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Abstract

A dataset has been classified by some unknown
classifier into two types of points. What were the
most important factors in determining the classifi-
cation outcome? In this work, we employ an ax-
iomatic approach in order to uniquely characterize
an influence measure: a function that, given a set
of classified points, outputs a value for each fea-
ture corresponding to its influence in determining
the classification outcome. We show that our in-
fluence measure takes on an intuitive form when
the unknown classifier is linear. Finally, we em-
ploy our influence measure in order to analyze the
effects of user profiling on Google’s online display
advertising.

1 Introduction
A recent white house report [Podesta et al., 2014] highlights
some of the major risks in the ubiquitous use of big data tech-
nologies. According to the report, one of the major issues
with large scale data collection and analysis is a glaring lack
of transparency. For example, a credit reporting company
collects consumer data from third parties, and uses machine
learning analysis to estimate individuals’ credit score. On the
one hand, this method is “impartial”: an emotionless algo-
rithm cannot be accused of being malicious (discriminatory
behavior is not hard-coded). However, it is hardly transpar-
ent; indeed, it is difficult to tease out the determinants of one’s
credit score: it depends on the user’s financial activities, age,
address, the behavior of similar users and many other factors.
This is a major issue: big-data analysis does not intend to dis-
criminate, but inadvertent discrimination does occur: treating
users differently based on unfair criteria (e.g. online retailers
offering different discounts or goods based on place of resi-
dence or past purchases).

In summary, big data analysis leaves users vulnerable.
They may be discriminated against, and no one (including the
algorithm’s developers!) may even know why; what’s worse,
traditional methods for preserving user anonymity (e.g. by
“opting out” of data collection) offer little protection; big data
techniques allow companies to infer individuals’ data based
on similar users [Barocas and Nissenbaum, 2014]. Since it

is often difficult to “pop the hood” and understand the in-
ner workings of classification algorithms, maintaining trans-
parency in classification is a major challenge. In more con-
crete terms, transparency can be interpreted as understanding
what influences the decisions of a black-box classifier. This
is where our work comes in.

Suppose that we are given a dataset B of users; here, every
user a ∈ B can be thought of as a vector of features (e.g.
a = (age, gender, IP address . . . )), where the i-th coordinate
of a corresponds to the state of the i-th feature. Each a has
a value v(a) (say, the credit score of a). We are interested in
the following question: given a dataset B of various feature
vectors and their values, how influential was each feature in
determining these values?

In more detail, given a set N = {1, . . . , n} of features,
a dataset B of feature profiles, where every profile a has a
value v(a), we would like to compute a measure φi(N,B, v)
that corresponds to feature i’s importance in determining the
labels of the points in B. We see this work as an important
first step towards a concrete methodology for transparency
analysis of big-data algorithms.

Our Contribution: We take an axiomatic approach —
which draws heavily on cooperative game theory — to define
an influence measure. The merit of our approach lies in its
independence of the underlying structure of the classification
function; all we need is to collect data on its behavior.

We show that our influence measure is the unique mea-
sure satisfying some natural properties (Section 2). As a case
study, we show that when the input values are given by a lin-
ear classifier, our influence measure has an intuitive geomet-
ric interpretation (Section 3). Finally, we show that our ax-
ioms can be extended in order to obtain other influence mea-
sures (Section 4). For example, our axioms can be used to
obtain a measure of state influence, as well as influence mea-
sures where a prior distribution on the data is assumed, or a
measure that uses pseudo-distance between user profiles to
measure influence.

We complement our theoretical results with an implemen-
tation of our approach, which serves as a proof of concept
(Section 5). Using our framework, we identify ads where cer-
tain user features have a significant influence on whether the
ad is shown to users. Our experiments show that our influence
measures behave in a desirable manner. In particular, a Span-



ish language ad — clearly biased towards Spanish speakers
— demonstrated the highest influence of any feature among
all ads.

A full version of this paper, which includes the full proofs,
appears as a Cylab technical report (CMU-CyLab-15-001).1

1.1 Related Work
Axiomatic characterizations have played an important role in
the design of provably fair revenue divisions [Shapley, 1953;
Young, 1985; Banzhaf, 1965; Lehrer, 1988]. Indeed, one can
think of the setting we describe as a generalization of coop-
erative games, where agents can have more than one state
— in cooperative games, agents are either present or absent
from a coalition. Some papers extend cooperative games to
settings where agents have more than one state, and define in-
fluence measures for such settings [Chalkiadakis et al., 2010;
Zick et al., 2014]; however, our setting is far more general.

