
On the Relationships Between Notions of

Simulation-Based Security∗

Ralf Küsters1† Anupam Datta2 John C. Mitchell3 Ajith Ramanathan3

1Computer Science Department

University of Trier

FB IV, Campus II, 54286 Trier

kuesters@uni-trier.de

2CyLab, Computer Science, Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

danupam@cmu.edu

3Computer Science Department

Stanford University

Stanford, CA 94305-9045

{jcm,ajith}@cs.stanford.edu

Abstract

Several compositional forms of simulation-based security have been proposed in the
literature, including universal composability, black-box simulatability, and variants thereof.
These relations between a protocol and an ideal functionality are similar enough that they
can be ordered from strongest to weakest according to the logical form of their definitions.
However, determining whether two relations are in fact identical depends on some subtle
features that have not been brought out in previous studies. We identify the position of a
“master process” in the distributed system, and some limitations on transparent message
forwarding within computational complexity bounds, as two main factors. Using a general
computational framework, called Sequential Probabilistic Process Calculus (SPPC), we
clarify the relationships between the simulation-based security conditions. Many of the
proofs are carried out based on a small set of equivalence principles involving processes

∗An abridged version of this work has been published in TCC 2005 [17]. Our work was partially sup-
ported by the DoD University Research Initiative (URI) program administered by the Office of Naval Research
under Grant N00014-01-1-0795, by OSD/ONR CIP/SW URI ”Trustworthy Infrastructure, Mechanisms, and
Experimentation for Diffuse Computing” through ONR Grant N00014-04-1-0725, by NSF CCR-0121403, Com-
putational Logic Tools for Research and Education, by NSF CyberTrust Grant 0430594, Collaborative research:
High-fidelity methods for security protocols, and the U.S. Army Research Office contract on Perpetually Avail-
able and Secure Information Systems (DAAD19-02-1-0389). Part of this work was done when the first and
second authors were at Stanford University.

†corresponding author (phone: +49 (0)651 201 2852.)

1

and distributed systems. These equivalences exhibit the essential properties needed to
prove relationships between security notions and allow us to carry over our results to those
computational models which satisfy these equivalences.

Keywords: simulation-based security, universal composability, reactive simulatability, black-
box simulatability, process calculus

1 Introduction

Several current projects use ideal functionality and indistinguishability to state and prove
compositional security properties of protocols and related mechanisms. The main projects
include work by Canetti and collaborators on an approach called universal composability [9,
12–15] and work by Backes, Pfitzmann, and Waidner on a related approach that also uses
black-box simulatability [4, 5, 7, 30]. Other projects have used the notion of equivalence in
process calculus [19, 25, 26], a well-established formal model of concurrent systems. While
some process-calculus-based security studies [1–3] abstract away probability and computational
complexity, at least one project [24, 27, 28, 31] has developed a probabilistic polynomial-time
process calculus for security purposes. The common theme in each of these approaches is that
the security of a real protocol is expressed by comparison with an ideal functionality or ideal
protocol. However, there are two main differences between the various approaches: the precise
relation between protocol and functionality that is required, and the computational modeling
of the entities (protocol, adversary, simulator, and environment). All of the computational
models use probabilistic polynomial-time processes, but the ways that processes are combined
to model a distributed system vary. We identify two main ways that these computational
models vary: one involving the way the next entity to execute is chosen, and the other involving
the capacity and computational cost of communication. We then show exactly when the main
security notions differ or coincide.

In [9], Canetti introduced universal composability (UC), based on probabilistic polynomial-
time interacting Turing machines (PITMs). The UC relation involves a real protocol and ideal
functionality to be compared, a real and ideal adversary, and an environment. The real protocol
realizes the ideal functionality if, for every attack by a real adversary on the real protocol,
there exists an attack by an ideal adversary on the ideal functionality, such that the observable
behavior of the real protocol under attack is the same as the observable behavior of the ideal
functionality under attack. Each set of observations is performed by the same environment.
In other words, the system consisting of the environment, the real adversary, and the real
protocol must be indistinguishable from the system consisting of the environment, the ideal
adversary, and the ideal functionality. The scheduling of a system of processes (or ITMs)
is sequential in that only one process is active at a time, completing its computation before
another is activated. The default process to be activated, if none is designated by process
communication, is the environment. In the present work, we use the term master process for
the default process in a system that runs when no other process has been activated by explicit
communication.

In [30], Pfitzmann and Waidner use a variant of UC and a notion of black-box simulatability
(BB) based on probabilistic polynomial-time IO automata (PIOA). In the BB relation between

2

a protocol and ideal functionality, the UC ideal adversary is replaced by the combination of
the real adversary and a simulator that must be chosen independently of the real adversary.
Communication and scheduling in the PIOA computational model are sequential as in the
PITM model. While the environment is the master process in the PITM studies, the adversary
is chosen to be the master process in the Pfitzmann-Waidner version of UC. In the Pfitzmann-
Waidner version of BB the master process is the adversary or the simulator [30]. In a later
version of the PIOA model (see, e.g., [4]), the environment is also allowed to serve as the master
process, subject to the restriction that in any given system it is not possible to designate both
the adversary/simulator and the environment as the master process. In proofs in cryptography,
another variant of BB is often considered in which the simulator may depend on the real
adversary or its complexity. We call this variant Weak BB (WBB) and the previous one
Strong BB (SBB).

In [24, 28, 31, 32], Mitchell et al. have used a form of process equivalence, where an en-
vironment directly interacts with the real and ideal protocol. The computational model in
this work is a probabilistic polynomial-time processes calculus (PPC) that allows concurrent
(non-sequential) execution of independent processes. The process equivalence relation gives
rise to a relation between protocols and ideal functionalities by allowing a simulator to interact
with the ideal functionality, resulting in a relation that we call strong simulatability, SS [18].
The difference between SS and SBB is that in SBB, the environment and the adversary are
separated while the SS environment also serves as the adversary.

Contribution of the paper. In this paper, we clarify the relationships between the various
security notions, which are obtained by the different ways the entities (environment, real/ideal
adversary, simulator, real/ideal protocol) can be combined and quantified over. Besides the
different placements of the master process, already mentioned above, we also identify an-
other crucial issue for the relationships between the security notions: the ability to define
a “forwarding” process that forwards communication from one process to another. While
it seems intuitively reasonable that such a forwarder can be placed between two processes
without changing the overall behavior of the system, this may violate complexity bounds if a
polynomial-time forwarder must be chosen before the sending or receiving process. If the time
bound of the sender, for example, exceeds the time bound of the forwarder, then some sent
messages may be lost because the time bound of the forwarder has been exhausted. This is
relevant to our study because some equivalence proofs require the existence of forwarders that
cannot be exhausted.

When we started our investigation, one problem was that the above mentioned models
were unsuitable for studying the relationships between the various security notions. The
PITM model [8, 9] was too inexpressive to formulate all variants of the security notions due
to a lack of a general computational model, i.e., a model of probabilistic polynomial-time
systems defined independently of specific security notions. The PIOA model [5, 30] had some
model specific peculiarities, such as a requirement that IO automata have to communicate
through buffers. This would have made the formulations of the different security notions and
the study of their relationships much more cumbersome. Also, as we show in Section 6, the
model specific features have some rather counter-intuitive effects on the security notions. The
PPC model [24, 32] was unsuitable for our purposes because of the non-sequential execution

3

model. This motivated us to devise a new computational model, the sequential probabilistic
polynomial-time process calculus (SPPC). This calculus can be considered to be a “meta-
model” of PIOA and PITM. It (1) provides a compact syntax for writing equations between
systems of communicating machines and (2) is flexible enough to capture different variants of
security notions in a concise way. While our results will be formulated over SPPC, we also
discuss, in Section 6, implications for and differences to other models. However, the main
focus of our work are not details of specific models but the conceptual differences between the
various security notions and the resulting relationships between these notions.

The rigorously defined formal basis for simulation-based security SPPC provides is a crucial
prerequisite for the study carried out in the present paper. It allows us to devise an axiom
system consisting of a small set of equivalence principals involving processes and distributed
systems. Having such an axiom system at hand has several advantages: (i) It exhibits the
essential properties needed to prove relationships between security notions. (ii) Many proofs
are much more concise and simpler. (iii) Results proved based on the axiom system carry over
to those models that satisfy the axioms. (iv) Failure of axioms in certain models brings out
weaknesses in these models (see Section 6).

Our main results formulated over SPPC and the axiom system are summarized in Figure 2
(see page 55) and are further explained below. Each of the four boxes in this figure stands for
a class of equivalent security notions. Specifically, if a real and ideal protocol are related by
one notion in this class, then they are also related by all other notions in this class. A solid
arrow from one class to another indicates that relations in the first class imply relations in
the second class. The implication indicated by the dashed arrow is contingent on whether the
aforementioned forwarding property holds for the processes in question.

1. Equivalences between security notions.

(a) The different forms of Strong Simulatability and Strong Blackbox obtained by vary-
ing the entity that is the master process are all equivalent. This equivalence class,
denoted SS/SBB, is depicted in the top-left box in Figure 2 and includes placements
of the master process as considered for Strong Blackbox in [4, 30]

(b) All variants of Universal Composability and Weak Blackbox in which the envi-
ronment may be the master process are equivalent. This equivalence class, denoted
UC/WBBenv, is depicted in the bottom-left box in Figure 2 and includes placements
of the master process as considered for Universal Composability in [4, 9].

(c) All variants of Universal Composability and Weak Blackbox in which the simulator
and the adversary may be the master process, but not the environment are equiv-
alent. This equivalence class, denoted UC/WBBsim, is depicted in the top-right
box in Figure 2 and includes placements of the master process as considered for
Universal Composability in [30].

(d) All variants of Weak Blackbox where the adversary may be the master process, but
neither the environment nor the simulator may play this role are equivalent. This
equivalence class, denoted WBBadv , is depicted in the bottom-right box in Figure 2.

2. Implications between the classes.

4

(a) SS/SBB implies UC/WBBenv. In particular, Strong Blackbox with placements of
the master process as considered in [4, 30] implies Universal Composability with
placements of the master process as considered in [4, 9].

(b) UC/WBBenv implies WBBadv .

(c) WBBadv implies UC/WBBsim. In particular, Strong Blackbox with placements of
the master process as considered in [4,30] and Universal Composability with place-
ments of the master process as considered in [4,9] implies Universal Composability
with placements of the master process as considered in [30].

3. Separations between the classes.

(a) The security notions in UC/WBBenv are strictly weaker than those in SS/SBB in
any computational model where the forwarding property (expressed precisely by the
FORWARDER axiom) fails. Since this property fails in the PITM model [9] and
the buffered PIOA model [4] (see Section 6), it follows that UC/WBBenv does not
imply SS/SBB in these models. This contradicts a theorem claimed in [4]. However,
the forwarding property holds in SPPC and the buffer-free PIOA model for most
protocols of interest. In these cases, UC/WBBenv implies SS/SBB.

(b) The security notions in UC/WBBsim are strictly weaker than the notions in WBBadv ,
and hence, the notions in UC/WBBenv and SS/SBB. In particular, the Universal
Composability relation with placements of the master process as considered in [30]
does neither imply the Strong Blackbox relations with placements of the master pro-
cess as considered in [4, 30] nor Universal Composability relations with placements
of the master process as considered in [4, 9].

In Section 6, we point out implications of our results for other models and discuss differences
between SPPC and these other models. For the PIOA model, we show that because of the
buffers required in this model certain axioms do not hold and that UC does not imply SBB
even in those cases where the FORWARDER axiom is satisfied and the environment may play
the role of the master process. In other words, the buffers in the PIOA model are another
reason—in addition to the FORWARDER axiom and the placement of the master process—for
the separation between UC and SBB. This rather counter-intuitive behavior can be avoided if
a buffer-free version of PIOA (BFPIOA) is considered. In this case, all our axioms hold true,
and hence, all proofs based on these axioms immediately carry over to BFPIOA. In fact, for
BFPIOA we obtain exactly the same relationships between the security notions as explained
above (1.–3., see also Figure 2). For the PITM model, as mentioned, the problem is that
most security notions that we study cannot be expressed directly. However, based on our
results, several general points can be made. For example, the ITMs in the ITM model do not
have a mechanism to block useless messages, such as the guard mechanism in SPPC or length
functions in PIOA. As a result, the FORWARDER axiom fails in this model. It even fails for
classes of protocols for which it is satisfied in the SPPC and BFPIOA model. Consequently,
our results imply that UC does not imply SBB (SS) in this model, even for classes of protocols
for which the implication holds in SPPC and BFPIOA.

We note that the present work concentrates on models for simulation-based security where
processes run in polynomial time in the security parameter alone. Recently, several models

5

have been proposed in which the runtime of the processes may depend on the length of their
input [8,20,23]. Many of the results proved in this work, in particular those involving the issue
of placements of the master process, carry over to these models, and they have in fact already
influenced design decisions made there.

Outline of the paper. In Section 2, we introduce the sequential polynomial-time process
calculus SPPC. In Section 3, we show that every system and every part of a system can be
turned into a process expression which exactly mimics a single interactive Turing machine. The
security notions are defined in Section 4. The main results, i.e., the relationships between the
security notions, are proved in Section 5, with consequences for the PIOA and PITM models
developed in Section 6. In Section 7, we briefly consider a less prominent security notion,
called reactive simulatability in [5] and security with respect to specialized simulators in [10],
and relate it to the other notions. We conclude in Section 8. In [16], we also show general
composition theorems for SPPC and prove that protocols that satisfy the FORWARDER
property preserve this property when they are composed.

2 Sequential Probabilistic Process Calculus (SPPC)

In this section, we introduce Sequential Probabilistic Process Calculus (SPPC) as a language-
based computational model for studying security notions. Before we formally define syntax
(Section 2.3) and semantics (Section 2.4) of our computational model, we provide an informal
description (Section 2.1) and introduce the notion of a probabilistic function (Section 2.2).
Since most of the material in the subsequent sections can be followed with only the intuition
provided in Section 2.1 in mind, readers might want to skip Section 2.2 to 2.4 when reading
through the paper for the first time.

2.1 Informal Introduction of SPPC

Let us first note that the driving philosophy behind the design of SPPC is to specify details
of the communication model (such as a specific order of activation of entities, insecure, au-
thenticated, secure channels, specific buffers, synchronous communication, broadcasting, and
corruption) as part of the protocol specification itself rather than to explicitly encode, and
thus fix, these details in the overall computation model. SPPC is expressive enough to encode
such details in the protocol specifications. This makes SPPC relatively simple and flexible. In
particular, a variety of security notions can easily be formulated in SPPC.

We start by discussing how individual probabilistic polynomial-time machines are modeled
in SPPC and then explain how to build and execute systems of interacting machines. Our
exposition parallels that of related models [5, 9, 30].

Single probabilistic polynomial-time machines. In SPPC, single machines are of the
form as depicted in Figure 3 (see page 56). Syntactically, these machines will later be repre-
sented by process expressions in what we call single machine normal form (see Section 3). For
the time being, let us ignore the “guards” and t 3). he variables x1, . . . , xk. Conceptually, a

6

single machine is a black-box with internal state that receives inputs, performs polynomially-
bounded computation and then produces outputs. Inputs are received on input channels and
outputs are written on output channels. More precisely, single machines are restricted to re-
ceiving one input and producing at most one output at a time. While this at first might appear
to be a restriction, it is not really a problem since any machine that sends multiple messages
can be converted to a machine that stores internally—possibly using internal buffers—the
messages it wants to send, and then sends the messages one at a time on request. In fact, this
style of communication corresponds exactly to the manner in which communication is defined
in other sequential models, notably the PIOA and PITM models [9,30]. Also, just as in these
models, the overall runtime of a machine is bounded by a polynomial in the security parameter
and does not depend on the number or length of inputs sent to the machine.

The channels of a single machine in SPPC correspond to ports in the PIOA model and
to tapes in the PITM model. However, while messages on channels (and ports) are removed
when read, this is not the case for tapes. Nevertheless, tapes can be modeled by adding
machines, one for each input channel, which simulate the tapes in the obvious way. The “main
machine” will then receive its input from the “tape machines”. In the PIOA model, buffer
machines serve a similar purpose. Note that while in SPPC and the PIOA model, the number
of input and output channels/ports is not restricted, in Canetti’s PITM model only one pair
of input/output and input/output communication tapes is considered.

In SPPC, machines can preprocess their input using guards (see Figure 3) which are de-
terministic polynomial-time machines that are placed on input channels. Given an input on
the channel, a guard may accept or reject the input. If rejected, the process does not perform
any further computation. If accepted, the process receives the output of the guard. This may
be different from the input, e.g., a guard can eliminate unnecessary information or transform
data. The computation performed by the guard may depend on the current internal state of
the process. Its runtime is polynomially-bounded in the security parameter per invocation and
is not factored into the overall runtime of the process using the guard. In particular, a guard
can be invoked an unbounded number of times. Since guards allow a process to discard mes-
sages without incurring a computation cost, attempts to “exhaust” a process by sending many
useless messages to the process can be defeated. Additionally, using guards we can simulate
an unbounded number of “virtual” channel names by prefixing each message with a session id
and/or party name and then stipulating that the guards accept only those messages with the
right header information. Such an ability is required for systems with a polynomial number of
machines, e.g., multiparty protocols, or with multiple instances of the same protocol. While
mechanisms analogous to guards are absent in other models, notably [9,30], a newer version of
PIOA [6] has a length function that, when set to zero, prevents messages from being received
by the machine. This corresponds to a guard which rejects all inputs and so can be used
to help avoid exhaustion attacks. However, it does not help in the creation of a mechanism
analogous to virtual channels.

As mentioned above, guards can be invoked an unbounded number of times without being
exhausted and in every invocation their runtime is bounded by a polynomial in the security
parameter—the runtime could even depend on the length of the input. Hence, the runtime of
a single machine including the guards is polynomially bounded in the security parameter and
the number of invocations. However, the overall runtime of a single machine excluding the

7

guards is polynomially bounded in the security parameter alone, and hence, such a machine
can produce at most polynomially many output messages overall in the security parameter.
Now, since guards can only be triggered by messages sent by single machines, it follows that
in a system of polynomially many machines guards are only invoked a polynomial number of
times in the security parameter. As shown in Section 2.4.3, from this we can conclude that
such systems can be simulated by a probabilistic polynomial time Turing machine.

