS (as in SECkas
akey), we

already know the initial condition - that the KAS sent out AKey encrypted under only
these keys. However, when arguing from the point of view of the client and the TGS
(as in SECclient

akey and SECtgs
akey), we need to have some authentication conditions estab-

lished first. These conditions are generally of the form that the KAS indeed behaved
in the expected manner. Reasoning from this premise, it turns out that our initial
conjecture is correct.

In the formal proof, we show that Kerberos is safe with respect to the nonce
AKey and the set of keys K. The induction idea is captured, in its simplest form,
by the proof rule NET. However, as Kerberos has a staged structure we use the
staged composition theorem (theorem 6) which builds upon the rule NET. The core
of the proof is the secrecy induction which is an induction over all the basic sequences
of all the protocol roles. The authentication condition Φ is easily derived from the
KAS Authentication theorem (theorem 7). The staged composition theorem allows us
to facilitate the secrecy induction by obtaining inferences from the information flow
induced by the staged structure of Kerberos in a simple and effective way. The secrecy
induction is modular as the individual basic sequences are small in themselves. Secrecy
of AKey now follows from by the axiom POS. ut

Theorem 9 (TGS Authentication). On execution of the Client role by a principal
it is guaranteed that the intended TGS indeed sent the expected response assuming that
the client, the KAS and the TGS are all honest. Similar result holds for a principal
executing the Server role. Formally, KERBEROS ` AUTHclient

tgs , AUTHserver
tgs

Proof Sketch. The proof of AUTHserver
tgs is very similar to the proof for theorem 7 .

The proof of AUTHclient
tgs uses the secrecy property SECclient

akey established in theorem

8 . At a high level, the client reasons that since AKey is known only to Ĉ, K̂ and T̂ ,
the term Esym[AKey](SKey.n2.Ŝ) - which it receives during the protocol execution
- could only have been computed by one of them. Some non-trivial technical effort is
required to prove that this encryption was indeed done by a thread of T̂ and not by
any thread of Ĉ or K̂, which could have been the case if e.g., there existed a reflection
attack. After showing that it was indeed a thread of T̂ who encrypted the term, we use
the honesty rule to show that it indeed sent the expected response to C’s message. ut

Theorem 10 (Service Key Secrecy). On execution of the Client role by a princi-
pal, secrecy of the Service Key is preserved assuming that the client, the KAS, the TGS
and the application server are all honest. Similar result holds for a principal executing
the TGS role. Formally, KERBEROS ` SECclient

skey , SECtgs
skey

Proof Sketch. The idea here is that the Service Key SKey is protected by the key-set
{ks→t

S,T , AKey}. The proof of this theorem follows the same high level steps as the proof
of theorem 8. ut

Kerberos with PKINIT We prove theorems for Kerberos with PKINIT [20] that
are analogous to theorems 7-10. In the first stage of Kerberos with PKINIT, the



KAS establishes the authorization key encrypted with a symmetric key which in turn
is sent to the client encrypted with its public key. For client Ĉ and KAS K̂ let us
denote this symmetric key by kpkinit

C,K . Since the structure of the rest of the protocol
remains the same with respect to the level of formalization in this paper [7], we can take
advantage of the PCL proofs for the symmetric key version. In particular, the proofs
for the properties of Kerberos with PKINIT analogous to AUTHtgs

kas, AUTH
client
tgs and

AUTHserver
tgs are identical in structure to the symmetric key version. The proof of the

property corresponding to AUTHclient
kas is different because of the differing message

formats in the first stage. There is an additional step of proving the secrecy of kpkinit
C,K ,

after which the secrecy proofs of AKey and SKey are reused with only the induction
over the first stage of the client and the KAS being redone.

7 Conclusion

We present formal axioms and proof rules for inductive reasoning about secrecy and
prove soundness of this system over a conventional symbolic model of protocol ex-
ecution. The proof system uses a safe message predicate to express that any secret
conveyed by the message is protected by a key from a chosen list. This predicate allows
us to define two additional concepts: a principal sends safe messages if every message
it sends is safe, and the network is safe if every message sent by every principal is
safe. Our main inductive rule for secrecy, NET, states that if every honest principal
preserves safety of the network, then the network is safe, assuming that only honest
principals have access to keys in the chosen list. The remainder of the system makes
it possible to discharge assumptions used in the proof, and prove (when appropriate)
that only honest principals have the chosen keys. While it might initially seem that
network safety depends on the actions of malicious agents, a fundamental advantage of
Protocol Composition Logic is that proofs only involve induction over protocol steps
executed by honest parties.