Our definition of influence measures the ability of a fea-
ture to affect the classification outcome if changed (e.g. how
often does a change in gender cause a change in the dis-
play frequency of an ad); this idea is used in the analysis of
cause [Halpern and Pearl, 2005; Tian and Pearl, 2000], and
responsibility [Chockler and Halpern, 2004]; our influence
measure can be seen as an application of these ideas to a clas-
sification setting.

Influence measures are somewhat related to feature selec-
tion [Blum and Langley, 1997]. Feature selection is the prob-
lem of finding the set of features that are most relevant to the
classification task, in order to improve the performance of a
classifier on the data; that is, it is the problem of finding a
subset of features, such that if we train a classifier using just
those features, the error rate is minimized. Some of the work
on feature selection employs feature ranking methods; some
even use the Shapley value as a method for selecting the most
important features [Cohen et al., 2005]. Our work differs
from feature selection both in its objectives and its methodol-
ogy. Our measures can be used in order to rank features, but
we are not interested in training classifiers; rather, we wish to
decide which features influence the decision of an unknown
classifier. That said, one can certainly employ our methodol-
ogy in order to rank features in feature selection tasks.

When the classifier is linear, our influence measures take
on a particularly intuitive interpretation as the aggregate vol-
ume between two hyperplanes [Marichal and Mossinghoff,
2006].

Recent years have seen tremendous progress on methods
to enhance fairness in classification [Dwork et al., 2012;
Kamishima et al., 2011], user privacy [Balebako et al., 2012;
Pedreschi et al., 2008; Wills and Tatar, 2012] and the preven-
tion of discrimination [Kamiran and Calders, 2009; Calders
and Verwer, 2010; Luong et al., 2011]. Our work can po-
tentially inform all of these research thrusts: a classifier can
be deemed fair if the influence of certain features is low; for
example, high gender influence may indicate discrimination
against a certain gender. In terms of privacy, if a hidden fea-
ture (i.e. one that is not part of the input to the classifier)

1https://www.cylab.cmu.edu/research/
techreports/2015/tr_cylab15001.html

has high influence, this indicates a possible breach of user
privacy.

2 Axiomatic Characterization
We begin by briefly presenting our model. Given a set of fea-
tures N = {1, . . . , n}, let Ai be the set of possible values,
or states that feature i can take; for example, the i-th feature
could be gender, in which case Ai = {male, female, other}.
We are given partial outputs of a function over a dataset con-
taining feature profiles. That is, we are given a subset B of
A =

∏
i∈N Ai, and a valuation v(a) for every a ∈ B. By

given, we mean that we do not know the actual structure of
v, but we know what values it takes over the dataset B. For-
mally, our input is a tuple G = 〈N,B, v〉, where v : A→ Q is
a function assigning a value of v(a) to each data point a ∈ B.
We refer to G as the dataset. When v(a) ∈ {0, 1} for all
a ∈ B, v is a binary classifier. When B = A and |Ai| = 2
for all i ∈ N , the dataset corresponds to a standard TU co-
operative game [Chalkiadakis et al., 2011] (and is a simple
game if v(a) ∈ {0, 1}).

We are interested in answering the following question: how
influential is feature i? Our desired output is a measure φi(G)
that will be associated with each feature i. The measure φi(G)
should be a good metric of the importance of i in determining
the values of v over B.

Our goal in this section is to show that there exists a unique
influence measure that satisfies certain natural axioms. We
begin by describing the axioms, starting with symmetry.