In SPPC, a machine may have auxiliary input, just like auxiliary input can be given to the
interacting Turing machines in Canetti’s model. This input is written on specific tapes before
a (system of) machines is run. If such auxiliary input is used, it results in a non-uniform
computational model. The tapes are represented by x1, . . . , xk (see Figure 3). Just like in
Canetti’s model, we only allow the environment machine to use auxiliary input. However,
whether the environment machine is uniform or not does not affect the results presented in
this paper (except for those in Section 7).

More formally, in SPPC a single machine is defined by a process expression P. Such an
expression corresponds to a description of an interacting Turing machine in the PITM model
or an I/O automaton in the PIOA model. A process expression is always parameterized by
the security parameter n and possibly so-called free variables x1, . . . , xk, which represent the
tapes for the auxiliary input mentioned above. Therefore, we sometimes write P(x1, . . . , xk)

instead of P. A process expression with value i chosen for the security parameter and values
→
a

(the auxiliary inputs) substituted for its free variables
→
x yields a process P(

→
a)n←i. A process

corresponds to an interacting Turing machine where the security parameter is written on the
security parameter tape and the auxiliary input is written on the input tape. Hence, a process
can perform computations as soon as it receives input on the input channels. As an expositional
convenience, we will use the terms ‘process expression’ and ‘process’ interchangeably. A process
expression is called open if it has free variables, and closed otherwise. Hence, open process
expressions correspond to non-uniform machines and closed expressions to uniform ones.

Systems of interacting machines. In SPPC, a system of interacting machines is simply
a multiset of single machines where an output channel of one machine connects directly to an
identically-named input channel of another machine. The manner in which these machines are
wired together is uniquely determined by the channel names since we stipulate that no two
machines have the same input and output channel names respectively. After a machine M1 has
sent a message on an output channel, the machine waits to receive input on an input channel.
The message sent on the output channel is immediately received by the machine M2 that has
an identically-named input channel. If the guards on the input channel of this machine accepts
the message, then M2 may perform some computation and produce one output message. While
M2 now waits for new input on its input channels, the output message (if any) is processed
by the next receiving machine, and so on. If there is no receiving machine, or the guard of
the receiving machine rejects the message, or no output message is produced, computation
would halt since no machine is triggered. To avoid this, in a system of machines, one machine
is always declared to be a master machine, also called master process, and this machine is
triggered if no other machine is.

In SPPC, given process expressions P1, . . . ,Pn, each representing a single machine, the
combined system of machines is denoted by the process expression P1 ↿ · · · ↿ Pn. Instead of

8

interpreting P1 ↿ · · · ↿ Pn as a system of n single machines, one can consider this system as a
single machine (consisting of n sub-machines). This corresponds to the transformation, in the
PIOA model, of a system of fixed, finite number of machines into a single machine. However,
in SPPC we can apply such transformations to systems containing a polynomial number of
machines as well.

With the bounded replication operator !q(n) P, where q(n) is some polynomial in the
security parameter and P is a process expression (representing a single machine or a system
of machines), systems containing a polynomial number of machines can be described. The
process expression !q(n) P stands for a q(n)-fold concurrent composition P ↿ · · · ↿ P. Note
that in such a system, different copies of P have the same input and output channels. However,
as discussed earlier, guards allow us to send messages to (virtual) channels of particular copies
of a protocol. Bounded replication can be combined with concurrent composition to build
bigger systems such as !q1(n) (P1 ↿ P2 ↿ !q3(n) P3).

As described earlier, since our execution model is sequential, computation may not proceed
if the currently executing machine produces no output, or a receiving machine rejects an input.
In order to ensure that computation proceeds even in this case, we identify a master process
by using a special input channel start. In case no output is produced by a machine, a fixed
value is written on start thereby triggering the master process. The master process is also
the first machine to be activated when execution starts.

Additionally, in studying security notions, it will be useful to define the output of a system.
We do so by writing a bit, the output, onto an output channel named decision. The machine
containing this channel is called the decision process. Given a process expression R(

→
x) with free

variables
→
x , we denote by Prob[R(

→
a)n←i 1] the probability that R with security parameter i

and substitution of values
→
a for its variables

→
x outputs a 1 on decision. Recall that R(

→
a)n←i

denotes the process obtained from the process expression R by replacing the security parameter
n by a value i and replacing the variables

→
x by values

→
a . Two process expressions P(

→
x) and

Q(
→
x) are called equivalent or indistinguishable, written P(

→
x) ≡ Q(

→
x), iff for every polynomial

p(n) there exists i0 such that |Prob[P(
→
a)n←i 1]−Prob[Q(

→
a)n←i 1]| ≤ 1/p(i) for every

i ≥ i0 and every tuple
→
a of bit strings.

We call machines which are neither master nor decision processes regular. A machine which
is both master and decision is called a master decision process. In what follows, by R, M, D,
and MD we denote the set of all closed regular processes, closed master processes, open or
closed decision processes, and open or closed master decision processes, respectively.

2.2 Probabilistic Functions

A probabilistic function F from X to Y is a function of the form X ×Y → [0, 1] which satisfies
the following two conditions:

1. The cardinality of the set {y ∈ Y | F (x, y) > 0} is finite for every x ∈ X.

2.
∑

y∈Y F (x, y) ≤ 1 for every x ∈ X.

We call F a k-ary probabilistic function if X = Zk = Z × · · · × Z for some set Z.

9

We refer to X as the domain of F , to Y as the codomain of F , and to the set
⋃

x∈X{y ∈ Y |
F (x, y) > 0} as the range of F .

If → is a probabilistic function, then instead of writing → (x, y) = p to say that x is

mapped to y with probability p, we often write p = Prob[x → y] or x
p
→ y and say that x is

reduced to y (by →) with probability p.
Let → and ⇒ be two probabilistic functions such that the range of → is a subset of the

domain of ⇒. Then, the composition → ◦ ⇒ of → and ⇒ defines the following probabilistic
function: Prob[x → ◦ ⇒ y] =

∑

z Prob[x → z ⇒ y] for all x and y where z ranges over the
range of → and Prob[x → z ⇒ y] = Prob[x → z] · Prob[z ⇒ y].

Let → be a probabilistic function such that domain and codomain coincide and let i > 0.
Then, the probabilistic function (→)i is defined by induction on i as follows: If i = 0, then
(→)0 is the identity function, i.e., Prob[x(→)0y] = 1 if y = x and Prob[x(→)0y] = 0 otherwise.
For i > 0, we define Prob[x(→)iy] = Prob[x → ◦(→)i−1y].

Let → be a probabilistic function which satisfies the following conditions:

1. Domain and codomain of → coincide, say it is the set X.

2. The directed graph induced by →, i.e., (X, {(x, y) ∈ X ×X | Prob[x → y] > 0}) is cycle
free except for self loops.

3. For every x we have Prob[x → x] ∈ {0, 1}.

Now, in case X is a finite set, the transitive closure (→)+ of → is defined to be the following
probabilistic function:

Prob[x(→)+y] =
∑

i>0

∑

z1,...,zi−1
zj 6=y for all j

Prob[x → z1 → · · · → zi−1 → y]

for every x and y. Note that, since X is assumed to be a finite set, in the sums only a finite
number of probabilities are different from 0.

Note that a probabilistic polynomial time Turing machine with k input tapes and l output
tapes realizes a probabilistic function F of the form ({0, 1}∗)k × ({0, 1}∗)l → [0, 1] where we
define the size of the input to be the length of the input written on the first tape, i.e., the
Turing machine runs in polynomial time in the length of the first component of the function
it realizes.

2.3 Syntax of SPPC

We now introduce the syntax of SPPC, in particular, we define process expressions. For this,
we first need to introduce terms and channels.

2.3.1 Terms

Let V be an infinite supply of variables. Variables are referred to by x, y, z and decorations
thereof. We write

→
x for the sequence x1, . . . , xk of variables. Bit strings, i.e., elements of

{0, 1}∗, are denoted by a, b, and decorations thereof. The empty bit string is referred to by ε.

We write
→
a to denote the sequence a1, . . . , ak of bit strings. Let n be the security parameter.

10

C-terms. A C-term T = T (
→
x) (“C” being reminiscent of “computation”) is some repre-

sentation of a probabilistic function of the form ({0, 1}∗ × ({0, 1}∗)k) × {0, 1}∗ → [0, 1] which
can be realized by a probabilistic polynomial time Turing machine where the first component,
{0, 1}∗, in the domain ({0, 1}∗ × ({0, 1}∗)k) of this function takes the security parameter n.

The variables
→
x are called input variables of T (

→
x) and the set of input variables of T is denoted

by varin(T). We write p = Prob[Tn←i(a1, . . . , ak) ↓ a] or simply p = Prob[T ↓ a] to say that
T outputs (reduces to) the bit string a on input a1, . . . , ak and security parameter i with prob-
ability p. We assume that the class of C-terms is complete in the sense that all probabilistic
polynomial time realizable probabilistic functions can be described by some C-term. Obviously
we can achieve this by simply taking representations of probabilistic polynomial-time Turing
machines to be C-terms.

C-terms will be used in processes of the form out(c, T) to compute a bit string which is
then placed on the channel c.

M-terms. An M-term (also called guard) t = t(
→
x ;
→
y) (“M” being reminiscent of “matching”)

with
→
x= x1, . . . , xk and

→
y= y1, . . . , yl is some representation of a (deterministic) function F

of the form ({0, 1}∗ × {0, 1}∗ × ({0, 1})k) × ({0, 1}∗ × ({0, 1}∗)l) → {0, 1} that can be realized
by a deterministic polynomial time Turing machine where the first component of the domain
({0, 1}∗ ×{0, 1}∗ × ({0, 1})k) of this function takes the security parameter n. The variables

→
x

are called input variables of t and the variables in
→
y , which are required to be distinct from

the input variables, are called output variables. We refer to the input variables of t by varin(t)
and to the output variables of t by varout(t). Intuitively, an M-term t works as follows: Given

bit strings
→
a for the input variables (the last k components of the domain of t), on receiving

a bit string a (the second component of the domain of t) the term t either rejects a or accepts
it (i.e., 0 or 1 is returned as the first component of the codomain ({0, 1}∗ × ({0, 1}∗)l) of t).
In case t accepts, it produces l bit strings (the last l components of the codomain of t) which

are substituted for the output variables
→
y . In case t rejects, this output is irrelevant. We

assume that the class of M-terms is complete in the sense that all deterministic functions F
realizable by a deterministic polynomial-time Turing machine can be described by some M-
term. Obviously this is possible by taking representations of such Turing machines as M-terms.

For our purposes, M-terms with only one output variable would suffice. However, additional
output variables make it more convenient to define certain processes.

M-terms will occur in processes of the form P = in(c, t).P ′. If a bit string a is received
on channel c, the M-term t allows to parse a (maybe depending on external input) before P
actually reads a, and computes substitutions for the output variables in case a is accepted by
t. The output variables of t may occur in P ′.

Often, t is of the form x which we will interpret as an M-term without input variables and
output variable x. This M-term accepts any message and this message is substituted for x. The
runtime of such an M-term is determined by the bandwidth of c, which is a polynomial in the
security parameter (see below). Conversely, since the computation of an M-term is polynomial
bounded in the security parameter, this polynomial could be considered the bandwidth of
the channel the M-term operates on. Hence, one could dispense with explicitly assigning
bandwidth to channels.

11

The purpose of M-terms was explained in Section 2.1 where M-terms where referred to
as “guards”. As explained there, one reason for introducing M-terms is that they allow us
to create new virtual channels: An M-term can reject all messages that do not start with a
certain bit string b where b stands for a session ID, i.e., it can check whether messages are of
the form (b, x). When later different instances of a protocol are modeled, which all have their
unique SID, then every instance will only accept a message that is prefixed with the correct
SID. Also, every message returned by an instance will be prefixed by the SID of the instance.
This will allow us to send/receive messages to/from specific instances of protocols without
introducing channel variables as in π-calculus [25,26].

2.3.2 Channels

A channel is a tuple c consisting of a channel name name(c), a bandwidth bw(c), and a priority
prior(c). The bandwidth bw(c) is a polynomial in the security parameter and determines the
maximum length of messages that can be sent through c. Strictly speaking, as also mentioned
above, the bandwidth is not needed since M-terms implicitly bound the length of messages
read from a channel. However, making this bound explicit is more convenient. The priority
prior(c) of c can take the values high and low, and accordingly, we refer to high and low
channels. A message on a high channel will be scheduled before a message on a low channel.
The intuition is that high channels are used to update the internal state of a process, while
low channels are used to communicate with external processes or internal subprocesses. In
Section 2.1, we only referred to low channels and for the sake of presentation did not mention
the internal step to update the internal state that is taken after the output on the low channel
has been produced. Channels are usually referred to by c and decorations thereof. The set of
channels is denoted by C. We assume that C contains the low channels start and decision.
The channel start will be used as input channel of what we will call the master process which
is activated via the start channel if no further communication is possible. The environment,
which is trying to distinguish a protocol from its ideal version, will use the decision channel
to output its decision.

2.3.3 Sequential Process Expressions and Processes

A sequential process expression P is defined by the grammar depicted in Figure 1 where cL

and cH stand for low and high channels, respectively, and t and T are M- and C-terms,
respectively. We will require that high channels occurring in a sequential process expression
P are internal. Internal and external channels are defined below. While in process calculus
one typically refers to the operator ‘ || ’ by the term “parallel composition”, in cryptography
“parallel composition” sometime means composition in a synchronous model. As the formal
semantics will make precise, we mean “concurrent composition”.

Expressions of the form Pout are called process expressions with initial output. The notion
process expression refers to both sequential process expressions and process expressions with
initial output.

The set of channels occurring in a process expression P is denoted by C(P). A channel c
is called internal in P if it occurs both in an expression of the form in(c, t).P ′ and out(c, T);
otherwise, it is called external. The set of internal and external channels of P is denoted by

12

P ::= 0 | (termination)
S | (wait for input on different channels)
(P || P) | (concurrent/parallel composition)
!q(n) P | (bounded replication)

Pout ::= (OL || OH || P) (process with initial output)
OH ::= out(cH , T) | (output on high channel cH)

0

OL ::= out(cL, T) | (output on low channel cL)
0

S ::= in(cH , t).P | (wait for input on high channel cH)
in(cL, t).Pout | (wait for input on low channel cL)
(S + S) (wait for input on different channels)

Figure 1: Sequential Process Expressions

Cint(P) and Cext(P), respectively. The set Cext(P) is further partitioned into input (Cin(P))
and output channels (Cout(P)) in the obvious way.

Given a non-negative integer i (represented by a bit string), a process P = Pn←i of a
process expression P is obtained from P by replacing every occurrence of !q(i) Q

n←i by

q(i) times
︷ ︸︸ ︷

Qn←i || · · · || Qn←i .

We call i the parameter associated with P . In P , M-terms and C-terms are evaluated using i
as the security parameter.

Note that modulo commutativity and associativity of the parallel composition operator
“ || ”, a process P is of one of the following forms: P ′, out(c, T) || P ′, out(c′, T ′) || P ′, or
out(c, T) || out(c′, T ′) || P ′ where P ′ is a process obtained from a sequential process expression
(i.e., without initial output), c is a high channel, and c′ is a low channel. In other words, at
most two messages are currently on channels (at most one on a high channel and at most
one on a low channel). In what follows, we refer to processes such as P ′ by processes without
output.

Since process expressions and processes are (formal) terms, we sometimes consider them
as finite ordered trees with labeled nodes.

Given a process (expression) P , the set of free variables free(P) of P is the set of input
variables of C-terms occurring in P which are not bound by an input expression. Formally,
free(P) is defined inductively as follows:

• free(0) = ∅,

• free(in(c, t).P) = free(P) \ varout(t),

• free(out(c, T)) = varin(T),

13

• free(P || Q) = free(P) ∪ free(Q),

• free(!q(n) P) = free(P),

• free(P + Q) = free(P) ∪ free(Q).

We write P (
→
x) with

→
x= x1, . . . , xk to say that {x1, . . . , xk} ⊆ free(P). A process (expression)

P is called closed if free(P) = ∅.

If P (
→
x) is a process (expression) and

→
a is a sequence of bit strings (of the same length as

→
x), then P (

→
a) denotes the process (expression) obtained from P (

→
x) by replacing every free

occurrence of xi by ai. The M-term and C-terms in P (
→
a) containing a free occurrence of xi

will be evaluated with xi replaced by ai.
Let P be a process and t be an M-term. If t accepts a bit string a, then, as explained, it

(deterministically) produces bit strings a1, . . . , ak as output and these bit string are substituted
for the output variables varout(t) = {x1, . . . , xk} of t. We write [a/t]P to denote the process
obtained from P by substituting every free occurrence of xi in P by ai.

The communication size comsize(P) of a process P is the number of occurrences of input
and output processes in P ; for instance, comsize(out(c, T) || out(c, T) || in(c, t).in(c, t)) = 4.

The communication size comsize(P)(n) of a process expression P is a polynomial q(n)
such that q(i) = comsize(Pn←i) for every i. Clearly, such a polynomial exists.

2.3.4 Contexts

A context C[] is a process where exactly one leaf is labeled with [].
The process C[P] is obtained from the context C[] by plugging the process P into the hole

of C[]. This notation is used to refer to some subprocess P of a given process P ′ = C[P].
Given a process P , we call a context C[] an input context for P , if there exists a process of

the form in(c, t).Q, called the input process associated with C[], such that C[in(c, t).Q] = P
and on the path from the root of C[] to its hole all nodes are labeled with ‘ || ’ or ‘+’. This
implies that P is ready to receive input on channel c (with M-term t).

2.4 Semantics of SPPC

Processes have an interleaving semantics which is defined in terms of reductions. Roughly
speaking, given a process P , the reduction is carried out by iteratively performing the following
steps until nothing changes:

1. Reduction. All C-terms occurring in P where all the variables are replaced by bit strings
are reduced. After this step, there is at most one message on a high channel and at
most one message on a low channel in P , i.e., modulo commutativity and associativity of
“ || ”, P is of the form P ′, out(c, a) || P ′, out(c′, a′) || P ′, or out(c, a) || out(c′, a′) || P ′

where P ′ is a process without output, c is a high channel, and c′ is a low channel.