We illustrate the expressiveness of the logic by proving properties of two protocols:
A variant of the Needham-Schroeder protocol that illustrates the ability to reason
about temporary secrets, and Kerberos V5. The modular nature of the secrecy and
authentication proofs for Kerberos makes it possible to reuse proofs about the basic
version of the protocol for the PKINIT version that uses public-key infrastructure
instead of shared secret keys in the initial steps. Compositional secrecy proofs are
made possible by the composition theorems developed in this paper.

In an as-yet unpublished result, we have also developed a proof system for secrecy
analysis that is sound over a computational cryptographic protocol execution model.
While the Kerberos proofs are similar in that proof system, we have been unable to
formulate computationally sound proofs of NSL and variants.

References

1. IEEE P802.11i/D10.0. Medium Access Control (MAC) security enhancements,
amendment 6 to IEEE Standard for local and metropolitan area networks part
11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifica-
tions., April 2004.

2. M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptograph-
ically sound security proofs for basic and public-key kerberos. In Proceedings of
11th European Symposium on Research in Computer Security, 2006. To appear.



3. G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the secrecy
goals. In J.-J. Quisquater, editor, Proceedings of the 5th European Symposium on
Research in Computer Security, pages 361–375, Louvain-la-Neuve, Belgium, Sept.
1998. Springer-Verlag LNCS 1485.

4. F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. A Formal Analysis of Some
Properties of Kerberos 5 Using MSR. In Fifteenth Computer Security Foundations
Workshop — CSFW-15, pages 175–190, Cape Breton, NS, Canada, 24–26 June
2002. IEEE Computer Society Press.

5. F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. Verifying confidentiality
and authentication in kerberos 5. In ISSS, pages 1–24, 2003.

6. E. C. Kaufman. Internet Key Exchange (IKEv2) Protocol, 2005. RFC 4306.
7. I. Cervesato, A. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking and

fixing public-key kerberos. Technical report.
8. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition.

In Proceedings of ACM Workshop on Formal Methods in Security Engineering,
October.

9. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for secu-
rity protocols and its logical formalization. In Proceedings of 16th IEEE Computer
Security Foundations Workshop, pages 109–125. IEEE, 2003.

10. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composi-
tion. In Proceedings of 19th Annual Conference on Mathematical Foundations of
Programming Semantics, volume 83. Electronic Notes in Theoretical Computer
Science, 2004.

11. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and
compositional logic for security protocols. Journal of Computer Security, 13:423–
482, 2005.

12. R. Delicata and S. Schneider. Temporal rank functions for forward secrecy. In
18th IEEE Computer Security Foundations Workshop, (CSFW-18 2005), pages
126–139. IEEE Computer Society, 2005.

13. R. Delicata and S. A. Schneider. Towards the rank function verification of protocols
that use temporary secrets. In Proceedings of the Workshop on Issues in the Theory
of Security: WITS ’04, 2004.

14. N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for protocol cor-
rectness. In Proceedings of 14th IEEE Computer Security Foundations Workshop,
pages 241–255. IEEE, 2001.

15. C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular
correctness proof of ieee 802.11i and tls. In ACM Conference on Computer and
Communications Security, pages 2–15, 2005.

16. J. Heather. Strand spaces and rank functions: More than distant cousins. In Pro-
ceedings of the 15th IEEE Computer Security Foundations Workshop (CSFW’02),
page 104, 2002.

17. J. Kohl and B. Neuman. The kerberos network authentication service, 1991. RFC
1510.

18. S. Schneider. Verifying authentication protocols with csp. IEEE Transactions on
Software Engineering, pages 741–58, 1998.

19. F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7(1), 1999.

20. L. Zhu and B. Tung. Public key cryptography for initial authentication in kerberos,
2006. Internet Draft.