Given a dataset G = 〈N,B, v〉 and a bijective mapping
σ from N to itself, we define σG = 〈σN, σB, σv〉 in the
natural way: σN has all of the features relabeled according
to σ (i.e. the index of i is now σ(i)); σB is {σa | a ∈ B}, and
σv(σa) = v(a) for all σa ∈ σB. Given a bijective mapping
τ : Ai → Ai over the states of some feature i ∈ N , we define
τG = 〈N, τB, τv〉 in a similar manner.
Definition 2.1. An influence measure φ satisfies the feature
symmetry property if it is invariant under relabelings of fea-
tures: given a dataset G = 〈N,B, v〉 and some bijection
σ : N → N , φi(G) = φσ(i)(σG) for all i ∈ N . A in-
fluence measure φ satisfies the state symmetry property if it
is invariant under relabelings of states: given a dataset G =
〈N,B, v〉, some i ∈ N , and some bijection τ : Ai → Ai,
φj(G) = φj(τG) for all j ∈ N . Note that it is possible that
i 6= j. A measure satisfying both state and feature symmetry
is said to satisfy the symmetry axiom (Sym).

Feature symmetry is a natural extension of the symme-
try axiom defined for cooperative games (see e.g. [Banzhaf,
1965; Lehrer, 1988; Shapley, 1953]). However, state symme-
try does not make much sense in classic cooperative games;
it would translate to saying that for any set of players S ⊆ N
and any j ∈ N , the value of i is the same if we treat S as
S \{j}, and S \{j} as S. While in the context of cooperative
games this is rather uninformative, we make non-trivial use
of it in what follows.

We next describe a sufficient condition for a feature to have
no influence: a feature should not have any influence if it does
not affect the outcome in any way. Formally, a feature i ∈ N
is a dummy if v(a) = v(a−i, b) for all a ∈ B, and all b ∈ Ai



such that (a−i, b) ∈ B; here a−i is the vector a with the i-th
coordinate omitted, and (a−i, b) is the vector a with the i-th
coordinate set to b.

Definition 2.2. An influence measure φ satisfies the dummy
(D) property if φi(G) = 0 whenever i is a dummy in the
dataset G.

The dummy property is a standard extension of the
dummy property used in value characterizations in cooper-
ative games. However, when dealing with real datasets, it
may very well be that there is no vector a ∈ B such that
(a−i, b) ∈ B; this issue is discussed further in Section 6.

Cooperative game theory employs a notion of value ad-
ditivity in the characterization of both the Shapley and
Banzhaf values. Given two datasets G1 = 〈N,B, v1〉,G2 =
〈N,B, v2〉, we define G = 〈N,A, v〉 = G1 + G2 with
v(a) = v1(a) + v2(a) for all a ∈ B.

Definition 2.3. An influence measure φ satisfies additivity
(AD) if φi(G1 + G2) = φi(G1) + φi(G2) for any two datasets
G1 = 〈N,B, v1〉,G2 = 〈N,B, v2〉.

The additivity axiom is commonly used in the ax-
iomatic analysis of revenue division in cooperative games
(see [Lehrer, 1988; Shapley, 1953]); however, it fails to cap-
ture a satisfactory notion of influence in our more general
setting. We now show that any measure that satisfies additiv-
ity, in addition to the symmetry and dummy properties, must
evaluate to zero for all features. To show this, we first define
the following simple class of datasets.

Definition 2.4. Let Ua = 〈N,A, ua〉 be the dataset defined
by the classifier ua, where ua(a′) = 1 if a′ = a, and is
0 otherwise. The dataset Ua is referred to as the singleton
dataset over a.

It is an easy exercise to show that additivity implies that for
any scalar α ∈ Q, φi(αG) = αφi(G), where the dataset αG
has the value of every point scaled by a factor of α.

We emphasize that in all proofs appearing in this section
we assume for ease of exposition that B = A, i.e. we are
given all possible profiles. Our results can be extended to the
general case (though the extension is at times non-trivial).

Proposition 2.5. Any influence measure that satisfies the
(Sym), (D) and (AD) axioms evaluates to zero for all features.

Proof. First, we show that for any a,a′ ∈ A and any b ∈ Ai,
it must be the case that φi(U(a−i,b)) = φi(U(a′−i,b)

). This is
true because we can define a bijective mapping from U(a−i,b)

to U(a′−i,b)
: for every j ∈ N \ {i}, we swap aj and a′j . By

state symmetry, φi(U(a−i,b)) = φi(U(a′−i,b)
).

Next, if φ is additive, then for any dataset G = 〈N,A, v〉,
φi(G) =

∑
a∈A v(a)φi(Ua). That is, the influence of a fea-

ture must be the sum of its influenceover singleton datasets,
scaled by v(a).