2. Communication. In the first case (where no message is on any channel), the empty bit
string ε is put on start which is then read by the process. In case there is only one
message on a (high or low) channel, then this message is read. In the last case (where

14

there is one message on a high channel and one on a low channel), the message a on the
high channel c is read by the process. (Note that, by definition of process expressions,
after reading a on c, the process does not produce new output and in the next iteration
step, the message on the low channel will be read.)

The intuition is that high channels are used to update the current (internal) state of a process
(and therefore have priority over low channels) while low channels are intended for communi-
cation with external processes or internal subprocesses.

In what follows, every single step is defined formally and the steps are put together in
Section 2.4.3.

2.4.1 C-term Reduction

The reduction of C-terms occurring in a process is defined by the probabilistic function ⇀ on
closed processes. For open processes P (

→
x), the free variables

→
x are first substituted by bit

strings.
Formally, P

p
⇀ Q is defined by structural induction on P where we assume that the security

parameter associated with P is i:

• 0
1
⇀ 0,

• in(c, t).P
1
⇀ in(c, t)P ,

• out(c, T)
p
⇀ out(c, a) if p =

∑

b≡a mod 2bw(c)(i) Prob[T ↓ b],

• P || Q
p
⇀ P ′ || Q′ if P

q
⇀ P ′, Q

q′

⇀ Q′, and p = q · q′,

• P + Q
1
⇀ P + Q.

For the cases not covered above we define P
0
⇀ Q. Note that since we assume P to be closed,

all input variables of the C-term T have been substituted by bit strings.

2.4.2 Communication

To define the communication step, we first introduce a probabilistic function →(c,a) on closed
processes which describes how a message a on channel c is read by a process.

Formally, we define P
p

→(c,a) Q iff the following is true: Let N be the number of different
input contexts C[] of P with associated input processes of the form in(c, t).P ′ such that t
accepts a. In other words, N is the number of input expressions in P ready to receive input
a on channel c. Then,

1. If N = 0, then P = Q and p = 1, or P 6= Q and p = 0.

2. If N 6= 0, then Q = C[[a/t]P ′] and p = 1/N for some C[] and in(c, t).P ′ as above, and
otherwise p = 0.

15

Now, we are ready to define a communication step → on closed processes. We set P
p
→ Q if

the following is true:

1. If P = out(decision, a) || P ′ for some process P ′, then P = Q and p = 1, or P 6= Q and
p = 0. (Since in P output was written on the channel decision, no further step shall
be taken.) Otherwise:

2. If P is a process without output, then p = Prob[P →(start,ε) Q].

3. If P = out(c, a) || P ′ for some process P ′ without output, then p = Prob[P ′ →(c,a) Q].

4. If P = out(c, a) || out(c′, a′) || P ′ where P ′ is a process without output and c is a high
channel, then p = Prob[out(c′, a′) || P ′ →(c,a) Q].

In all other cases, we define P
0
→ Q.

2.4.3 The Complete Reduction of Processes

The probabilistic function ⇒ defines the complete reduction of processes.
For all processes P , Q, and probabilities p we define

P
p
⇒ Q iff p = Prob[P ⇀ ◦(→ ◦ ⇀)+ Q].

The probability p that the decision returned by a closed process P is 1 is written Prob[P 1]

or P
p
 1 and is defined as follows:

Prob[P 1] =
∑

Q

Prob[P ⇒ Q]

where Q ranges over all processes of the form out(decision, 1) || Q′ (modulo commutativity
and associativity of ‘ || ’).

The following theorem tells us that the computation of process expressions can be sim-
ulated by a probabilistic polynomial time Turing machine, where the Turing machines use
probabilistic transitions.

Theorem 1. Let P(x1, . . . , xk) be a process expression. There exists a probabilistic polynomial-
time Turing machine that for all processes Q (modulo associativity of ‘+’ and ‘ || ’) returns
Q on input i,P(x1, . . . , xk), a1, . . . , ak (given on separate input tapes) with probability p iff

P(a1, . . . , ak)
n←i p

⇒ Q. The Turing machine runs in polynomial time in the security parameter
i.

2.5 Indistinguishability of Process Expressions

Throughout the paper, we will need the well-established notion of indistinguishability. The
indistinguishability of process expressions is defined as follows:

16

Definition 2. Two sequential process expressions P(
→
x) and Q(

→
x) are called equivalent or

indistinguishable (P(
→
x) ≡ Q(

→
x)) iff for every polynomial p(n) there exists i0 such that for

every i ≥ i0 and every tuple
→
a of bit strings we have that

|Prob[P(
→
a)n←i 1] − Prob[Q(

→
a)n←i 1]| ≤ 1/p(i).

Obviously, ≡ is an equivalence relation on sequential process expressions.
We note that in the PIOA model, a notion of indistinguishability is considered where a

separate machine compares views on runs of systems. However, for the results considered in
this paper, this does not make a difference.

3 Single Machine Normal Form

In this section, we show that sequential process expressions can be turned into what we call
single machine normal form.

As explained informally in Section 2.1, these normal forms correspond to probabilistic
polynomial time IO automata (PIOAs) or Interactive Turing Machines (ITMs) which in every
step read exactly one message (on some external channel) as input and produce at most one
message as output, and which, in addition, have guards (M-terms) which allow them to reject
or accept their input. If they reject the input, then the message sent is dropped and no further
computation is carried out. (In this case, the master process is triggered by reading a message
on start). The guards are deterministic Turing machines which run in polynomial time in
the security parameter. If a process (in SMNF) is open, i.e., has free variables, then this
corresponds to a non-uniform PIOA/ITM (with guards), and otherwise to a uniform one.

Guards add additional power to processes (or PIOA and ITM extended by guards). The
machine itself could inspect the input and decide whether to accept or reject it, and in the latter
case, would simply produce no output. However, the overall run time of machines is bounded
by a polynomial in the security parameter and is independent of the number of invocations to
a machine. As a consequence, inspecting the input consumes resources. The idea behind the
guards is that they are invoked anytime a message is sent on an input channel and that their
run time is not added to the run time of the “main machine”. Consequently, using guards,
inspecting the input does not consume resources. In other words, guards of processes (or PIOA
and ITM extended by guards) are devices of a machine whose run time may depend on the
number of invocations (where within one invocation the run time is polynomial in the security
parameter).

We will sometimes consider processes in what we call simple single machine normal form
(SSMNF) where the guards accept all messages. We refer to the fragment of SPPC where all
process are concurrent compositions of processes in SSMNF the guard-free fragment of SPPC.

A process expression in single machine normal form works as follows: Before processing
a message on an input channel (a low channel), an M-term (the “guard”) on this channel
decides whether to accept or reject this message. The message is only processed further if
the M-term accepts the message and otherwise the message is dropped. In the former case,
the internal state is updated (via a high channel) depending on the current internal state and
the current message, and next at most one message is written on an output channel (a low

17

channel). Further intuition is given below. Formally, the single machine normal form is defined
as follows.

Definition 3. We say that a sequential process expression P(
→
z) is in single machine normal

form (SMNF) if it is of the following form:

Sinit(
→
z) || !q(n) S(

→
z) (1)

where

S(
→
z) = in(cs, z).

∑

c∈Cin(P(
→
z))

in(c, tin(c, z,
→
z ;x)).

(

out(cns, Tns(c, x, z,
→
z)) ||

(
∑

c′∈Cout(P(
→
z))

in(cns, tout(c
′; y, v)).

(

out(cs, y) || out(c′, v)
)

+

in(cns, tempty(y)).out(cs, y)

))

and Sinit(
→
z) is defined in the same way except that in(cs, z) is removed and every occurrence

of z is replaced by ε (representing the initial state of P).
The internal channels cs and cns (which carry the current and the updated state, respec-

tively) are defined to be high channels while all other channels are (external, and thus) low
channels.

We say that a sequential process expression is in simple single machine normal form
(SSMNF) if it is in SMNF and the M-term tin(c, z,

→
z ;x) accepts all incoming messages. We

call the fragment of SPPC where all processes are concurrent compositions of processes in
SSMNF the guard-free fragment of SPPC.

Intuitively, the variable z stores the current state of P. The M-term tin(c, z,
→
z ;x) is the guard

which is used to decide whether P accepts or rejects the input on c. This term takes as input
the name of the channel c from which input shall be read, the current state z, and the external
inputs

→
z . Its output is written into x. The C-term Tns(c, x, z,

→
z) computes the new state

depending on the current state z, the output x of tin(c, z,
→
z ;x), and the free variables

→
z . The

M-term tout(c
′; y, v) intuitively accepts an input a (which is the current state) if a encodes that

the next output, say b, shall be written on c′. If tout(c
′; y, v) accepts a, then y is substituted

by a and v by b. The M-term tempty(y) works similarly. It only accepts a if a encodes that
nothing shall be written on an output channel.

The following lemma tells us that every sequential process expression can be turned into
single machine normal form. The proof of the following lemma is rather simple. Intuitively,
the sequential process expressions P1 and P2 in this lemma are independent processes that
may communicate (see also Section 2.1 and 4.1).

Lemma 4. Let P1 = P1(
→
z) and P2 = P2(

→
z) be (possibly open) sequential process expressions

such that C(P1)∩Cint(P2) = ∅, Cint(P1)∩C(P2) = ∅, Cin(P1)∩Cin(P2) = ∅, and Cout(P1)∩

18

Cout(P2) = ∅. Then, P1 and P2 can be turned into single machine normal forms P ′1 and P ′2,
respectively, such that

Prob[(P1(
→
a) || P2(

→
a))n←i 1] = Prob[(P ′1(

→
a) || P2(

→
a))n←i 1]

= Prob[(P1(
→
a) || P ′2(

→
a))n←i 1]

= Prob[(P ′1(
→
a) || P ′2(

→
a))n←i 1]

for every i and tuple
→
a . In particular,

P1 || P2 ≡ P ′1 || P2 ≡ P1 || P ′2 ≡ P ′1 || P ′2.

Proof. We prove that P1 can be turned into single machine normal form P ′1 such that

Prob[(P1(
→
a) || P2(

→
a))n←i 1] = Prob[(P ′1(

→
a) || P2(

→
a))n←i 1] for every i and

→
a . Turning

P2 into single machine normal form is done in the same way.
To define P ′1(

→
z), we need to specify the C-term Tns(c, x, z,

→
z), the M-terms tin(c, z,

→
z ;x),

tout(c
′; y, v), and tempty(y), and the polynomial q(n) in (1).

We start with the definition of tin(c, z,
→
z ;x). The variable z will be substituted by some

representation of a process P1. From P1 together with
→
z , tin(c, z,

→
z ;x) can determine whether

P1 would accept or reject a given input a on c as follows: First, tin(c, z,
→
z ;x) determines from

P1 the set t1, . . . , tl of M-terms occurring in input processes in(c, ti).P
′
1 associated with input

contexts of P1. Note that l is polynomially bounded in the security parameter. If l = 0, then
this means that P1 does not accept any input on c, and therefore, tin(c, z,

→
z ;x) will reject

every input on c. Otherwise, given an input a, tin(c, z,
→
z ;x) will apply every ti to a. If every

ti rejects a, then tin(c, z,
→
z ;x) rejects a as well. Otherwise, tin(c, z,

→
z ;x) copies a into the

output x.
The C-term Tns(c, x, z,

→
z) evaluates z = P1 based on x and

→
z . More precisely, if z = ε and

the security parameter is i, then Tns(c, a, ε,
→
a) does the following: Tns(c, a, ε,

→
a) computes and

outputs a process Q by first applying →(c,a) to P1(
→
a)n←i and then, to the result, alternatively

applying ⇀ and → until for the current process P1 one of the following is true: a) P1 is a
process without output, b) P1 = out(c, a) || P ′1 for some process P ′1 without output and an
external (i.e., low) channel c, or c) P1 occurred before. (Note that if P1 is a process with

output on a high and a low channel, then Tns(c, a, ε,
→
a) further simulates the computation of

P1, i.e., have P1 read the message on the high channel. This results in a process with output
only on the low channel.) Analogously to Theorem 1, it is easy to see that this reduction of

P1(
→
a)n←i can be carried out by a probabilistic polynomial time algorithm. If z 6= ε, then z is

a process P1. In this case, Tns(c, x, z,
→
z) simulates the reduction of this process in the same

way as described above.
The M-term tout(c

′; y, v) receives as input a process, say P1. If P1 is a process without
output, tout(c

′; y, v) rejects P1. Otherwise, P1 is of the form out(c, a) || P ′1 for some process
P ′1 without output and an external channel c. If c 6= c′, then again, tout(c

′; y, v) rejects P1.
Otherwise, y is substituted by P ′1 and v by a.

The behavior of the M-term tempty(y) is analogous to the one of tout(c
′; y, v). It accepts P1

iff it is a process without output, and in this case, y is substituted with P1.

19

We define the polynomial q(n) to be the communication size comsize(P1(
→
z)) of P1(

→
z).

Note that due to the M-term tin(c, z,
→
z ;x), the single machine normal form of P1 reads an

input a on a channel c iff P1 would read a on c. In particular, if P1 currently can not read a
on c (because there is no input process for c or all M-terms reject a), then the single machine
normal form would not read a on c as well, and thus would not be activated in the first
place. This guarantees that the single machine normal form is activated by receiving external
messages exactly as often as P1, and therefore, it suffices to define q(n) as done above. Without

tin(c, z,
→
z ;x), the decision whether a can be read by P1 would only be made when evaluating

Tns(c, x, z,
→
z). Hence, the single machine normal form would always be activated even if P1

would reject the input. In this case, the number of activations of the single machine normal
form could not be bounded by q(n).

Now, Prob[(P1(
→
a) || P2(

→
a)n←i 1] = Prob[(P ′1(

→
a) || P2(

→
a)n←i 1] is easy to verify. 2

We note that Lemma 4 does not hold for SSMNFs since a process in SSMNF has to process
all input messages. For instance, there is no SSMNF equivalent to the process expression
P = in(c0, x).in(c1, y).out(c2, y): Assume that there is a process Q in SSMNF equivalent to
P. Let q(n) be the communication size of this machine. An environment E could send q(n)+1
random messages on c1 before sending a message on c0, and then a random message m on c1.
The environment E will output 1 on decision if m is returned on cout, and otherwise, if E is
triggered on start, it will output 0 on decision. When interacting with P, the message m
will be returned to E on c2. However, when interacting with Q, no message will be returned
since Q has already terminated as it can only process q(n) messages. Thus, E ↿ P 6≡ E ↿ Q,
i.e., it is not true that E ↿ P ≡ E ↿ Q.

Remark 5. Lemma 4 does not hold, in general, when restricted to SSMNFs.

4 Definition of Security Notions

In this section, we introduce the security notions strong simulatability, strong and weak black-
box simulatability, and universal composability. We first need some more notation.

4.1 Channel Configurations

To define the security notions, we need to specify how different processes (describing the
environment, the real/ideal adversary, the simulator, the real/ideal protocol) can be connected
via channels. At the end of this section, we provide an example to illustrate the definitions.

Recall from Section 2 that C(P) denotes the set of channels of P and Cint(P), Cext(P),
Cin(P), and Cout(P) are the sets of internal, external, input, and output channels of P,
respectively.

The set of external channels of a process expression P is further partitioned into the set
of IO channels Cio

ext(P) and the set of network channels Cnet
ext(P). Thus, the set of external

channels of P is partitioned into the set of input IO channels Cio
in(P), output IO channels

Cio
out(P), input network channels Cnet

in (P), and output network channels Cnet
out(P). We require

20

that if decision ∈ C(P), then decision ∈ Cio
out(P). Also, if start ∈ C(P), then start ∈

Cio
in(P).

We say that two process expressions P and Q are compatible iff they have the same set of
external channels and these channels are of the same type, i.e., Cnet

in (P) = Cnet
in (Q), Cio

in(P) =
Cio
in(Q), Cnet

out(P) = Cnet
out(Q), and Cio

out(P) = Cio
out(Q). They are IO-compatible iff they have

the same set of IO channels and disjoint sets of network channels, i.e., Cnet
ext(P)∩Cnet

ext(Q) = ∅,
Cio
in(P) = Cio

in(Q), and Cio
out(P) = Cio

out(Q).
Given sequential process expressions P and Q, by P ↿ Q we denote the concurrent compo-

sition P ′ || Q′ where P ′ and Q′ are obtained from P and Q by renaming the internal channels
of P and Q, respectively, in such a way that C(P ′) ∩ Cint(Q

′) = ∅ and Cint(P
′) ∩ C(Q′) = ∅.

The intuition is that P and Q are different processes (machines) which communicate via their
external channels only as explained in Section 2.1 and 3. They should not interfere on their
internal channels. It may help to think of P and Q to be in SMNF (with different high
channels). By Lemma 4 this is w.l.o.g. The definition of ↿ is generalized to sequential pro-
cess expressions P1, . . . ,Pn in the obvious way. To really match the intuition that different
processes communicate, we introduce what we call valid process expressions.

A sequential process expression P is valid for a sequential process expression Q if

Cext(P) ∩ Cext(Q) ⊆
⋃

x∈{in,out},y∈{net,io}

(Cy
x(P) ∩ Cy

x(Q))

where x = in if x = out, and vice versa. That is, external channels used both in P and Q are
of the same “type” w.r.t. being network or IO channels and are of opposite “types” w.r.t. being
input or output channels. Note that being valid is a symmetric relation. Given a set Z of
sequential process expressions, we denote by Z-Valid(Q) the set of all process expressions in
Z valid for Q.

We call P an adversarial (adversarially valid) process expression for Q if P is valid for Q
and Cext(P)∩Cio

ext(Q) = ∅. In other words, an adversarial process expression never connects to
another process expression via the IO channels. By Z-Adv(Q) we denote the set of sequential
process expressions in Z adversarially valid for Q. We write Z-AdvP(Q) to denote the set of
all process expressions P ′ ∈ Z-Adv(Q) such that P ′ ↿ Q and P are compatible.

We say that P is an environmental (environmentally valid) process expression for Q if P
is valid for Q and Cext(P) ∩ Cnet

ext(Q) = ∅. That is, an environmental process expression never
connects to the network channels of a process expression. By Z-Env(Q) we denote the set of
all process expressions in Z environmentally valid for Q.

We call a sequential process expression P

• regular if start, decision /∈ C(P),

• master if decision /∈ C(P), i.e., P may use start,

• decision if start /∈ C(P), i.e., P may use decision, and

• master decision otherwise.

In what follows, by R, M, D, and MD we denote the set of all closed regular process ex-
pressions, closed master process expressions, (open/closed) decision process expressions, and

21

(open/closed) master decision process expressions, respectively. In those cases where it is rel-
evant to distinguish between open and closed process expressions, we explicitly specify D and
MD.

Example: To illustrate the above, let us look at the following typical configuration: E ↿ A ↿ P
where A is adversarially valid for P and E is environmentally valid for A ↿ P. That is, A only
connects to (not necessarily all) network channels of P and E only connects to (not necessarily
all) IO channels of P and A. Intuitively E is the environment process, A is the adversarial
process, and P is the real protocol. Moreover, let us assume that E ∈ MD, i.e., E is a master
decision process. It is helpful to think of E and A to be in SMNF. Often, P is the concurrent
composition P1 ↿ · · · ↿ Pn describing n parties (or machines) running a particular protocol.
(As mentioned, by using bounded replication it is also possible to specify protocols with a
polynomial number of parties.) Again, one can think of every Pi to be in SMNF.

Let us look at a run of such a system. As E is the master process and initially no other
communication is possible since no other process has produced output yet, E can read a
message on the start channel. (In case E does not read a message on this channel or the guard
rejects the message, nothing will happen, and the run is completed.) After some computation,
E will typically write a message on one of its external IO channels c to A or P, say to P.
Then, E will have to wait for new input and by reading the message on c, P will be activated
next, in case the guard on c of P, more precisely one of the subprocesses Pi of P, accepts the
message. (Otherwise, E as the master process will be activated again via the start channel.)
After some computation, P will typically send a message on some external channel, say on a
network channel to A, which activates A, and P has to wait for new input, and so on.

4.2 Security Notions

We now define the various security notions. For strong simulatability as well as strong and
weak blackbox simulatability we define two variants depending on whether or not the simulator
may play the role of the master process.

The first definition will be used if the simulator is a regular process, and thus, not a master.

Definition 6. Let A (adversaries), I (ideal adversaries), E (environments), and S (simu-
lators) be sets of sequential process expressions, and P (the real protocol) and F (the ideal
functionality) be sequential process expressions.

Strong Simulatability: SS(S,E)(P,F) iff P and F are IO-compatible and there exists S ∈
S-AdvP(F) (called simulator) such that E ↿ P ≡ E ↿ S ↿ F for every E ∈ E-Valid(P)
(called environment).

Strong Blackbox Simulatability: SBB(A,S,E)(P,F) iff P and F are IO-compatible and
there exists S ∈ S-AdvP(F) (called simulator) such that E ↿ A ↿ P ≡ E ↿ A ↿ S ↿ F for
every A ∈ A-Adv(P) (called adversary) and E ∈ E-Env(A ↿ P) (called environment).

Weak Blackbox Simulatability: WBB(A,S,E)(P,F) iff P and F are IO-compatible and for
every A ∈ A-Adv(P) (called adversary) there exists S ∈ S-AdvP (F) (called simulator)
such that E ↿ A ↿ P ≡ E ↿ A ↿ S ↿ F for every E ∈ E-Env(A ↿ P) (called environment).

22

As we will see, equivalently we can require that the simulator S may only depend on
the communication size of A instead of A itself. In particular, all our results hold for
both variants, and we therefore do not distinguish between them explicitly. Necessary
adjustments in proofs will be pointed out.

Universal Composability: UC(A,I,E)(P,F) iff P and F are IO-compatible and for every
A ∈ A-Adv(P) (called real adversary) there exists I ∈ I-AdvA ↿ P(F) (called ideal adver-
sary) such that E ↿ A ↿ P ≡ E ↿ I ↿ F for every E ∈ E-Env(A ↿ P) (called environment).

In Section 5, we will consider a variety of different instances of the above security notions
by defining the sets A, I, S, and E to be one of the sets R, M, D, and MD. One such
instance is UC(M,M,MD)(P,F): Note that with A ∈ M-Adv(P), I ∈ M-AdvA ↿ P(F), and
E ∈ MD-Env(A ↿ P) as required by UC(M,M,MD)(P,F) it follows that if A is a master process
expression, i.e., contains start, then E is not allowed to contain start, i.e., E is just a decision
process expression, since otherwise E would not be environmentally valid for A. Conversely,
if A is regular, i.e., does not contain start, then E may contain start. In other words, it is
guaranteed that not both, the adversary and the environment, are master process expressions
at the same time. Only at most one of them has this role.
We now define versions of strong simulatability as well as strong and weak blackbox simu-
latability for the case that the simulator may play the role of the master process. This is
motivated by security notions considered in the PIOA model [4,5,30], where, due to renaming
of ports, the simulator may play the role of the master process. While only strong blackbox
simulatability is considered in the PIOA model, the versions of strong simulatability and weak
blackbox simulatability defined below are inspired by the placement of the master process for
strong blackbox simulatability in the PIOA model. The definitions given below also apply
to the case where the simulator is restricted to be a regular process, and in this case they
coincide with the definitions given above. Hence, it would have been enough to provide only
one definition. However, since the previous definitions are simpler, we separate the two cases.

Definition 7. Strong Simulatability: SSsim(M,MD)(P,F) iff the following conditions are
satisfied:

• P and F are IO-compatible,

• there exists S ∈ M adversarially valid for F and such that P and S ↿ F are
compatible except that, in addition to the external channels in P, S may contain
start as input IO channel and if start occurs in S, then start′ may also occur
in S as a new output IO channel, and

• E ↿ P ≡ E ′ ↿ S ↿ F for every E ∈ MD-Valid(P) where E ′ = E if start does not
occur in S and where E ′ is obtained from E by replacing every occurrence of start
by start′ otherwise.

Strong Blackbox Simulatability: SBBsim(M,M,MD)(P,F) iff the following conditions are
satisfied:

• P and F are IO-compatible,

23

• there exists S ∈ M adversarially valid for F and such that P and S ↿ F are
compatible except that, in addition to the external channels in P, S may contain
start as input IO channel and if start occurs in S, then start′ may also occur
in S as a new output IO channel, and

• E ↿ A ↿ P ≡ E ′ ↿ A′ ↿ S ↿ F for every A ∈ M-Adv(P) and E ∈ MD-Env(A ↿ P)
where E ′ = E and A′ = A if start does not occur in S and where E ′ and A′

are obtained from E and A, respectively, by replacing every occurrence of start by
start′ otherwise. (Note that start can not occur both in E and A since otherwise
E would not be environmentally valid for A ↿ P.)

In the above definition of SBBsim, we could also restrict E to be a decision process if S
is a master process, i.e., if S is a master process, then only A may be a master process,
but E may not. In this case, E ′ will always be E. Both of these interpretations regarding
the placement of the master process as defined in [4] for the PIOA model are possible.
However, it is not hard to see that they are equivalent and we therefore do not explicitly
distinguish between them, but simply assume the first mentioned definition throughout
this paper.

Weak Blackbox Simulatability: WBBsim(M,M,MD)(P,F) iff the following conditions are
satisfied:

• P and F are IO-compatible,

• for every A ∈ M-Adv(P) there exists S ∈ M adversarially valid for F and such
that P and S ↿ F are compatible except that, in addition to the external channels
in P, S may contain start as input IO channel and if start occurs in S, then
start′ may also occur in S as a new output IO channel, and

• E ↿ A ↿ P ≡ E ′ ↿ A′ ↿ S ↿ F for every E ∈ MD-Env(A ↿ P) where E ′ = E and
A′ = A if start does not occur in S and where E ′ and A′ are obtained from E and
A, respectively, by replacing every occurrence of start by start′ otherwise.

In the above definition of WBBsim, we could also restrict S to be master only if A is
master, i.e., S may contain start only if A does. In this case, we can always replace E ′

by E. Also, just as for WBB, we can consider a version of WBBsim where the simulator
may only depend on the communication size of A. As we will see, all (four) variants are
equivalent, and we will not distinguish between them explicitly. However, we point out
necessary modifications in proofs.

Variants of SSsim, SBBsim, and WBBsim, including for example, SSsim(M\R,MD)(P,F),
SBBsim(M,M,D)(P,F), and WBBsim(M,M,D)(P,F) are defined in the obvious way.

5 Relationships between the Security Notions

In this section, we examine the relationships between the security notions introduced in the
previous section. We prove some expected equivalences between the security notions and ob-
serve some surprising differences which would not be apparent without detailed analysis. The

24

proofs are carried out axiomatically. The axiom system is introduced in Section 5.1. We show
that all of the axioms are sound, i.e., are satisfied in SPPC, except for one axiom, which is
called FORWARDER. In Section 5.2, we show that FORWARDER is a necessary condition
on protocols in order for universal composability to imply black-box simulatability or strong
simulatability, i.e., if this axiom does not hold, then universal composability does not imply
black-box simulatability (strong simulatability). In Section 5.3, we compare the security no-
tions for the cases where the environment may play the role of the master decision process, and
in Section 5.4 we restrict the environment to be a decision process. In Section 5.5, we study
variants of strong and blackbox simulatability where the simulators may be master processes.
All results are summarized in Section 5.6. Based on the FORWARDER axiom, we obtain a
complete characterization of the conditions under which universal composability and blackbox
simulatability are equivalent. Since the proofs are carried out axiomatically, our results imme-
diately carry over to those computational models that satisfy the axioms (Section 6). These
axioms can also serve as an abstract specification of a “reasonable” computational model for
simulation-based security.

5.1 The Axiom System

To define the axioms (equational principles), we first introduce four variants of so-called dummy
adversaries, which simply forward messages on network channels of protocols and are used to
rename network channels and turn network channels into IO channels.

The first dummy adversary, called regular network dummy adversary, simply forwards
messages received on channel c ∈ Cout to a copy c′ of this channel and messages received on
channel c′ for a copy of a channel c ∈ Cin to channel c. The number of messages this dummy
can forward is bounded by a polynomial in the security parameter. Formally, a regular network
dummy adversary is defined as follows:

Dnet
R (Cin,Cout, q(n)) = Dnet

R (2)

= !q(n)

(
∑

c∈Cout

in(c, x).out(c′, x) +

∑

c∈Cin

in(c′, x).out(c, x)

)

where Cin and Cout are disjoint and finite sets of channel names, c′ is a new copy of c, i.e., it
has a new name, and q(n) is a polynomial in n. All channels in Dnet

R are considered network
channels. Note that Dnet

R ∈ R.
The regular IO dummy adversary Dio

R (Cin,Cout, q(n)) is defined just as Dnet
R (Cin,Cout, q(n))

except that the channels c′ are declared to be IO channels. Again, we have that Dio
R (P) ∈ R.

The following two dummy adversaries are master process expressions. The first one is
called master network dummy adversary and it works just as the regular network dummy
adversary except that it also forwards messages received on start to start′. More formally,

25

a master network dummy adversary is defined as follows:

Dnet
M (Cin,Cout, q(n)) = Dnet

M (3)

= !q(n)

(
∑

c∈Cout

in(c, x).out(c′, x) +

∑

c∈Cin

in(c′, x).out(c, x) +

in(start, x).out(start′, x)

)

where Cin, Cout, q(n), and the channels c′ are defined just as in Dnet
R (Cin,Cout, q(n)). The

channel start′ is a new channel and declared to be an IO channel.
The master IO dummy adversary Dio

M (Cin,Cout, q(n)) is defined just as Dnet
M (Cin,Cout, q(n))

except that the channels c′ are declared to be IO channels.
Now we are ready to state the axioms and equational principles we use. Further explana-

tions follow below.

COM. For all sequential process expressions P and Q:

P ↿ Q ≡ Q ↿ P.

ASC. For all sequential process expressions P, Q, and R:

P ↿ (Q ↿ R) ≡ (P ↿ Q) ↿ R.

TRN. For all sequential process expression P, Q, and R:

P ≡ Q,Q ≡ R =⇒ P ≡ R.

SYM. For all sequential process expressions P and Q:

P ≡ Q =⇒ Q ≡ P.

RENAME. For sequential process expressions P1, . . . ,Pk such that Pi is valid for Pi+1 ↿ . . . ↿
Pk for every i:

P1 ↿ . . . ↿ Pk ≡ P ′1 ↿ . . . ↿ P ′k

where the P ′i are derived from Pi by consistently (w.r.t. the other P ′j) renaming external
channels (start and decision may not be renamed) and changing network channels to
IO channels and vice versa.

RENAME-START.

E ↿ A ≡ E ↿ !q(n) in(start, ε).out(start
′, ε) ↿ A′

for every A ∈ M, E ∈ D-Valid(A), and q(n) ≥ comsize(A)(n) where A′ is obtained
from A by replacing every occurrence of start by the new channel start′.

26

REG-S-FORWARDER.

E ↿ P ≡ E ′ ↿ Dnet
R ↿ P

for every P ∈ R, E ∈ MD-Valid(P), and q(n) ≥ comsize(P)(n) + comsize(E)(n) such
that Dnet

R = Dnet
R (Cnet

in (P),Cnet
out(P), q(n)) and E ′ is obtained from E by replacing every

occurrence of network channels c of P by c′ as in the definition of Dnet
R .

REG-ADV-FORWARDER.

E ↿ A ↿ P ≡ E ↿ A′ ↿ Dnet
R ↿ P

for every P ∈ R, A ∈ M-Adv(P), E ∈ MD-Valid(A ↿ P), and q(n) ≥ comsize(P)(n) +
comsize(A)(n) such that Dnet

R = Dnet
R (Cnet

in (P),Cnet
out(P), q(n)) and A′ is obtained from

A by replacing every occurrence of network channels c of P by c′ as in the definition of
Dnet

R .

MASTER-S-FORWARDER.

E ↿ P ≡ E ′M ↿ D
net
M ↿ P

for every P ∈ R, E ∈ MD-Valid(P), and q(n) > comsize(P)(n) + comsize(E)(n) such
that Dnet

M = Dnet
M (Cnet

in (P),Cnet
out(P), q(n)) and E ′M is obtained from E by replacing every

occurrence of network channels c of P by c′ as in the definition of Dnet
R and replacing

every occurrence of start in E (if any) by start′.

MASTER-ADV-FORWARDER.

E ↿ A ↿ P ≡ E ↿ A′M ↿ D
net
M ↿ P

for every P ∈ R, A ∈ M-Adv(P), E ∈ D-Valid(A ↿ P), and q(n) > comsize(P)(n) +
comsize(A)(n) such that Dnet

M = Dnet
M (Cnet

in (P),Cnet
out(P), q(n)) and A′M is obtained from

A by replacing every occurrence of network channels c of P by c′ as in the definition of
Dnet

R and replacing every occurrence of start in A (if any) by start′.

FORWARDER(P). There exists D ∈ R-Adv(P) such that Cio
ext(D)=∅, Cnet

in (D)=Cnet
out(P) ∪

Cnet
in (P)′, Cnet

out(D) = Cnet
in (P) ∪ Cnet

out(P)′, and for every E ∈ MD-Valid(P):

E ↿ P ≡ E ′ ↿ D ↿ P,

where Cnet
in (P)′ consists of new copies c′ of the channels in Cnet

in (P), Cnet
out(P)′ consists of

new copies c′ of the channels in Cnet
out(P), and E ′ is obtained from E by replacing every

occurrence of network channels c of P by c′.

MMD-INCLUSION. For every P ∈ R:

∀A ∈ M-Adv(P).∀E ∈ MD-Env(A ↿ P) : E ↿ A ∈ MD-Valid(P).

MD-INCLUSION. For every P ∈ R:

∀A ∈ M-Adv(P).∀E ∈ D-Env(A ↿ P) : E ↿ A ∈ MD-Valid(P).

27

The letters ‘S’ in the axioms REG-S-FORWARDER and MASTER-S-FORWARDER are rem-
iniscent of “simple”. All axioms, except for the last two, are equational principals on process
expressions. The last two axioms allow us to combine a environment which may only access
the IO channels of a protocol and an adversary, which may only access the network channels
of a protocol, into an environment that may access both the IO and network channels of a
protocol.

The following lemma states that all axioms, except for FORWARDER, are sound, i.e.,
are true in SPPC. These axioms are called basic axioms as they should be satisfied in most
computational models for simulation-based security notions (see Section 6). As we will see,
most of the relationships between the security notions only require the basic axioms to hold.
We will only need FORWARDER to show that universal composability implies black-box
simulatability (or equivalently, strong simulatability). The axiom FORWARDER is further
discussed in Section 5.2.

Lemma 8. All axioms mentioned above, except for FORWARDER, are sound, i.e., hold for
SPPC. This is also true for the guard-free fragment of SPPC.

Proof. The proofs of the properties COM, ASC, TRN, SYM are trivial. The property
RENAME is also obvious as the semantics of process expressions does not depend on the
names of channels and whether they are network or IO channels.

In RENAME-START, the additional process expression on the right hand-side simply
forwards the message on start (which by the definition of the semantics is always ε) via
start′ to A′. Since q(n) ≥ comsize(A) = comsize(A′), this process does not terminate
before A (A′) does, and thus, the signal on start is always forwarded. Note that if at some
point A (A′) ignores the start signal, then from that point on the system will not change, and
in particular, nothing will be written on the channel decision.

The property MASTER-S-FORWARDER easily follows from the following observations:
First note that E and E ′M behave exactly the same except that if E outputs/inputs a message
on the (low) channel c ∈ Cnet

ext(P), then E ′M outputs/inputs a message on the (low) channel
c′. Since these channels are low channels and since by the definition of sequential process
expressions at any time there is at most one message on a low channel, messages between E ′M
and P are immediately forwarded by Dnet

M . Second, if E ↿ P, and more precisely E , receives a
message on start, then in E ′M ↿ D

net
M ↿ P the dummy adversary Dnet

M receives a message on
start and by definition immediately forwards it to E ′M on start′. Then, E ′M behaves exactly
as E . Third, note that if Dnet

M receives a message, then this message comes from E ′M , P, or
start. If the message comes from start and Dnet

M forwards this message on start′ but E ′M
does not read the message, then the overall system stops. Thus, this can happen only once,
and hence, in all other cases if Dnet

M receives a message, the communication size of E ′M or P
decreases (if the message was sent on start, then the communication size of E ′M will decrease
when reading start′). By the definition of q(n) it is therefore guaranteed that Dnet

M will not
terminate before E ′ and P do. The argument for REG-S-FORWARDER is similar.