Now, suppose for contradiction that there exists some sin-
gleton dataset Uā (ā ∈ A) for which some feature i ∈ N
does not have an influence of zero. That is, we assume that
φi(Uā) 6= 0. We define a dataset G = 〈N,A, v〉 in the fol-
lowing manner: for all a ∈ A such that a−i = ā−i, we set
v(a) = 1, and v(a) = 0 if a−i 6= ā−i. In the resulting

dataset, v(a) is solely determined by the values of features
in N \ {i}; in other words v(a) = v(a−i, b) for all b ∈ Ai,
hence feature i is a dummy. According to the dummy axiom,
we must have that φi(G) = 0; however,

0 = φi(G) =
∑

a:v(a)=1

φi(Ua) =
∑
b∈Ai

φi(U(ā−i,b))

=
∑
b∈Ai

φi(Uā) = |Ai|φi(Uā) > 0,

where the first equality follows from the decomposition of G
into singleton datasets, and the third equality holds by Sym-
metry, a contradiction.

As Proposition 2.5 shows, the additivity, symmetry and
dummy properties do not lead to a meaningful description
of influence. A reader familiar with the axiomatic characteri-
zation of the Shapley value [Shapley, 1953] will find this re-
sult rather disappointing: the classic characterizations of the
Shapley and Banzhaf values assume additivity (that said, The
axiomatization by Young [1985] does not assume additivity).

We now show that there is an influence measure uniquely
defined by an alternative axiom, which echoes the union-
intersection property described by Lehrer [1988]. In what
follows, we assume that all datasets are classified by a binary
classifier. We write W (B) to be the set of all profiles in B
such that v(a) = 1, and L(B) to be the set of all profiles in
B that have a value of 0. We refer to W (B) as the winning
profiles in B, and to L(B) as the losing profiles in B. We
can thus write φi(W (B), L(B)), rather than φi(G). Given
two disjoint sets W,L ⊆ A, we can define the dataset as
G = 〈W,L〉, and the influence of i as φi(W,L), without ex-
plicitly writingN,B and v. As we have seen, no measure can
satisfy the additivity axiom (as well as symmetry and dummy
axioms) without being trivial. We now propose an alternative
influence measure, captured by the following axiom:
Definition 2.6. An influence measure φ satisfies the disjoint
union (DU) property if for any Q ⊆ A, and any disjoint
R,R′ ⊆ A \ Q, φi(Q,R) + φi(Q,R

′) = φi(Q,R ∪ R′),
and φi(R,Q) + φi(R

′, Q) = φi(R ∪R′, Q).
An influence measure φ satisfying the (DU) axiom is ad-

ditive with respect to independent observations of the same
type. Suppose that we are given the outputs of a binary clas-
sifier on two datasets: G1 = 〈W,L1〉 and G2 = 〈W,L2〉. The
(DU) axiom states that the ability of a feature to affect the out-
come on G1 is independent of its ability to affect the outcome
in G2, if the winning states are the same in both datasets.

Replacing additivity with the disjoint union property yields
a unique influence measure, with a rather simple form.

χi(G) =
∑
a∈B

∑
b∈Ai:(a−i,b)∈B

|v(a−i, b)− v(a)| (1)

χ measures the number of times that a change in the state of
i causes a change in the classification outcome. If we nor-
malize χ and divide by |B|, the resulting measure has the
following intuitive interpretation: pick a vector a ∈ B uni-
formly at random, and count the number of points in Ai for
which (a−i, b) ∈ B and i changes the value of a. We note



that when all features have two states andB = A, χ coincides
with the (raw) Banzhaf power index [Banzhaf, 1965].

We now show that χ is a unique measure satisfying (D),
(Sym) and (DU). We begin by presenting the following
lemma, which characterizes influence measures satisfying
(D), (Sym) and (DU) when dataset contains only a single fea-
ture. Again, we assume here that B = A.
Lemma 2.7. Let φ be an influence measure that satisfies state
symmetry, and let G1 = 〈{i}, Ai, v1〉 and G2 = 〈{i}, Ai, v2〉
be two datasets with a single feature i; if the number of win-
ning profiles under G1 and G2 is identical, then φi(G1) =
φi(G2).

Proof Sketch. We simply construct a bijective mapping from
the winning states of i under G1 and its winning states in G2.
By state symmetry, φi(G1) = φi(G2).