For MASTER-ADV-FORWARDER note that if MASTER-ADV-FORWARDER receives
a message, then this message must have been received from A′M , P, or start. Now, the
argument is analogous to the one for MASTER-S-FORWARDER; similarly for REG-ADV-
FORWARDER.

28

It is clear that MMD-INCLUSION and MD-INCLUSION are sound. The arguments for
the guard-free fragment of SPPC are the same. 2

Remark 9. In MASTER-S-FORWARDER it does not suffice to define q(n) independently of
comsize(E). If q(n) = comsize(P)(n), then consider for instance the environment E (E ′M)
which triggers Dnet

M via start q(n) + 1 times. When interacting with Dnet
M , E ′M will not be

triggered via start′ after the q(n) + 1st time, however, E would be triggered via start. Thus,
E (E ′M) can “observe” Dnet

M (see also the proof of Theorem 21).
Similarly, in REG-S-FORWARDER it does not suffice to define q(n) = comsize(P)(n)

independently of comsize(E). Assume, for example, that P is of the form P1 ↿ · · · ↿ Pk where
the Pi model parties running a certain protocol. One of the parties may terminate before others
do. Now, if E sends a message to a terminated party, say Pi, then P will not consume resources
as the message is simply ignored by Pi and no computation will take place. In particular, E
can send an unbounded number of messages to Pi without P consuming any resources. Later,
E can send a message to a non-terminated party Pj and will (possibly) obtain an answer.
Now, if the dummy Dnet

R is plugged in between E and P, then E can exhaust Dnet
R , i.e., force

it to terminate, by sending sufficiently many messages through Dnet
R to the terminated party.

Then, when E sends a message to the non-terminated party, Dnet
R does not have any resources

left to forward this message, and hence, E can detect the presence of Dnet
R because if the Dnet

R

is present no answer will come back from the non-terminated party and if Dnet
R is absent the

non-terminated party will receive the message from E and can send a reply.

5.2 On the Necessity and Validity of FORWARDER

We show that

1. The axiom FORWARDER is necessary for universal composability to imply black-box
simulatability and strong simulatability (Section 5.2.1).

2. The axiom FORWARDER is not true for all regular process expressions P ∈ R. But
there are interesting classes of regular process expressions for which FORWARDER is
satisfied (Section 5.2.2).

5.2.1 Necessity of FORWARDER

We show that the axiom FORWARDER is necessary for universal composability to imply
black-box simulatability and strong simulatability, respectively.

Let C be a class of sequential process expressions. We say that C is closed under renaming
if P ′ ∈ C for every P ∈ C where P ′ is obtained from P by renaming channels (this does not
include turning a network channel into an IO channel or vice versa).

The following theorem is stated for a certain variant of universal composability
(UC(R,R,MD)(P,F)), strong black-box simulatability (SBB(R,R,MD)(P,F)), and strong simu-
latability (SS(R,MD)(P,F)). In the following sections, we will identify various variants of uni-
versal composability as well as weak black-box simulatability equivalent to UC(R,R,MD)(P,F).
Also, there are various variants of strong black-box simulatability and strong simulatability
equivalent to SBB(R,R,MD)(P,F) and SS(R,MD)(P,F), respectively (see Section 5.6 for an

29

overview). To show these equivalences the following theorem is not needed, and hence, this
theorem immediately carries over to other variants of security notions.

Theorem 10. Let C be a class of sequential process expressions closed under renaming.

1. Assume that
UC(R,R,MD)(P,F) ⇒ SS(R,MD)(P,F)

for every P,F ∈ C. Then, FORWARDER(P) for every P ∈ C.

2. Assume that
UC(R,R,MD)(P,F) ⇒ SBB(R,R,MD)(P,F)

for every P,F ∈ C. Then, FORWARDER(P) for every P ∈ C.

Proof. We first prove the case for strong simulatability. Let P ∈ C. Under the given
assumptions, we want to show that FORWARDER(P).

Let P ′ be obtained from P by consistently renaming the network channels such that the set
of network channels of P ′ is disjoint from the set of network channels of P. Obviously, we have
that UC(R,R,MD)(P,P ′) since given the real adversary the ideal adversary can be obtained from
the real adversary by renaming the network channels according to the renaming of network
channels of P ′. Now, since with P ∈ C we have that P ′ ∈ C and by the assumption that
universal composability implies strong simulatability, we obtain SS(R,MD)(P,P ′). Hence, there
exists a simulator S ∈ R-AdvP(P ′) such that

E ↿ P ≡ E ↿ S ↿ P ′

for all E ∈ MD-Valid(P). Note that S contains network channels from P and P ′. If c is a
network channel in P, then let c′ denote the corresponding channel in P ′. Let D be obtained
from S by switching the names of network channels, i.e., rename c to c′ and c′ to c. Now, it
is obvious that

E ↿ P ≡ E ′ ↿ D ↿ P.

for all E ∈ MD-Valid(P) where E ′ is defined as in FORWARDER(P). Thus, FORWARDER(P)
is true.

The proof for strong black-box simulatability is similar. Analogously to the previous case
we conclude that SBB(R,R,MD)(P,P ′). Hence, there exists a simulator S ∈ R-AdvP(P ′) such
that

E ↿ A ↿ P ≡ E ↿ A ↿ S ↿ P ′.

for all A ∈ R-Adv(P) and all E ∈ MD-Env(A ↿ P). In particular, this is true if A = Dnet
R

as defined in REG-S-FORWARDER where we set q(n) = comsize(P)(n) + comsize(S)(n) +
comsize(E)(n). Now, together with REG-S-FORWARDER we obtain:

E ↿ P ≡ E ′ ↿ Dnet
R ↿ P ≡ E ′ ↿ Dnet

R ↿ S ↿ P ′ ≡ E ↿ S ↿ P ′

for every E ∈ MD-Valid(P) where E ′ obtained from E as described in REG-S-FORWARDER.
Now, defining D as in the previous case, we can conclude that FORWARDER(P) holds true. 2

In the above proof we have only used very basic properties of our computational model, which
should be satisfied in most computational models for simulation-based security. Hence, the
above theorem should be true in all such models.

30

5.2.2 On the Validity of FORWARDER

We show that not all process expressions satisfy FORWARDER. However, it is possible to
identify an interesting class of process expressions that satisfy this axiom. The following
terminology will become clear below.

Definition 11. We call a sequential process expression P network predictable if it satisfies
FORWARDER, i.e., if FORWARDER(P) holds.

Non-network predictable process expressions. We now show that not all regular pro-
cess expressions satisfy FORWARDER. It is useful to recall Remark 9. Intuitively, as seen in
this remark, if the dummy is defined only depending on P but completely independent of E ,
then the dummy should only react to inputs from the environment if P reacts to these inputs
since otherwise the dummy may get “exhausted” by the environment. In other words, the
environment can force the dummy to terminate before P does, and in this case, the dummy
cannot forward messages anymore. However, in general, the dummy does not know on what
channels P expects messages and it also does not know what messages P accepts. We use this
intuition to show:

Proposition 12. There exists P ∈ R which is not network predictable.

Proof. Consider

P = (in(c, 0).in(c0, x).out(cout, x)) + (in(c, 1).in(c1, x).out(cout, x)))

where c and cout are declared to be IO channels and c0 and c1 are network channels. That
is, the environment determines via a bit sent on the IO channel c (which is invisible to the
dummy) on which network channel—c0 or c1—P will accept a message. Now, assume that
there is a dummy D which satisfies the required conditions for FORWARDER(P). It is helpful
to think of D to be in SMNF. By Lemma 4 this is w.l.o.g. Let us first consider the following
environment E (which can easily be described as process expression): E randomly chooses a
bit b and a number i between 1 and comsize(D)(n)+ 1. Then, E sends i− 1 randomly chosen
messages, say of the length of the security parameter, on c0 or c1 where for every message E
again makes a random decision on which channel—c0 or c1—to send the message. In all of
these cases, E will not receive any answer but will be triggered on start. Then, for the ith
step E again chooses a random message, say m, then sends b on channel c after which E will
be triggered through start, and then sends m on cb. Now, if E receives m back on cout, then
it outputs 1 on decision and otherwise (if E is triggered by start) outputs 0.

We argue that E can distinguish between P and D ↿ P, i.e., E ↿ P 6≡ E ′ ↿ D ↿ P.
The dummy D can only forward < comsize(D)(n) + 1 messages from c′0 to c0 and c′1

to c1 before it terminates. Thus, if E chooses i = comsize(D)(n) + 1, which happens with
non-negligible probability, the probability that D accepts messages on both c′0 and c′1 for all
comsize(D)(n) steps before the last message is sent by E must be negligible: Otherwise when
E sends the last message to cb and expects to obtain input on cout, the probability that E in
fact obtains input on this channel is negligible as D will be terminated with overwhelming
probability. Thus, there is a non-negligible probability that D does not accept a message on

31

some of its input channels—c′0 or c′1. Consequently, E has a non-negligible chance of guessing
this position in the run. In case E guessed correctly, it will output 0 since it will not obtain
input on cout but will be triggered on start. Thus, when interacting with D and P, the
environment E will output 0 with non-negligible probability while when interacting only with
P it will always return 1. Hence, E ↿ P 6≡ E ′ ↿ D ↿ P. 2

The proof of Proposition 12 indicates that in order to obtain a class of network predictable
process expressions, one needs to make sure that the dummy can determine from the traffic
on network channels on which channels the process accepts messages and of what shape the
messages have to be in order to be accepted by the M-terms, since otherwise the dummy can
be exhausted. This is why we call such process expressions network predictable.

Using length functions as in the version of PIOA in [6], the process P in the proof of
Proposition 12 can also be expressed in PIOA. Therefore, we can remark:

Remark 13. In the version of PIOA with length functions, protocols can be expressed that
are not network predictable.

In Section 6.1 we will see that FORWARDER can fail in PIOA even without length func-
tions.

A class of network predictable process expressions. We now define a class of process
expressions, called standard protocols, which in fact are network predictable.

Definition 14. A process expression P ∈ R is called a standard protocol if it is of the form
P = P1 ↿ · · · ↿ Pn where every Pi is in SSMNF.

We note that the class of standard protocols contains the protocols expressible in the
models proposed in [30] and [9]. As mentioned in Section 2.1, in a later version of the PIOA
model [6], length functions allow to express certain M-terms (guards). Hence, by Remark 13,
this yields a class of protocols which goes beyond the class of standard protocols.

We show:

Proposition 15. Standard protocols are network predictable.

Proof. Let P = P1 ↿ · · · ↿ Pn be a standard protocol. Define

Di = Dnet
R (Cnet

in (Pi),C
net
out(Pi), comsize(Pi)(n)).

(Recall the definition of Dnet
R from Section 5.1). Hence, Di simply forwards all message on

network channels from and to Pi. To see that

E ↿ Pi ≡ E ′ ↿ Di ↿ Pi,

for all E ∈ MD-Valid(Pi), it suffices to observe that the number of messages that can be sent
to Pi and that can be received from Pi before Pi terminates is bounded by comsize(Pi)—a
bound known by Di—since Pi accepts all messages sent on (network) channels. Thus, Di only
needs to forward comsize(Pi) messages. After Pi has terminated, Di does not need to forward
messages anymore.

32

Now, since the set of network channels of the Pi are pairwise disjoint, it is clear that with
D = D1 ↿ · · · ↿ Dn we obtain that

E ↿ P ≡ E ′ ↿ D ↿ P.

for every E ∈ MD-Valid(P). 2

Proposition 15 can be extended to bigger classes of protocols. For instance to a class of
protocols with a polynomial number of parties where messages addressed to a certain party
have to be prefixed by the name of the party and its role in the protocol. More precisely, if
the M-terms of parties accept exactly those messages prefixed with the correct recipient and
role, a dummy can predict whether or not a message is accepted by a party.

5.3 Declaring the Environment to be the Master Decision Process

The following theorem states the relationships between the security notions introduced in
Definition 6 in case the environment may play the role of the master decision process. Among
others, it says that the notions strong simulatability, black-box simulatability, and universal
composability coincide given that the real protocol P is network predictable, i.e., the axiom
FORWARDER(P) is true. However, many of the relationships between the security notions
are true independently of this axiom.

Theorem 16. Let P,F ∈ R.

1. SS(R,MD)(P,F) iff SBB(R,R,MD)(P,F) iff SBB(M,R,MD)(P,F).

2. UC(R,R,MD)(P,F) iff UC(M,M,MD)(P,F) iff WBB(R,R,MD)(P,F) iff WBB(M,R,MD)(P,F).

3. The notions in 1. imply those in 2.

4. If P is network predictable, i.e., if FORWARDER(P) holds, then the in 1. and 2. men-
tioned security notions are all equivalent.

The theorem holds both for the case where MD only contains closed process expressions and
for the case where MD may contain open process expressions.

Proof. Statement 1. From MMD-INCLUSION we easily obtain that SS(R,MD)(P,F) implies
SBB(M,R,MD)(P,F). It is easy to see that SBB(M,R,MD)(P,F) implies SBB(R,R,MD)(P,F). We
now show that SBB(R,R,MD)(P,F) implies SS(R,MD)(P,F).

1. Assume that SBB(R,R,MD)(P,F).

2. The definition implies that P and F are IO-compatible and:
∃S ∈ R-AdvP(F).∀A ∈ R-Adv(P).∀E ∈ MD-Env(A ↿ P) : E ↿ A ↿ P ≡ E ↿ A ↿ S ↿ F .

3. Choosing A to be the regular IO dummy adversary Dio
R = Dio

R (Cnet
in (P),Cnet

out(P), q(n))
we obtain:
∃S ∈ R-AdvP(F).∀ poly. q(n).∀E ∈ MD-Env(Dio

R ↿ P) : E ↿ Dio
R ↿ P ≡ E ↿ Dio

R ↿ S ↿ F .

33

4. Choose S as in 3., let E ∈ MD-Valid(P), and q(n) = comsize(P)(n) + comsize(E)(n).
We have:

E ↿ P ≡ E ′ ↿ Dnet
R ↿ P (REG-S-FORWARDER)

≡ E ′′ ↿ Dio
R ↿ P (RENAME)

≡ E ′′ ↿ Dio
R ↿ S ↿ F (E ′′ ∈ MD-Env(Dio

R ↿ P), 3.)
≡ E ′ ↿ Dnet

R ↿ S ↿ F (RENAME)
≡ E ↿ S ↿ F (REG-S-FORWARDER)

where E ′ is defined as in REG-S-FORWARDER and E ′′ is obtained from E ′ by declaring
the renamed network channels c′ of P to be IO channels. Since E is valid for P and all
network channels of P occurring in E have been renamed according to Dnet

R and declared
to be IO channels, it is clear that E ′′ ∈ MD-Env(Dio

R ↿ P).

5. From 4. we immediately obtain that SS(R,MD)(P,F).

Statement 2. It is obvious that UC(M,M,MD)(P,F) implies UC(R,R,MD)(P,F) since if the real
adversary is regular, then so must be the ideal adversary because of the compatibility require-
ment for A ↿ P and I ↿ F . We now show that UC(R,R,MD)(P,F) implies UC(M,M,MD)(P,F).

Assume that UC(R,R,MD)(P,F) and let A ∈ M-Adv(P). We need to show (*): There
exists I ∈ M-AdvA ↿ P(F) such that E ↿ A ↿ P ≡ E ↿ I ↿ F for every E ∈ MD-Env(A ↿ P).

If A ∈ R, then (*) follows by the assumption UC(R,R,MD)(P,F).
Assume that A ∈ M \ R. Let A′ be obtained from A by replacing every occurrence of

start by the new channel start′. Then, A′ ∈ R-Adv(P). By assumption, there exists I ′ ∈
R-AdvA′ ↿ P(F) such that E ↿ A′ ↿ P ≡ E ↿ I ′ ↿ F for every E ∈ MD-Env(A′ ↿ P). Let I be
obtained from I ′ by replacing every occurrence of start′ by start. Let E ∈ MD-Env(A ↿ P).
Since start occurs in A, we know that E ∈ D. The following completes the proof of the equiva-
lence between the two variants of UC. In the second equation we use that E ↿ !q(n) (in(start, ε).
out(start′, ε)) ∈ MD-Env(A′ ↿ P) where q(n) = comsize(A)(n) + comsize(I)(n).

E ↿ A ↿ P ≡ E ↿ !q(n) in(start, ε).out(start
′, ε) ↿ A′ ↿ P (RENAME-START)

≡ E ↿ !q(n) in(start, ε).out(start
′, ε) ↿ I ′ ↿ F (Definition of I ′)

≡ E ↿ I ↿ F (RENAME-START)

Clearly, we have that WBB(M,R,MD)(P,F) implies WBB(R,R,MD)(P,F). It is also obvious that
WBB(R,R,MD)(P,F) implies UC(R,R,MD)(P,F) since A ↿ S is the ideal adversary required in
UC(R,R,MD)(P,F) where S is the simulator obtained from WBB(R,R,MD)(P,F).

We now show that UC(R,R,MD)(P,F) implies WBB(M,R,MD)(P,F) which concludes the proof
of statement 2.

1. Assume that UC(R,R,MD)(P,F).

2. The definition yields that P and F are IO-compatible and:
∀A ∈ R-Adv(P).∃I ∈ R-AdvA ↿ P(F).∀E ∈ MD-Env(A ↿ P) : E ↿ A ↿ P ≡ E ↿ I ↿ F .

3. Choosing A = Dio
R = Dio

R (Cnet
in (P),Cnet

out(P), q(n)) for some q(n) we obtain:
∃Sq(n) = I ∈ R-AdvDio

R
↿ P(F).∀E ∈ MD-Env(Dio

R ↿ P) : E ↿ Dio
R ↿ P ≡ E ↿ Sq(n) ↿ F .

34

4. Let A ∈ M-Adv(P), q(n) = comsize(A)(n) + comsize(P)(n), choose Sq(n) as in 3. and
let E ∈ MD-Env(A ↿ P). We obtain:

E ↿ A ↿ P ≡ E ↿ A′ ↿ Dnet
R ↿ P (REG-ADV-FORWARDER)

≡ E ↿ A′′ ↿ Dio
R ↿ P (RENAME)

≡ E ↿ A′′ ↿ Sq(n) ↿ F (E ↿ A′′ ∈ MD-Env(Dio
R ↿ P), 3.)

≡ E ↿ A ↿ S ′
q(n) ↿ F (RENAME)

where A′ is defined as in REG-ADV-FORWARDER, Dio
R and A′′ are obtained from Dnet

R

and A′ by declaring the renamed network channels c′ of P to be IO channels, and S ′
q(n) is

obtained from Sq(n) by declaring the IO channels c′ to be network channels and renaming
them to c according to P.

5. By observing that S ′
q(n) ∈ R-AdvP(F) and that S ′

q(n) only depends on F , P, and (the

communication size of) A, 4. immediately implies that WBB(M,R,MD)(P,F) (for both
variants of weak blackbox simulatability).

Statement 3. From SS(R,MD)(P,F) we know that there exists S ∈ R-AdvP(F) such that
E ↿ P ≡ E ↿ S ↿ F for every E ∈ MD-Valid(P). To show UC(M,M,MD)(P,F), assume that
A ∈ M-Adv(P) and E ∈ MD-Env(A ↿ P). From MMD-INCLUSION it follows that E ↿ A ∈
MD-Valid(P), and thus, E ↿ A ↿ P ≡ E ↿ A ↿ S ↿ F . Obviously, A ↿ S ∈ M-AdvA ↿ P(F).
Thus, defining the ideal adversary I to be A ↿ S concludes the proof.

Statement 4. Assume that FORWARDER(P). It suffice to show that UC(R,R,MD)(P,F) im-
plies
SS(R,MD)(P,F). Let D be the dummy whose existence is guaranteed by FORWARDER(P).
Let Dio be obtained from D by declaring all the channels c′ to be IO channels. (The channels
c occurring in D remain network channels).

1. Assume that UC(R,R,MD)(P,F).

2. The definition yields that P and F are IO-compatible and:
∀A ∈ R-Adv(P).∃I ∈ R-AdvA ↿ P(F).∀E ∈ MD-Env(A ↿ P) : E ↿ A ↿ P ≡ E ↿ I ↿ F .

3. Choosing A = Dio we obtain:
∃S = I ∈ R-AdvDio ↿ P(F).∀E ∈ MD-Env(Dio ↿ P) : E ↿ Dio ↿ P ≡ E ↿ S ↿ F .

4. Choose S as in 3. and let E ∈ MD-Valid(P). We obtain:

E ↿ P ≡ E ′ ↿ D ↿ P (FORWARDER(P))
≡ E ′′ ↿ Dio ↿ P (RENAME)
≡ E ′′ ↿ S ↿ F (E ′′ ∈ MD-Env(Dio ↿ P), 3.)
≡ E ↿ S ′ ↿ F (RENAME)

where E ′ is defined as in FORWARDER(P), E ′′ is obtained from E ′ by declaring the
renamed network channels c′ of P to be IO channels, and S ′ is obtained from S by
declaring the IO channels c′ (which correspond to the IO channels of Dio) to be network
channels and renaming them to c according to P.

35

5. By observing that S ′ ∈ R-AdvP(F), 4. immediately implies that SS(R,MD)(P,F). 2

By Theorem 10 and Proposition 12, to show Theorem 16, 4., we cannot dispense with the
assumption that P is network predictable.

5.4 Restricting the Environment to be a Decision Process

In this section, we consider the case were for blackbox simulatability and universal compos-
ability the environment is restricted to be a decision process while the adversary may play
the role of a master process. Interestingly, in this setting not all three security notions are
equivalent even if the real protocol is network predictable.

We first note that certain variants of SS, BB, and UC do not make sense in case the
environment is restricted to be a decision process as every two IO-compatible protocols would
be related:

Remark 17. We have that for all IO-compatible protocols P and F the relationships SS(R,D)(P,
F), SBB(R,R,D)(P,F), UC(R,R,D)(P,F), and UC(R,M,D)(P,F) are true since there are no mas-
ter processes and therefore no computation can take place. Note that in UC if the real adversary
is a regular process expression, then so is the ideal adversary, and thus, the two variants of
UC are equivalent.

Theorem 18. Let P,F ∈ R. Then,

1. SS(R,MD)(P,F) iff SBB(M,R,D)(P,F) iff SBB(M\R,R,D)(P,F) iff SBB(M\R,R,MD)(P,F).

2. WBB(M,R,D)(P,F) iff WBB(M\R,R,D)(P,F).

3. WBB(M,R,MD)(P,F) implies WBB(M,R,D)(P,F).

4. UC(M,M,D)(P,F) iff UC(M\R,M\R,D)(P,F) iff UC(M\R,M\R,MD)(P,F).

5. The notions in 1. imply those in 4. , and UC(M,M,MD)(P,F) implies those in 4.

The theorem holds both for the case where MD and D only contain closed process expressions
and for the case where MD and D may contain open process expressions.

Proof. Statement 1. Using the definitions and MD-INCLUSION, it immediately follows that
SS(R,MD)(P,F) implies SBB(M,R,D)(P,F). Clearly, SBB(M,R,D)(P,F) implies SBB(M\R,R,D)(P,
F). The converse is also true: If the real adversary A is regular, then E ↿ A ↿ P ≡ E ↿ A ↿ S ↿ F
because no one of the two process expressions contains start, and thus, no computation takes
place. We have that SBB(M\R,R,D)(P,F) and SBB(M\R,R,MD)(P,F) are equivalent since if
the real adversary contains start, then the environment may not contain start, and hence,
belongs to D. Similar to the proof of Theorem 16, 1. we now show that blackbox simulatability
implies strong simulatability.

1. Assume that SBB(M,R,D)(P,F).

2. The definition yields that P and F are IO-compatible and:
∃S ∈ R-AdvP(F).∀A ∈ M-Adv(P).∀E ∈ D-Env(A ↿ P) : E ↿ A ↿ P ≡ E ↿ A ↿ S ↿ F .

36

3. Choosing A to be the master IO dummy adversary Dio
M = Dio

M (Cnet
in (P),Cnet

out(P), q(n))
we obtain:
∃S ∈ R-AdvP(F).∀ polynomials q(n).∀E ∈ D-Env(Dio

M ↿ P) : E ↿ Dio
M ↿ P ≡ E ↿ Dio

M ↿

S ↿ F .

4. Choose S as in 3., let E∈MD-Valid(P), and q(n)=comsize(P)(n)+comsize(S ↿ F)(n)+
comsize(E)(n). We have:

E ↿ P ≡ E ′M ↿ D
net
M ↿ P (MASTER-S-FORWARDER)

≡ E ′′M ↿ D
io
M ↿ P (RENAME)

≡ E ′′M ↿ D
io
M ↿ S ↿ F (E ′′M ∈ D-Env(Dio

M ↿ P), 3.)
≡ E ′M ↿ D

net
M ↿ S ↿ F (RENAME)

≡ E ↿ S ↿ F (MASTER-S-FORWARDER)

where E ′M is defined as in MASTER-S-FORWARDER and E ′′M is obtained from E ′M by
declaring the renamed network channels c′ of P to be IO channels. Since E is valid
for P, all network channels of P occurring in E have been renamed according to Dnet

M

and declared to be IO channels, and start has been renamed to start′, it is clear that
E ′′M ∈ D-Env(Dio

M ↿ P).

5. From 4. we immediately obtain that SS(R,MD)(P,F).

Statement 2. It suffices to observe that if the real adversary is not a master process, then no
computation will take place.

Statement 3. This statement is obvious.

Statement 4. The reasoning here is similar to the one for the different variants of blackbox
simulatability above. In addition we use that if the real adversary contains start, then so
does the ideal adversary.

Statement 5. The first implication was proved in Theorem 16 and the second implication
immediately follows since if the real adversary contains start, then so does the ideal adversary.

2

As illustrated next, UC(M\R,M\R,MD)(P,F), or equivalently UC(M,M,D)(P,F), in general does
not imply SS(R,MD)(P,F) or UC(M,M,MD)(P,F) even if P is network predictable. Intuitively,
in the proof of Theorem 16, 4. if the adversary may be a master process, then the simulator
S = I we obtain is also a master process. However, to show strong simulatability the simulator
needs to be a regular process expression. The example used to prove the following theorem
shows that in general master process expressions cannot be turned into regular process expres-
sions without changing the behavior of the overall system. Therefore, the proof of Theorem 16
would not go through if the adversary may be a master process while the environment is a
decision process.

Theorem 19. There exist P,F ∈ R such that P is network predictable and UC(M,M,D)(P,F)
does not imply SS(R,MD)(P,F) and WBB(M,R,D)(P,F).

37

To prove the theorem, we construct P,F ∈ R and show the properties claimed.
Roughly speaking, P receives a bit x from the environment on an IO channel, returns

an acknowledgment of receipt on a network channel, waits for a send request on a network
channel, and then returns x on a network channel. The process F works exactly in the same
way but if x = 0, then in the last step it will not return x.

Intuitively, a master process S which has only access to the network channels of F can
simulate P using F because if in the last step F does not return an answer, S will be triggered,
i.e., receives input on the channel start, and thus knows that F ’s answer was 0. If S is not a
master process, then there is no way for S to know what x was, and therefore will not be able
to simulate P (using F). Now, the reason that UC(M,M,D)(P,F) holds but SS(R,MD)(P,F) and
WBB(M,R,D)(P,F) do not hold is that for the latter two security notions one requires that P can
be simulated using F by a simulator that is not a master process, while for UC(M,M,MD)(P,F)
the simulator (i.e., the ideal adversary) may be a master process.

Formally, the process expression P uses the following channels: Cio
in(P) = {c0}, Cnet

out(P) =
{c1, c2}, and Cnet

in (P) = {c3}. Now, P is defined as follows:

P = in(c0, tx∈{0,1}).(out(c1, received) || in(c3, send-req).out(c2, x)).

where the M-term tx∈{0,1} only accepts a bit string a if it is 0 or 1. In this case, x is set to a.
Clearly, P is network predictable: A possible dummy is

D = in(c1, received).(out(c
′
1, received) ||

in(c′3, send-req).(out(c3, send-req) || in(c2, x).out(c′2, x))).

The channels of F are defined just as for P except that the network channels c1, c2, c3 are
renamed to c′1, c

′
2, c
′
3. Also, F uses the internal channel c′int.

F = in(c0, tx∈{0,1}).
(

out(c′1, received) ||

in(c′3, send-req).
(
out(c′int, x) || in(c′int, 1).out(c

′
2, x)

))

where, formally, 1 is an M-term which only accepts the input if it is 1.
We now show:

Claim I. UC(M,M,D)(P,F).

Proof sketch of Claim I. By Theorem 18, we know that UC(M,M,D)(P,F) iff UC(M\R,M\R,D)(P,
F). To prove the claim, let A ∈ (M\R)-Adv(P). We need to show that there exists I ∈
(M\R)-AdvP(I) such that E ↿ A ↿ P ≡ E ↿ I ↿ F for every E ∈ D-Env(A ↿ P). We will define
a master process expression S which uses F to simulate P. Then, I will be the concurrent
composition of A (with start renamed) and S.

The simulator S works as follows: It forwards messages on F ’s network channels from/to
the adversary A. If right after forwarding a message from the adversary A on c3 to F on c′3,
S receives a message on start, then S sends 0 on c2 because this situation occurs exactly
when F is expected to send a message on c′2 but does not do so because x = 0. In all other

38

situations where S receives a message on start, S forwards it on start′ (to the adversary A).
One can now show that E ↿ A ↿ P ≡ E ↿ (A ↿ S) ↿ F where I = A ↿ S is the ideal adversary,
which concludes the proof of the Claim I. We point to [16] for a formulation of S as a process
expression and a more detailed proof.

Claim II. SS(R,MD)(P,F) does not hold.

Proof sketch of Claim II . The proof of Claim II is by contradiction. Assume that there exists
a simulator S ′ ∈ R-AdvP(F) such that E ↿ P ≡ E ↿ S ′ ↿ F for every E ∈ MD-Valid(P). We
construct a closed master decision process expression E ′ ∈ MD-Valid(P) such that E ′ ↿ P 6≡
E ′ ↿ S ′ ↿ F . The environment E ′ works as follows: It generates a random bit, sends it on
channel c0, waits for acknowledgment of receipt (on channel c1), sends a “send request” on
c3, and then checks whether the bit returned on c2 is the one sent before. If at some point
except at the beginning, E ′ receives a message on start, then E ′ writes 0 on decision and
terminates. In other words, E ′ always expects to receive a message back from the process it is
interacting with. Now, while in E ′ ↿ P the environment E ′ will output 1 with probability 1, it
is not hard to show that in E ′ ↿ S ′ ↿ F the environment outputs 1 with at most probability 1/2
since the simulator does not know which bit was sent by E ′ to F . Hence, E ′ ↿ P 6≡ E ′ ↿ S ′ ↿ F .
This concludes the proof of Claim II. We point to [16] for a more precise formulation of E ′ as
a process expression and a more detailed argument.

Claim III. WBB(M,R,D)(P,F) does not hold.

The proof is similar to the one of Claim II. One simply chooses A to be a dummy adversary
that forwards messages between E ′ and S ′.

This concludes the proof of Theorem 19. Note that by Theorem 10, 16, and 18 it follows
that SS(R,MD)(P,F) implies WBB(M,R,D)(P,F) (but that the converse is not true if P is not
network predictable). Hence, Claim III implies Claim II. It is open whether WBB(M,R,D)(P,F)
implies SS(R,MD)(P,F) if P is network predictable.

5.5 Making the Simulator the Master Process

Theorems 18 and 19 show that SS (SBB) and UC (WBB) are not equivalent if the adversary
may play the role of the master process and the environment is restricted to be a decision
process even if the real protocol is network predictable. As mentioned, the reason for this is
that to show that UC implies SS, we want to use the ideal adversary in UC as the simulator
in SS. However, in SS the simulator has to be a regular process expression while in UC the
ideal adversary may be a master process expression. In general, it is not possible to turn a
master process expression into a regular process expression without changing the behavior of
the overall system.

It is tempting to think that allowing the simulator to play the role of the master process
would solve the above problem, and thus, would make UC (WBB) and SS (SBB) equivalent
even if the environment may only be a decision process. In this section, we will see that this
is not so. In a nutshell, the reason for this is that in UC the run time of the ideal adversary
may depend on the run time of the real adversary while the run time of the simulator in SS

39

and BB has to be independent of the run time of the real adversary and the environment, and
therefore, the simulator can be exhausted by these entities.

However, WBB is equivalent to UC if the simulator may play the role of the master process
both in case the environment is the master process and in case the environment is restricted
to be a decision process.

Recall that we have defined variants SSsim, SBBsim, and WBBsim of SS, SBB, and WBB
in which the simulator may play the role of the master process in Definition 7.

We note that certain variants of SSsim, SBBsim, and WBBsim do not make sense as all
IO-compatible protocols would be related:

Remark 20. We have that SSsim(M,D)(P,F), SSsim(M\R,D)(P,F), SBBsim(R,M,D)(P,F),
SBBsim(R,M\R,D)(P,F), WBBsim(R,M,D)(P,F), and WBBsim(R,M\R,D)(P,F) are true for every
IO-compatible protocols P and F since the left hand-side of E ↿ P ≡ E ′ ↿ S ↿ F and E ↿ A ↿ P ≡
E ↿ A′ ↿ S ↿ F do not contain start, and thus, no computation can take place. Consequently,
if S does “nothing”, then the process expressions on both sides are indistinguishable.

Theorem 21. 1. There are no IO-compatible protocols P and F such that:
SSsim(M\R,MD)(P,F), SBBsim(M,M\R,MD)(P,F), SBBsim(M,M\R,D)(P,F), or
SBBsim(R,M\R,MD)(P,F).

2. For every P,F ∈ R: SS(R,MD)(P,F) iff SSsim(M,MD)(P,F) iff SBBsim(M,M,MD)(P,F)
iff SBBsim(R,M,MD)(P,F) iff SBBsim(M,M,D)(P,F).

3. For every P,F ∈ R:
WBBsim(R,M,MD)(P,F) iff WBBsim(M,M,MD)(P,F) iff WBB(M,R,MD)(P,F).

4. For every P,F ∈ R:
WBBsim(M,M,D)(P,F) iff WBBsim(M\R,M,D)(P,F) iff UC(M,M,D)(P,F).

5. The notions in 3. imply those in 4.

Proof. Statement 1. Assume that there exists P and F such that SSsim(M\R,MD)(P,F).
Hence, there exists S ∈ (M\R)-AdvP(F) with E ↿ P ≡ E ′ ↿ S ↿ F . Let q(n) = comsize(S).
Now, to distinguish P from S ↿ F , we define an E that does the following: E triggers itself
via start q(n) + 1 times. (It is straightforward to formulate E as a process expression.) If it
interacts with P, then E is in fact triggered q(n) + 1 times, and in this case, E outputs 1 on
decision. If E (E ′) interacts with S ↿ F , then E ′ must be triggered through S via start′.
However, since the communication size of S is q(n), S cannot trigger E q(n) + 1 times, and
thus, E ↿ P 6≡ E ′ ↿ S ↿ F . The argument for the variants of SBBsim is similar.

Statement 2. This is an immediate consequence of the first statement, Theorem 16, and
Theorem 18.

Statement 3. The implications from right to left are obvious. To see that WBBsim(R,M,MD)(P,
F) implies WBB(M,R,MD)(P,F), first note that by Theorem 16 WBB(M,R,MD)(P,F) is equivalent
to WBB(R,R,MD)(P,F). Now, if WBBsim(R,M,MD)(P,F) is the variant of WBBsim where the
the simulator may only be master if the adversary is, then it immediately follows that the

40

simulator has to be regular. Hence, WBBsim(R,M,MD)(P,F) implies WBB(R,R,MD)(P,F) (and
thus WBB(M,R,MD)(P,F)). In case, we consider the variant of WBBsim(R,M,MD)(P,F) where
the simulator may be master independent of whether the adversary is master, we obtain that
if the simulator is master even though the adversary is not, then the environment can be a
master and can exhaust the simulator just as shown in statement 1. Consequently, this case
can not occur. And hence, the simulator has to be regular if the adversary is.