Lemma 2.7 implies that for single feature games, the value
of a feature only depends on the number of winning states,
rather than their identity.

We are now ready to show the main theorem for this sec-
tion: χ is the unique influence measure satisfying the three
axioms above, up to a constant factor.
Theorem 2.8. An influence measure φ satisfies (D), (Sym)
and (DU) if and only if there exists a constant C such that for
every dataset G = 〈N,A, v〉 and all i ∈ N ,

φi(G) = C · χi(G).

Proof. It is an easy exercise to verify that χ satisfies the three
axioms, so we focus on the “only if” direction. Let us write
W = W (A) and L = L(A). Given some a−i ∈ A−i, we
write La−i

= {ā ∈ L | a−i = ā−i}, and Wa−i
= {ā ∈ W |

a−i = ā−i}.
Using the disjoint union property, we can decompose

φi(W,L) as follows:

φi(W,L) =
∑

a−i∈A−i

∑
ā−i∈A−i

φi(Wa−i
, Lā−i

). (2)

Now, if ā−i 6= a−i, then feature i is a dummy given the
dataset provided. Indeed, state profiles are either in Wa−i

or in Lā−i
; that is, if v(a−i, b) = 0, then (a−i, b) is unob-

served, and if v(ā−i, b) = 1, then (ā−i, b) is unobserved. We
conclude that

φi(W,L) =
∑

a−i∈A−i

φi(Wa−i
, La−i

). (3)

Let us now consider φi(Wa−i , La−i). Since φ satisfies state
symmetry, Lemma 2.7 implies that φi can only possibly de-
pend on a−i, |Wa−i | and |La−i |. Next, for any a−i and a′−i
such that |La−i | = |La′−i

| and |Wa−i | = |Wa′−i
|, so by

Lemma 2.7 φi(Wa−i , La−i) = φi(Wa′−i
, La′−i

). In other
words φi only depends on |Wa−i |, |La−i |, and not on the
identity of a−i.

Thus, one can see φi for a single feature as a function of
two parameters, w and l in N, where w is the number of win-
ning states and l is the number of losing states. According to
the dummy property, we know that φi(w, 0) = φi(0, l) = 0;
moreover, the disjoint union property tells us that φi(x, l) +

φi(y, l) = φi(x + y, l), and that φi(w, x) + φi(w, y) =
φi(w, x+ y). We now show that φi(w, l) = φi(1, 1)wl.

Our proof is by induction on w+ l. For w+ l = 2 the claim
is clear. Now, assume without loss of generality that w > 1
and l ≥ 1; then we can write w = x + y for x, y ∈ N such
that 1 ≤ x, y < w. By our previous observation,

φi(w, l) = φi(x, l) + φi(y, l)

i.h.
= φi(1, 1)xl + φi(1, 1)yl = φi(1, 1)wl.

Now, φi(1, 1) is the influence of feature i when there is ex-
actly one losing state profile, and one winning state profile.
We write φi(1, 1) = ci.

Let us write Wi(a−i) = {b ∈ Ai | v(a−i, b) = 1} and
Li(a−i) = Ai \Wi(a−i). Thus, |Wa−i

| = |Wi(a−i)|, and
|La−i

| = |Li(a−i)|. Putting it all together, we get that

φi(G) = ci
∑

a−i∈A−i

|Wi(a−i)| · |Li(a−i)| (4)

We just need to show that the measure given in (4) equals
χi (modulo ci). Indeed, (4) equals

∑
a∈A: v(a)=0 |Wi(a−i)|,

which in turn equals
∑

a∈A: v(a)=0

∑
b∈Ai

|v(a−i, b)−v(a)|.
Similarly, (4) equals∑

a∈A:v(a)=1

∑
b∈Ai

|v(a−i, b)− v(a)|.

Thus,∑
a−i∈A−i

|Wi(a−i)|·|Li(a−i)| =
1

2

∑
a∈A

∑
b∈Ai

|v(a−i, b)−v(a)|;

in particular, for every dataset G = 〈N,A, v〉 and every i ∈
N , there is some constant Ci such that φi(G) = Ciχi(G).
To conclude the proof, we must show that Ci = Cj for all
i, j ∈ N . Let σ : N → N be the bijection that swaps i and j;
then φi(G) = φσ(i)(σG). By feature symmetry, Ciχi(G) =
φi(G) = φσ(i)(σG) = φj(σG) = Cjχj(σG) = Cjχi(G),
thus Ci = Cj .

3 Case Study: Influence for Linear Classifiers
To further ground our results, we now present their applica-
tion to the class of linear classifiers. For this class of func-
tions, our influence measure takes on an intuitive interpreta-
tion.

A linear classifier is defined by a hyperplane in Rn; all
points that are on one side of the hyperplane are colored blue
(in our setting, have value 1), and all points on the other side
are colored red (have a value of 0). Formally, we associate
a weight wi ∈ R with every one of the features in N (we
assume thatwi 6= 0 for all i ∈ N ); a point x ∈ Rn is blue if x·
w ≥ q, where q ∈ R is a given parameter. The classification
function v : Rn → {0, 1} is given by v(x) = 1 if x ·w ≥ q,
and v(x) = 0 otherwise.

Fixing the value of xi to some b ∈ R, let us consider the
set Wi(b) = {x−i ∈ Rn−1 | v(x−i, b) = 1}; we observe that
if b < b′ and wi > 0, then Wi(b) ⊂ Wi(b

′) (if wi < 0 then
Wi(b

′) ⊂Wi(b)). Given two values b, b′ ∈ R, we denote by

Di(b, b
′) = {x−i ∈ Rn−1 | v(x−i, b) 6= v(x−i, b

′)}.



By our previous observation, if b < b′ then Di(b, b
′) =

Wi(b
′)\Wi(b), and if b > b′ thenDi(b, b

′) = Wi(b)\Wi(b
′).

Suppose that rather than taking points in Rn, we only
take points in [0, 1]n; then we can define |Di(b, b

′)| =
Vol(Di(b, b

′)), where

Vol(Di(b, b
′)) =

∫
x−i∈[0,1]n−1

|v(x−i, b
′)−v(x−i, b)|∂x−i.

In other words, in order to measure the total influence of
setting the state of feature i to b, we must take the to-
tal volume of Di(b, b

′) for all b′ ∈ [0, 1], which equals∫ 1

b′=0
Vol(Di(b, b

′))∂b. Thus, the total influence of setting
the state of i to b is

∫
x∈[0,1]n

|v(x−i, b)− v(x)|∂x. The total
influence of i would then be naturally the total influence of its
states, i.e. ∫ 1

b=0

∫
x∈[0,1]n

|v(x−i, b)− v(x)|∂x∂b. (5)

The formula in Equation (5) is denoted by χi(w; q). Equa-
tion (1) is a discretized version of Equation (5); the results of
Section 2 can be extended to the continuous setting, with only
minimal changes to the proofs.

We now show that the measure given in (5) agrees with the
weights in some natural manner. This intuition is captured in
Theorem 3.1 (proof omitted).
Theorem 3.1. Let v be a linear classifier defined by w and
q; then χi(G) ≥ χj(G) if and only if |wi| ≥ |wj |.

Given Theorem 3.1, one would expect the following to
hold: suppose that we are given two weight vectors, w,w′ ∈
Rn such that wj = w′j for all j 6= i, but wi < w′i. Let v be
the linear classifier defined by w and q and v′ be the linear
classifier defined by w′ and q. Is it the case that feature i is
more influential under v′ than under v? In other words, does
influence monotonicity hold when we increase the weight of
an individual feature? The answer to this is negative.
Example 3.2. Let us consider a single feature game where
N = {1}, A1 = [0, 1], and v(x) = 1 if wx ≥ q, and v(x) =
0 if wx < q for a given w > q. The fraction of times that 1 is
pivotal is

|Piv1| =
∫ 1

b=0

∫ 1

x=0

I(v(b)=1 ∧ v(x)=0)∂x∂b;

simplifying, this expression is equal to
(
1− q

w

)
q
w . We can

show that χ1 = 2|Piv1|, we have that χ1 is maximized when
q = 2w; in particular, χ1 is monotone increasing when q <
w ≤ 2q, and it is monotone decreasing when w ≥ 2q.