Statement 4. The first equivalence follows from the fact that if the adversary is a regular
process expression, then no computation can take place. It is also clear that WBBsim implies
UC since the real adversary in parallel with the simulator provides the ideal adversary needed
for UC. The implication in the other direction is more interesting:

1. Assume that UC(M,M,D)(P,F).

2. The definition yields that P and F are IO-compatible and:
∀A ∈ M-Adv(P).∃I ∈ M-AdvA ↿ P(F).∀E ∈ D-Env(A ↿ P) : E ↿ A ↿ P ≡ E ↿ I ↿ F .

3. Choosing A = Dio
M = Dio

M (Cnet
in (P),Cnet

out(P), q(n)) for some q(n) we obtain:
∃Sq(n) = I ∈ M-AdvDio

M
↿ P(F).∀E ∈ D-Env(Dio

M ↿ P) : E ↿ Dio
M ↿ P ≡ E ↿ Sq(n) ↿ F .

4. Let A ∈ (M\R)-Adv(P), q(n) = comsize(A)(n) + comsize(P)(n) + 1, choose Sq(n) as
in 3. and let E ∈ D-Env(A ↿ P). We obtain:

E ↿ A ↿ P ≡ E ↿ A′M ↿ D
net
M ↿ P (MASTER-ADV-FORWARDER)

≡ E ↿ A′′M ↿ D
io
M ↿ P (RENAME)

≡ E ↿ A′′M ↿ Sq(n) ↿ F (E ↿ A′′M ∈ D-Env(Dio
M ↿ P), 3.)

≡ E ↿ A′ ↿ S ′
q(n) ↿ F (RENAME)

where A′M is defined as in MASTER-ADV-FORWARDER, Dio
M and A′′M are obtained

from Dnet
M and A′M , respectively, by declaring the renamed network channel c′ of P to

be IO channels, A′ is defined as in the definition of WBBsim, and S ′
q(n) is obtained from

Sq(n) by declaring the IO channels c′ to be network channels and renaming them to c
according to P.

5. Observe that S ′
q(n) is adversarially valid for F and that P and S ′

q(n) ↿ F are compatible

except that S ′
q(n) contains start and start′. Also, S ′

q(n) only depends on F , P, and

(the communication size of) A. Consequently, 4. implies WBBsim(M\R,M,D)(P,F) (for
both variants of WBBsim).

Statement 5. It suffices to observe that WBB(M,R,MD)(P,F) implies WBBsim(M,M,D)(P,F),
which is obvious. 2

5.6 Summary of the Relationships

In this section, we summarize the results proved in the previous sections. We have four
classes of pairwise equivalent (variants of) security notions. In the following four corollaries

41

we present these classes. We then study the relationships between these classes. All results
are also depicted in Figure 2. In this figure, (non-)implications that immediately follow from
the ones depicted are not drawn.

The first class, which we call SS/SBB, consists of all variants of strong simulatability and
strong black-box simulatability. There equivalence follows immediately from Theorem 16, 18,
and 21.

Corollary 22. All security notions in the class SS/SBB are equivalent, i.e., for every P,F ∈
R, we have:
SS(R,MD)(P,F) iff SSsim(M,MD)(P,F) iff SBB(R,R,MD)(P,F) iff SBB(M,R,MD)(P,F) iff
SBB(M,R,D)(P,F) iff SBB(M\R,R,D)(P,F) iff SBB(M\R,R,MD)(P,F) iff SBBsim(M,M,MD)(P,F)
iff SBBsim(R,M,MD)(P,F) iff SBBsim(M,M,D)(P,F).

The second class, which we call UC/WBBenv, consists of all variants of universal compos-
ability and weak black-box simulatability where the environment may be a master process.
Their equivalence follows immediately from Theorem 16 and 21.

Corollary 23. All security notions in the class UC/WBBenv are equivalent, i.e., for every
P,F ∈ R, we have:
UC(R,R,MD)(P,F) iff UC(M,M,MD)(P,F) iff WBB(R,R,MD)(P,F) iff WBB(M,R,MD)(P,F) iff
WBBsim(M,M,MD)(P,F) iff WBBsim(R,M,MD)(P,F).

The third class, which we call UC/WBBsim, consists of all variants of universal compos-
ability and weak black-box simulatability where the simulator is a master process and the
environment is restricted to be a decision process. There equivalence follows immediately
from Theorem 18 and 21.

Corollary 24. All security notions in the class UC/WBBsim are equivalent, i.e., for every
P,F ∈ R, we have:
UC(M,M,D)(P,F) iff UC(M\R,M\R,D)(P,F) iff UC(M\R,M\R,MD)(P,F) iff
WBBsim(M,M,D)(P,F) iff WBBsim(M\R,M,D)(P,F).

For the version UC(M\R,M\R,MD)(P,F) of universal composability, note that since real and
ideal adversary have to be master processes, the environment can not be a master process.

The fourth class, which we call WBBadv , consists of all variants of weak black-box simu-
latability where the simulator is a regular process and the environment is restricted to be a
decision process. There equivalence follows immediately from Theorem 21.

Corollary 25. All security notions in the class WBBadv are equivalent, i.e., for every P,F ∈
R, we have: WBBsim(M,R,D)(P,F) iff WBBsim(M\R,R,D)(P,F).

We now summarize some of the basic relationships between the different classes.
Given a class C of regular process expressions, we will write, for instance, SS/SBB ⇒

UC/WBBenv for C to say that, for every P,F ∈ C, if P and F are related with respect to
some security notion in SS/SBB (since all of the security notions in one class are equivalent,
it does not matter which one is chosen), then they are also related with respect to (all of)
the security notions in UC/WBBenv. In particular, UC/WBBsim 6⇒ WBBadv for C means that

42

there exist P,F ∈ C such that P and F are related w.r.t. the security notions in UC/WBBsim

but not w.r.t. those in WBBadv . In case C = R, we will omit C and simply say, for instance,
SS/SBB ⇒ UC/WBBenv.

Corollary 26. 1. SS/SBB ⇒ UC/WBBenv.

2. UC/WBBenv ⇒ WBBadv.

3. WBBadv ⇒ UC/WBBsim.

4. UC/WBBsim 6⇒ WBBadv.

5. In particular:

(a) UC/WBBenv ⇒ UC/WBBsim.

(b) UC/WBBsim 6⇒ UC/WBBenv.

(c) SS/SBB ⇒ UC/WBBsim.

(d) SS/SBB 6⇒ UC/WBBsim.

Proof. The first implication follows immediately from Theorem 16. The second implication
was shown in Theorem 18, while the third one was proved in Theorem 21. Finally, 4. was
stated in Theorem 19. The statements in 5. immediately follow from the previous ones. 2

We note that the real (and ideal) protocol chosen to prove 4. is network predictable, i.e., it
satisfies FORWARDER.

We emphasize the following:

Remark 27. The equivalences among the security notions in the different classes—SS/SBB,
UC/WBBenv, WBBadv, and UC/WBBsim— as well as the relationships between these classes,
as stated in Corollary 26, are proved based on only quite basic properties of the computational
model, namely, the axioms listed in Section 5.1, excluding FORWARDER, plus the assumption
that the runtime of processes are polynomially bounded in the security parameter (except for
guards), which is the case for the models proposed in [5, 9, 30] (but not for some more recent
models [8,20,23]). Also, the example showing that UC/WBBsim does not imply WBBadv is quite
basic. Hence, our work has identified basic properties relevant for the relationships between
security notions. Also, the axiomatic approach allows us to carry over some of our results to
other models and to more easily identify differences between the models (see Section 6).

It is open whether or not WBBadv implies UC/WBBenv. However, from Corollary 26 and
Corollary 28, it follows that WBBadv does not imply SS/SBB for protocols that are not net-
work predictable, i.e., protocols that do not satisfy FORWARDER. (Otherwise, SS/SBB and
UC/WBBenv would be equivalent even for protocols that do not satisfy FORWARDER, which
is a contradiction to Corollary 28 below).

In Theorem 10, we have shown that for UC/WBBenv to imply SS/SBB it is necessary that
FORWARDER is satisfied. This allows us to characterize when UC/WBBenv and SS/SBB are
equivalent. We write UC/WBBenv ⇔ SS/SBB for C if UC/WBBenv ⇒ SS/SBB for C and
SS/SBB ⇒ UC/WBBenv for C.

43

Corollary 28. Let C be a class of regular process expressions closed under renaming of chan-
nels (in the same sense used in Theorem 10). Then,

UC/WBBenv ⇔ SS/SBB for C iff FORWARDER(P) for every P ∈ C.

Proof. The only-if direction immediately follows from Theorem 10. For the if direction,
first note that by Corollary 26 we know that SS/SBB ⇒ UC/WBBenv for R. Given that
FORWARDER(P), we obtain that UC/WBBenv ⇒ SS/SBB for C by Theorem 16. 2

We emphasize:

Remark 29. The proof of Corollary 28 only uses very basic properties (axioms) which should
be satisfied in most computational models. Hence, the corollary should carry over to such
models.

Together with Proposition 15, Corollary 28 implies:

Corollary 30. Let C be the class of standard protocols (see Definition 14). Then,

UC/WBBenv ⇔ SS/SBB for C.

We note that this corollary does not hold for the class of all regular process expressions as
there exist regular process expression which are not network predictable (Proposition 12). By
Corollary 28, for those protocols, UC/WBBenv does not imply SS/SBB.

Corollary 30 tells us that if the environment may play the role of the master process, then
for standard protocols (i.e., the class of protocols considered in the computational models
by Pfitzmann and Waidner [30] and Canetti [9]) strong simulatability/strong black-box sim-
ulatability and universal composability/weak black-box simulatability are equivalent notions
in SPPC. The main reason is that in SPPC, for standard protocols, the axiom FORWARDER
is true (Proposition 15). Here we use that processes correspond to IO automata/ITMs with
guards. Without guards, the proposition would not hold true.

6 Implications for Other Models

In this section, we discuss the implications of our results in SPPC for the PIOA (Section 6.1)
and PITM models (Section 6.2), including differences between the models. In Section 6.3, we
also briefly discuss the PPC and the Task-PIOA model.

6.1 The PIOA Model and Variants

We refer the reader to [5, 30] for a detailed description of the PIOA model. We examine the
relationships between the security notions as considered for PIOA model. It turns out that
the security notions UC and SBB are not equivalent in PIOA even if we assume that the
environment may play the role of the master process and the FORWARDER axiom holds
true. This seems counter-intuitive and suggests to slightly modify PIOA. We call the new
version the buffer-free version of PIOA (BFPIOA). In BFPIOA, all our axioms are satisfied
and all relationships obtained for SPPC carry over. Before studying the relationships between

44

the security notions, we go through the axioms listed in Section 5.1 and see which ones are
satisfied in the PIOA model and which ones are not. This will help us to explain the differences
between the PIOA model and SPPC. All of the following is independent of whether or not
buffers can be queried an unbounded number of times.

On the validity of the axioms in Section 5.1. It is easy to see that the axioms COM,
ASC, TRN, SYM, RENAME, RENAME-START, MMD-INCLUSION, and MD-INCLUSION
are satisfied in PIOA. We will see that MASTER-S-FORWARDER, and MASTER-ADV-
FORWARDER are satisfied as well.

However, the axioms REG-S-FORWARDER, REG-ADV-FORWARDER, and FORWAR-
DER are not satisfied in case the environment/adversary connects only to the channels (or
ports, to use the terminology of the PIOA model) of the dummy process, i.e., the environ-
ment/adversary is not allowed to access the channels of the protocol directly by renaming of
channels. While without this assumption there is a configuration of the entities that makes
the axioms true, our assumption better explains the problem pointed out in Theorem 32.

Proposition 31. The axioms REG-S-FORWARDER, REG-ADV-FORWARDER, and FOR-
WARDER are not satisfied in the PIOA model in case the environment/adversary connects
only to ports of the dummy process.

Proof. The following example shows that REG-S-FORWARDER is not satisfied. The same
example works for REG-ADV-FORWARDER and FORWARDER. The example uses that in
the PIOA model entities always communicate through buffers which have to be triggered to de-
liver messages and which may be triggered by machines (typically the adversary/environment)
other than those who write messages into the buffer.

Let P consist of one IO automaton M which receives a bit on an IO channel and forwards
it on a network channel, i.e., writes it into a buffer connected to the adversary/environment.
We assume that the buffer is scheduled by the adversary/environment. In what follows, we
argue that REG-S-FORWARDER does not hold for P.

If the environment (for which we may assume that it plays the role of the master process)
sends a bit to P, then P outputs the bit on the network channel and according to the compu-
tational model of PIOA, this bit is written into the buffer. Next the environment is triggered
and it will trigger the buffer in which it expects to find the bit sent to P via the IO channel.
In case there is no dummy between P and the environment, the environment will obtain the
bit. Otherwise, if the environment and P are separated by a dummy, then the environment
triggers the buffer which “sits” in between the environment and the dummy, and this buffer
does not contain the bit since the dummy was never activated, and thus, could not write into
this buffer. Thus, the environment can distinguish whether it only interacts with the protocol
P or with the dummy and the protocol. Consequently, REG-S-FORWARDER does not hold
in PIOA. 2

We note that by Remark 13, the axiom FORWARDER fails in PIOA (for the same reason it
fails in SPPC) even if all machines trigger their own buffers.

The above example does not work for the axioms MASTER-S-FORWARDER and MAS-
TER-ADV-FORWARDER because after P wrote the bit into the network buffer, the dummy

45

will be triggered next as it is the master process. Hence, the dummy can write the bit into
the buffer that sits in between the environment and the dummy, and then can activate the
environment. More generally, since the dummy is the master it can copy all messages written
by P to the buffers sitting in between the dummy and the protocol into the buffers which sit in
between the environment and the dummy, and only then activates the environment. Therefore,
MASTER-S-FORWARDER and MASTER-ADV-FORWARDER are satisfied in PIOA.

Relationships between the security notions in the PIOA model. We first show that,
unlike SPPC, in the PIOA model, UC does not imply SBB in case the environment may
play the role of the master scheduler even for standard protocols. (Recall Definition 14 for
standard protocols.) This is mainly due to the fact that in the PIOA model IO automata have
to communicate through buffers. Before we prove this statement, we note a difference in the
definition of SBB as stated in the present work and the definition of SBB in the PIOA model.

In our definition of SBB we assume the simulator to sit between the adversary and the
ideal protocol. In contrast, in the PIOA model, the simulator can completely “encapsulate”
the adversary. In particular, messages sent from/to the environments to/from the adversary,
may first go through the simulator, who can forward, drop, or modify these messages. We refer
to this version of SBB by SBBPIOA. Unfortunately, the way the adversary and the simulator
are combined does not seem to have been rigorously defined in the PIOA model. We will
therefore consider all interpretations that appear to be reasonable.

Theorem 32. UC does not imply SBBPIOA in case the environment may play the role of the
master scheduler, even for standard protocols.

Proof. We define two standard protocols, a real protocol P and an ideal protocol F , and
show that P is at least as secure as F w.r.t. UC, but not w.r.t. SBBPIOA.

Let P consist of one IO automaton M which receives a bit on an IO channel and forwards
it on a network channel, i.e., writes it into a buffer connected to the adversary/environment.
We assume that the buffer is scheduled by the adversary/environment.

Let F consist of one IO automaton M ′ which, just as M , has an IO channel and a network
channel where the corresponding buffer is scheduled by the adversary. In addition, M ′ has
a secure channel to itself. (Alternatively, one could introduce another machine M ′′ and two
channels, one from M ′ to M ′′ and one from M ′′ to M ′, controlled by the sending machine,
respectively.) M ′ works as follows: It receives a bit b1 from the environment, generates a
random bit b2, and writes the two messages (b1, “environment”) and (b2, “random”) into the
network buffer. M ′ chooses the order in which these messages are written into the buffer
uniformly at random. Also, the messages are written into two different cells of the network
buffer. This is possible by using the secure channel: First, M ′ writes the first message into
the buffer, then M ′ uses the secure channel to trigger itself, and third M ′ writes the second
message into the buffer.

Claim I. P is at least as secure as F w.r.t. UC.

Proof sketch of Claim I. The ideal adversary simply simulates the real adversary. In case the
real adversary triggers the buffer to M to obtain the first message, the ideal adversary would
trigger the buffer to M ′ two times to obtain both messages (if any) and would only use b1 to

46

simulate the real adversary. The tag “environment” tells the ideal adversary which of the two
bits to use.

Claim II. P is not at least as secure as F w.r.t. SBBPIOA.

Proof sketch of Claim II. Assume that P is at least as secure as F w.r.t. SBBPIOA. We
distinguish four cases and lead them to a contradiction.

1. The simulator S is “empty”, i.e., the ideal adversary A′ (obtained by renaming channels
of the real adversary A) connects to the network buffer of M ′. This obviously does not
work because the network buffers of M and M ′ contain different information such that
it is easy to specify A, A′, and an environment that tell P and F apart.

2. The simulator S connects to the network buffer of M ′ but the ideal adversary A′ controls
the clock channel of this buffer. This also does not work. Let the real adversary A be
one that is triggered by the environment to read out the bit of the network channel.
More precisely, A triggers the buffer to read out the first entry and forwards it to the
environment. If A′ triggers the first entry of the network channel of M ′, then this entry
would be given to S. In half of the cases this entry is (b2,random), and thus, the simulator
cannot figure out b1. Hence, the bit forwarded by S to A′ is wrong in half of the cases,
and thus, so is the bit forwarded by A′ to the environment.