Example 3.2 highlights the following phenomenon: fixing
the other features to be a−i, the influence of i is maximized
when |La−i

| = |Wa−i
|. This can be interpreted probabilisti-

cally: we sample a random feature from B, and assume that
for any fixed a−i ∈ A−i, Pr[v(a−i, b) = 1] = 1

2 . The
better a feature i agrees with our assumption, the more i is
rewarded. More generally, an influence measure satisfies the
agreement with prior assumption (APA) axiom if for any vec-
tor (p1, . . . , pn) ∈ [0, 1]n, and any fixed a−i ∈ A−i, i’s in-
fluence increases as |Pr[v(a−i, b) = 1] − pi| decreases. A

variant of the symmetry axiom (that reflects changes in prob-
abilities when labels change), along with the dummy and dis-
joint union axioms can give us a weighted influence measure
as described in Section 4.2, that also satisfies the (APA) ax-
iom.

4 Extensions of the Feature Influence
Measure

Section 2 presents an axiomatic characterization of feature in-
fluence, where the value of each feature vector is either zero
or 1. We now present a few possible extensions of the mea-
sure, and the variations on the axioms that they require.

4.1 State Influence
Section 2 provided an answer to questions of the following
form: what is the impact of gender on classification out-
comes? The answer provided in previous sections was that
influence was a function of the feature’s ability to change out-
comes by changing its state.

It is also useful to ask a related question: what is the impact
of the gender feature being set to “female” on classification
outcomes? In other words, rather than measuring feature in-
fluence, we are measuring the influence of feature i being in a
certain state. The results described in Section 2 can be easily
extended to this setting. Moreover, the impossibility result
described in Proposition 2.5 no longer holds when we mea-
sure state — rather than feature — influence: we can replace
the disjoint union property with additivity to obtain an alter-
native classification of state influence.

4.2 Weighted Influence
Suppose that in addition to the dataset B, we are given a
weight function w : B → R. w(a) can be thought of as
the number of occurrences of the vector a in the dataset, the
probability that a appears, or some intrinsic importance mea-
sure of a. Note that in Section 2 we implicitly assume that all
points occur at the same frequency (are equally likely) and are
equally important. A simple extension of the disjoint union
and symmetry axioms to a weighted variant shows that the
only weighted influence measure that satisfies these axioms
is

χwi (B) =
∑
a∈B

∑
b∈Ai:(a−i,b)∈B

w(a)|v(a−i, b)− v(a)|.

4.3 General Distance Measures
Suppose that instead of a classifier v : A → {0, 1} we are
given a pseudo-distance measure: that is, a function d : A ×
A→ R that satisfies d(a,a′) = d(a′,a), d(a,a) = 0 and the
triangle inequality. Note that it is possible that d(a,a′) = 0
but a 6= a′. An axiomatic analysis in such general settings
is possible, but requires more assumptions on the behavior of
the influence measure. Such an axiomatic approach leads us
to show that the influence measure

χdi (B) =
∑
a∈B

∑
b∈Ai:(a−i,b)∈B

d((a−i, b),a)

is uniquely defined via some natural axioms. The addi-
tional axioms are a simple extension of the disjoint union



property, and a minimal requirement stating that when
B = {a, (a−i, b)}, then the influence of a feature is
αd((a−i, b),a) for some constant α independent of i. The
extension to pseudo-distances proves to be particularly useful
when we conduct empirical analysis of Google’s display ads
system, and the effects user metrics have on display ads.

5 Implementation
We implement our influence measure to study Google’s dis-
play advertising system. Users can set demographics (like
gender or age) on the Google Ad Settings page2; these are
used by the Google ad serving algorithm to determine which
ads to serve. We apply our influence measure to study how
demographic settings influence the targeted ads served by
Google. We use the AdFisher tool [Datta et al., 2014] for
automating browser activity and collect ads.

We pick the set of features: N = {gender, age, language}.
Feature states are {male, female} for gender, {18−24, 35−
44, 55 − 64} for age, and {English,Spanish} for language;
this gives us 2 × 3 × 2 = 12 possible user profiles. Us-
ing AdFisher, we launch twelve fresh browser instances, and
assign each one a random user profile. For each browser in-
stance, the corresponding settings are applied on the Ad Set-
tings page, and Google ads on the BBC news page bbc.
com/news are collected. For each browser, the news page is
reloaded 10 times with 5 second intervals.

To eliminate ads differing due to random chance, we col-
lect ads over 100 iterations, each comprising of 12 browser
instances, thereby obtaining data for 1200 simulated users. In
order to minimize confounding factors such as location and
system specifications, all browser instances were run from
the same stationary Ubuntu machine. The 1200 browsers
received a total of 32, 451 ads (763 unique); in order to re-
duce the amount of noise, we focus only on ads that were
displayed more than 100 times, leaving a total of 55 unique
ads. Each user profile a thus has a frequency vector of all
ads v′(a) ∈ N55, where the kth coordinate is the number
of times ad k appeared for a user profile a. We normalize
v′(a) for each ad by the total number of times that ad ap-
peared. Thus we obtain the final value-vectors by computing
vk(a) =

v′k(a)∑
a v
′
k(a) ,∀a,∀k ∈ {1, . . . , 55}.

Since user profile values are vectors, we use the general
distance influence measure described in Section 4.3. The
pseudo-distance we use is Cosine similarity: cosd(x,y) =
1 − x·y

||x||·||y|| ; this has been used Cosine similarity has been
used by Tschantz et al. [2014] and Guha et al. [2010] to mea-
sure similarity between display ads. The influence measure
for gender, age, and language were 0.124, 0.120, and 0.141
respectively; in other words, no specific feature has a strong
influence over ads displayed.

We next turn to measuring feature effects on specific ads.
Fixing an ad k, we define the value of a feature vector to be
the number of times that ad k was displayed for users with
that feature vector, and use χ to measure influence.

We compare the influence measures for each attribute
across all the ads and identify the top ads that demonstrate

2google.com/settings/ads

Statistic Gender Age Language
Max 0.07 0.0663 0.167
Min 0.00683 0.00551 0.00723
Mean 0.0324 0.0318 0.0330
Median 0.0299 0.0310 0.0291
StdDev 0.0161 0.0144 0.024

Table 1: Statistics over influence measures across features.

high influence. The ad for which language had the highest in-
fluence (0.167) was a Spanish language ad, which was served
only to browsers that set ‘Spanish’ as their language on the
Ad Settings page. Comparing with statistics like mean and
maximum over measures across all features given in Table 1,
we can see that this influence was indeed high.

To conclude, using a general distance measure between
two value-vectors, we identify that language has the high-
est influence on ads. By using a more fine-grained distance
function, we can single out one ad which demonstrates high
influence for language. While in this case the bias is accept-
able, the experiment suggests that our framework is effective
in pinpointing biased or discriminatory ads.

6 Conclusions and Future Work
In this work, we analyze influence measures for classification
tasks. Our influence measure is uniquely defined by a set of
natural axioms, and is easily extended to other settings. The
main advantage of our approach is the minimal knowledge
we have of the classification algorithm. We show the appli-
cability of our measure by analyzing the effects of user fea-
tures on Google’s display ads, despite having no knowledge
of Google’s (potentially complex) classification algorithm.

Dataset classification is a useful application of our meth-
ods; however, our work applies to extensions of TU coopera-
tive games where agents have more than two states (e.g. OCF
games [Chalkiadakis et al., 2010]).

The measure χ is trivially hard to compute exactly, as it
generalizes the Banzhaf index, for which this task is known
to be hard [Chalkiadakis et al., 2011]. That said, both the
Shapley and Banzhaf values can be approximated via ran-
dom sampling [Bachrach et al., 2010]. It is straightforward
to show that random sampling provides good approximations
for χ as well, assuming binary classifiers.

Our results can be extended in several ways. The measure
χ is the number of times a change in a feature’s state causes
a change in the outcome. However, a partial dataset of ob-
servations may not contain any pair of vectors a,a′ ∈ B,
such that a′ = (a−i, b). In Section 5, we control the dataset,
so we ensure that all feature profiles appear. However, other
datasets would not be as well-behaved. Extending our in-
fluence measure to accommodate non-immediate influence is
an important step towards implementing our results to other
classification domains.

Finally, our experimental results, while encouraging, are
illustrative rather than informative: they tell us that Google’s
display ads algorithm is clever enough to assign Spanish ads
to Spanish speakers. Our experimental results enumerate the
number of displayed ads; this is not necessarily indicative of



users’ clickthrough rates. Since our users are virtual entities,
we are not able to measure their clickthrough rates; a broader
experiment, where user profiles correspond to actual human
subjects, would provide better insights into the effects user
profiling has on display advertising.
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