3. The simulator S completely controls the network buffer of M ′, but the environment
directly connects to A′. There seem to be at least two reasonable different ways of how
S and A′ can be connected in this case. Recall that A′ assumes to be connected to an
input buffer that he schedules and P writes to:

a) There is a buffer from S to A′ controlled by A′. Now the problem is that after F
wrote the two messages into the buffer (which “sits” between S and F), the environment,
which is assumed to be a master scheduler, is scheduled and asks A (A′) to deliver the
bit from the network channel. The adversary A does this by triggering the network
channel and forwarding the bit to the environment. If A′ does the same, the buffer will
be empty since the simulator was never triggered, and thus, could not write anything
into the buffer between A′ and S. We note that this situation corresponds to the failure
of REG-ADV-FORWARDER explained above.

b) There is a buffer from A′ to S controlled by S and a buffer from S to A′ controlled
by S. The former buffer takes the scheduling messages from A′ (which S has to pull by
scheduling the buffer) and the latter buffer takes the message from S (P from the point
of view of A′) to A′. But if now A′ writes a (scheduling) message into the buffer to S,
then first the master scheduler, which is the environment, is scheduled. Hence, while
interacting with the real protocol, the environment would obtain the expected bit from
the adversary, in the ideal protocol, the environment is activated without obtaining a
bit. Consequently, the environment can distinguish between the real and ideal setting.
We note that even if the S were declared to be a master scheduler, this would not help,
since in this case S can be exhausted by the environment, similarly to the next case.

47

4. The simulator S completely encapsulates A′, i.e., all communication from/to A′ first goes
through S. Now, no matter how the combination of A′ and S is defined, the environment
can distinguish between the real and the ideal setting, by exhausting S as follows: The
environment picks a number i between 1 and p(n) for some polynomial p(n) bigger than
the runtime of S. Since the runtime of S is independent of the runtime of the adversary
and the environment, we may assume that the runtime of the adversary is chosen in such
a way that the adversary is never exhausted when executed with the environment, the
real/ideal protocol, and, in the ideal setting, the simulator. Now, the environment asks
the adversary to deliver the bit i− 1 times. Before asking the ith time, the environment
sends a random bit to the real/ideal protocol. Then, the environment asks the adversary
again to deliver this bit. In the real setting, the environment will always obtain the bit.
In the ideal setting, there is a non-negligible chance that the bit is not returned. The
reason is that S does not know when F actually wrote a bit into the buffer, and hence,
always has to check when asked to deliver the bit (via the adversary). But then, if i is
big enough (and it is with non-negligible probably), S will be exhausted at some point
and will not be able to deliver the bit. (The proof can make made more rigorous along
the lines of the proof of Proposition 12.)

2

We note that the security notions in the classes UC/WBBsim and WBBadv are, just as for
SPPC, also equivalent in the PIOA model. (Recall that these classes contain security notions
where the environment may not play the role of the master scheduler.) Also, the relationships
between these classes are as in the case of SPPC (see the right-hand side of Figure 2). This
follows from the fact that the axioms needed to prove these relationships hold in the PIOA
model. The non-implication from UC/WBBsim to WBBadv can be shown by the same example
as the one used for SPPC. Also, as for the case of SPPC, UC/WBBenv implies UC/WBBsim.
Together with Proposition 32, this allows us to conclude that UC/WBBsim does not imply
SBBPIOA, even for standard protocols.

Proposition 32 and the failure of the axioms REG-S-FORWARDER and REG-ADV-FOR-
WARDER seem counter-intuitive. The problem vanishes if the PIOA model is modified so
that machines always trigger their own buffers. In effect, this is equivalent to not having
buffers at all, which is why we call this fragment of the PIOA model the buffer-free PIOA
model (BFPIOA). This fragment is essentially as expressive as PIOA and very closely related
to SPPC (except that SPPC can express systems with a polynomial number of copies of
protocols, which can be addressed using the guard mechanism).

Relationships between the security notions in the BFPIOA model. In BFPIOA,
exactly the same axioms as in SPPC are satisfied and the examples used to prove separation
results also carry over from SPPC to BFPIOA. As mentioned in Section 2, starting from the
work in [6], PIOA (and thus, BFPIOA) has a restricted form of guards. Similar to SPPC,
this mechanism suffices to satisfy the forwarder property for standard protocols, but just as
in SPPC, there are protocols expressible in BFPIOA which do not satisfy this property. In
conclusion, we obtain for BFPIOA exactly the same relationships as for SPPC (see Figure 2).

48

6.2 The PITM Model

The PITM model [9] is tailored towards defining UC where the environment is a master
process and the adversaries are regular processes i.e., UC(R,R,MD)(P,F). Depending on which
entities are involved, different computational models are defined: the real model (involving
the environment, the real adversary, and the real protocol), the ideal model (involving the
environment, the ideal adversary, and the ideal functionality together with dummy parties),
and the hybrid model which is a combination of the previous two models.

Therefore, it is not immediately clear how the security notions SS, SBB, and WBB, which
involve a simulator, would be defined in PITM. Different variants are possible, and as we have
seen, differences in the definitions may affect the relationships between the security notions.
It is out of the scope of this paper, to extend PITM in order to define SS, SBB, and WBB.
However, general points can be made.

The version of PITM as introduced in [9] does not have a mechanism, such as guards
of SPPC, that would allow the FORWARDER axiom to be satisfied. In fact, in the PITM
model this axiom even fails for classes of protocols for which it is satisfied in the SPPC and
BFPIOA models. As a consequence of our results, which show that the FORWARDER axiom
is necessary for SBB (SS) to imply UC, we obtain that UC does not imply SBB (SS) in the
PITM model.

6.3 Other Models

In this section, we discuss at a high level how SPPC is related to the Probabilistic Polytime
Process Calculus (PPC) [24,27–29] and the Task-PIOA framework [11].

PPC. Though PPC and SPPC share a similar notation, there are some important differences
in the execution model that mean that the results proven in this paper do not transfer. The
first difference lies in the fact that SPPC’s execution model is sequential in nature, just as in the
PIOA and PITM models, while PPC’s is concurrent. In particular, SPPC is carefully designed
to guarantee that, at any time, only one output command is ready to send. This is not a purely
syntactic constraint, but is also enforced in the execution model by partitioning channels into
high and low priorities. In contrast, in PPC there might be several possible output commands
ready to transmit to any of several possible inputs. The result is that communication can
proceed arbitrarily, and any machine can talk to any other machine on any channel at any
time, an execution model that is more closely related to that of the pi-calculus. Secondly, the
‘+’-operator in SPPC and the M-terms in SPPC cannot be expressed in PPC. However, these
constructs are essential for formulating probabilistic polynomial-time machines with guards.
Also, the inability of simulating M-terms in PPC means that the dummy axioms do not
transfer. The problem here is that an attacker can exhaust any PPC expression by sending
lots of useless messages. The match terms employed in PPC do not help because sending a
message that fails a match term allows the attacker to ’zero’ out entire processes at the cost
of very few messages. Altogether, the expressivity of PPC seems unsuitable for the purpose
of this paper.

49

Time-bounded Task-PIOA. The Time-bounded Task-PIOA framework also differs in sig-
nificant ways from the PITM, PIOA and SPPC execution models. So, the SPPC results do not
carry over directly to that model and a detailed study is out of the scope of this paper. Similar
to PPC, one important point of difference is that in the Task-PIOA framework, the scheduling
is non-sequential, rather than sequential as in SPPC, PIOA, and PITM. Also, task-PIOAs
may be invoked an unbounded number of times, as for example in recent simulation-based
models [8, 23]. Finally, while task-PIOAs may take non-deterministic actions, this is not the
case for SPPC (and other simulation-based models).

7 Reactive Simulatability and Extensions of SPPC

In this section, we consider another security notion, called reactive simulatability in [5] and
security with respect to specialized simulators in [10]. This notion has not drawn as much
attention as the other notions studied in the present work because a general composition the-
orem for composing a polynomial number of copies of protocols along the lines of [9] or the
present work was not known, and in fact, as recently shown is not possible in case the environ-
ment is uniform and strict polynomial-time [22]. Therefore, in the previous sections, we have
concentrated on the other security notions and only very briefly cover reactive simulatability
here. In our terminology, reactive simulatability is defined as follows:

Reactive Simulatability: RS(A,I,E)(P,F) iff P and F are IO-compatible and for every
A ∈ A-Adv(P) and for every E ∈ E-Env(A ↿ P) there exists I ∈ I-AdvA ↿ P(F) such that
E ↿ A ↿ P ≡ E ↿ I ↿ F .

The only difference between reactive simulatability and universal composability (UC) is
that for the former notion the ideal adversary is allowed to depend on the environment.

It has been shown by Canetti [8] that reactive simulatability is equivalent to UC for non-
uniform environments whose runtime may depend on the lengths of their input on the input
tape. The fact that UC implies reactive simulatability follows simply from the order of quanti-
fiers. For the other direction, one considers a “universal” environment which interprets (part of
its) input as an encoding of another environment and simulates this environment. In this way,
one effectively can quantify over all environments, and hence, switch the order of quantification
over environments and ideal adversaries. When allowing the runtime of the environment to
depend on the length of the input on its start channel, then in SPPC we obtain the same
result. Moreover, one can show that with this extension of SPPC, the security notions in the
classes UC/WBBenv and UC/WBBsim are equivalent, respectively; the axioms used to prove
these relationships also hold true for the extension of SPPC.

Hofheinz and Unruh [21] show that for strictly polynomial-time, uniform environments
reactive simulatability does not imply universal composability. While this result is shown in
the PIOA model, it immediately carries over to SPPC in case the environment does not get
auxiliary input, i.e., initially ε is written on the start channel.

50

8 Conclusion

We have carried out a thorough study of the relationships among various notions of simulation-
based security, identifying two properties of the computational model that determine equiv-
alence between these notions, namely the placement of the master process and the FOR-
WARDER property. Our main results are that all variants of SS (strong simulatability) and
SBB (strong black box simulatability) are equivalent, regardless of the selection of the master
process, and they imply UC (universal composability) and WBB (weak black box simulatabil-
ity). Conditions UC and WBB are equivalent as long as the role (master process or not) of the
environment is the same in both. However, the variant of UC in which the environment may
be a master process (as in [4,9]) is strictly stronger than the variants in which the environment
must not assume this role (as in [30]). In addition, the weaker forms of WBB do not imply
SS/SBB. Generally, making the environment the master process yields a stronger security
notion. Hence, we recommend that in subsequent developments of the various models, the en-
vironment is always assigned the role of the master process. Current work on simulation-based
security seems to follow our suggestion (see, e.g., [8, 20, 23]). We also prove a necessary and
sufficient condition for UC/WBB to be equivalent to SS/SBB, based on the ability to define
forwarders. This result already influenced current work on simulation-based security in that
it motivates to consider computational models in which the runtime of machines may depend
on the length of the input (see, e.g., [8, 20,23]).

Our results show that the relationship between universal composability and black-box sim-
ulatability is more subtle than previously described. In particular, composition theorems based
on UC do not necessarily imply those based on blackbox simulatability over any computational
model in which the forwarding property is not satisfied.

The axiom system that we developed to prove many of our results allowed us to exhibit
essential properties needed for establishing relationships between security notions. Also, many
proofs became concise and simple. Finally, failure of axioms in certain models brought out
weaknesses in these models. For example, it seems reasonable to adopt a buffer-free variant of
PIOA and to consider different kinds of ITMs in the ITM model.

While our study concentrates on models where the runtime of processes is bounded by a
polynomial in the security parameter, some of our results, in particular those involving the
issue of placements of the master process, should also carry over to models where the runtime
of processes may depend on the number of invocations and the length of inputs [8, 20, 23],
e.g., the necessary condition for the FORWARDER property, the relationships among notions
for strong and black-box simulatability for all placements of the master process, and the non-
implication of UC and SS (SBB) in case the environment for UC may not play the role of the
master process. Our results have already influenced design decisions made in these models.
However, we leave a more rigorous study of the relationships between the security notions in
such models to future work.
Acknowledgments: We thank Michael Backes, Ran Canetti, Birgit Pfitzmann, Andre Scedrov,
and Vitaly Shmatikov for helpful discussions.

51

References

[1] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure communication.
In 28th ACM Symposium on Principles of Programming Languages, pages 104–115, 2001.

[2] Mart́ın Abadi and Andrew D. Gordon. A bisimulation method for cryptographic protocol.
In Proc. ESOP ’98, volume 1381 of Lecture Notes in Computer Science, pages 12–26.
Springer, 1998.

[3] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: the spi
calculus. Information and Computation, 143:1–70, 1999. Expanded version available as
SRC Research Report 149 (January 1998).

[4] M. Backes, B. Pfitzmann, and M. Waidner. A General Composition Theorem for Secure
Reactive Systems. In Proceedings of the 1st Theory of Cryptography Conference (TCC
2004), volume 2951 of Lecture Notes in Computer Science, pages 336–354. Springer, 2004.

[5] M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems. Tech-
nical Report 082, Eprint, 2004.

[6] Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Polynomial
fairness and liveness. In Proceedings of 15th IEEE Computer Security Foundations Work-
shop, pages 160–174, Cape Breton, Nova Scotia, Canada, 2002.

[7] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Reactively secure signature
schemes. In Proceedings of 6th Information Security Conference, volume 2851 of Lecture
Notes in Computer Science, pages 84–95. Springer, 2003.

[8] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-
tocols. Technical report, Cryptology ePrint Archive, December 2005. Online available at
http://eprint.iacr.org/2000/067.ps.

[9] Ran Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. In Proc. 42nd IEEE Symp. on the Foundations of Computer Science. IEEE, 2001.

[10] Ran Canetti. Personal communication, 2004.

[11] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nancy A. Lynch, Olivier
Pereira, and Roberto Segala. Time-bounded task-pioas: A framework for analyzing secu-
rity protocols. In DISC, pages 238–253, 2006.

[12] Ran Canetti and Marc Fischlin. Universally composable commitments. In Proc. CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science, pages 19–40, Santa Barbara,
California, 2001. Springer.

[13] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and
secure channels. In Advances in Cryptology—EUROCRYPT 2002, volume 2332 of Lecture
Notes in Computer Science, pages 337–351. Springer, 2002.

52

[14] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally com-
posable two-party computation without set-up assumptions. In Advances in Cryptology—
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 68–86.
Springer, 2003.

[15] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In Proc. ACM Symp. on the Theory of
Computing, pages 494–503, 2002.

[16] A. Datta, R. Küsters, J. Mitchell, and A. Ramanathan. On the relationships between no-
tions of simulation-based security. Technical Report 2006/153, Cryptology ePrint Archive,
2006.

[17] A. Datta, R. Küsters, J.C. Mitchell, and A. Ramanathan. On the Relationships Between
Notions of Simulation-Based Security. In J. Kilian, editor, Proceedings of the 2nd Theory
of Cryptography Conference (TCC 2005), volume 3378 of Lecture Notes in Computer
Science, pages 476–494. Springer-Verlag, 2005.

[18] Anupam Datta, Ralf Küsters, John C. Mitchell, Ajith Ramanathan, and Vitaly
Shmatikov. Unifying equivalence-based definitions of protocol security. In ACM SIG-
PLAN and IFIP WG 1.7, 4th Workshop on Issues in the Theory of Security, 2004. No
formal proceedings.

[19] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[20] D. Hofheinz, J. Müller-Quade, and D. Unruh. Polynomial Runtime in Simulatability
Definitions. In 18th IEEE Computer Security Foundations Workshop (CSFW-18 2005),
pages 156–169. IEEE Computer Society, 2005.

[21] D. Hofheinz and D. Unruh. Comparing two notions of simulatability. In J. Kilian, editor,
Theory of Cryptography, Proceedings of TCC 2005, volume 3378 of Lecture Notes in
Computer Science, pages 86–103. Springer-Verlag, 2005.

[22] D. Hofheinz and D. Unruh. Simulatable Security and Concurrent Composition. In Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy, pages 169-183, IEEE
Computer Society, 2006.

[23] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines.
In Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW-19
2006), pages 309–320. IEEE Computer Society, 2006.

[24] Patrick D. Lincoln, John C. Mitchell, Mark Mitchell, and Andre Scedrov. Probabilistic
polynomial-time equivalence and security protocols. In Jeannette M. Wing, Jim Wood-
cock, and Jim Davies, editors, Formal Methods World Congress, vol. I, number 1708 in
Lecture Notes in Computer Science, pages 776–793, Toulouse, France, 1999. Springer.

[25] Robin Milner. A Calculus of Communicating Systems. Springer, 1980.

53

[26] Robin Milner. Communication and Concurrency. International Series in Computer Sci-
ence. Prentice Hall, 1989.

[27] John C. Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization of
bounded oracle computation and probabilistic polynomial time. In Proc. 39th Annual
IEEE Symposium on the Foundations of Computer Science, pages 725–733, Palo Alto,
California, 1998. IEEE.

[28] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A proba-
bilistic polynomial-time calculus for the analysis of cryptographic protocols (preliminary
report). In Stephen Brookes and Michael Mislove, editors, 17th Annual Conference on
the Mathematical Foundations of Programming Semantics, Arhus, Denmark, May, 2001,
volume 45. Electronic Notes in Theoretical Computer Science, 2001.

[29] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A probabilis-
tic polynomial-time process calculus for the analysis of cryptographic protocols. Theor.
Comput. Sci., 353(1-3):118–164, 2006.

[30] B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Ap-
plication to Secure Message Transmission. In IEEE Symposium on Security and Privacy
(S&P 2001), pages 184–200. IEEE Computer Society Press, 2001.

[31] Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague. Probabilistic
bisimulation and equivalence for security analysis of network protocols. Unpublished, see
http://www-cs-students.stanford.edu/~ajith/, 2004.

[32] Ajith Ramanathan, John C. Mitchell, Andre Scedrov, and Vanessa Teague. Probabilistic
Bisimulation and Equivalence for Security Analysis of Network Protocols. In FOSSACS
2004 - Foundations of Software Science and Computation Structures, volume 2987 of
Lecture Notes in Computer Science, pages 468–483. Springer, 2004. Summarizes results
in [31].

54

SS/SBB

Strong Simulatability
≡

Strong Blackbox

(No restriction on
who is master)

��

UC/WBBsim

Universal Composability
≡

Weak Blackbox

(Simulator and adversary
may be master, but
not environment)

U

����

UC/WBBenv

Universal Composability
≡

Weak Blackbox

(Environment
may be master)

iff the FORWARDER property holds

OO�
�

�

�

//

WBBadv

Weak Blackbox

(Only adversary
may be master)

OO

Figure 2: Equivalences and implications between the security notions in SPPC

55

Guard

Guard

Guard

Guard

steps
overall

computation

≤ p(n)

PPT

x1 xk· · ·

in
p
u
t

ch
an

n
el

s

ou
tp

u
t

ch
an

n
el

s

Figure 3: Probabilistic polynomial-time machines in SPPC

56

