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ABSTRACT
The IEEE 802.11i wireless networking protocol provides mu-
tual authentication between a network access point and user
devices prior to user connectivity. The protocol consists of
several parts, including an 802.1X authentication phase us-
ing TLS over EAP, the 4-Way Handshake to establish a
fresh session key, and an optional Group Key Handshake
for group communications. Motivated by previous vulnera-
bilities in related wireless protocols and changes in 802.11i
to provide better security, we carry out a formal proof of
correctness using a Protocol Composition Logic previously
used for other protocols. The proof is modular, comprising
a separate proof for each protocol section and providing in-
sight into the networking environment in which each section
can be reliably used. Further, the proof holds for a variety
of failure recovery strategies and other implementation and
configuration options. Since SSL/TLS is widely used apart
from 802.11i, the security proof for SSL/TLS has indepen-
dent interest.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols

General Terms: Security

Keywords: IEEE802.11i, TLS, Protocol Composition Logic

1. INTRODUCTION
Security is an obvious concern in many wireless networks,

because intruders can potentially access a network without
physically entering the buildings in which it is used. While
intended to provide security, the Wired Equivalent Privacy
(WEP) [1] protocol lacks good key management and suffers
from significant cryptographic problems [7], to the extent
that FBI agents have publicly demonstrated that they can
break a 128-bit WEP key in about three minutes [9]. For
these reasons, the IEEE Task Group i has developed the
802.11i Standard [2], ratified in June 2004, to provide con-
fidentiality, integrity, and mutual authentication. 802.11i
provides authentication protocols, key management proto-
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cols, and data confidentiality protocols that may execute
concurrently over a network in which other protocols are
also used.

In this paper, we present a formal correctness proof of the
802.11i protocols using Protocol Composition Logic (PCL) [17,
18, 11, 14, 12, 13, 25]. In previous work, PCL has been
proved sound for protocol runs that use any number of prin-
cipals and sessions, over both symbolic models and (for a
subset of the logic at present) over more traditional cryp-
tographic assumptions [10], which implies security for an
unbounded number of participants and sessions. Therefore,
while there are previous studies [20, 21] using finite-state
analysis to find errors in 802.11i with bounded configura-
tions, we believe that this is the first complete proof of
802.11i for an unbounded number of participants and ses-
sions. Furthermore, the formal proof for the TLS protocol
has independent interest since TLS is widely used indepen-
dent of 802.11i (e.g. [3]).

Our proof consists of separate proofs of specific security
properties for 802.11i components - the TLS authentication
phase, the 4-Way Handshake protocol and the Group Key
Handshake protocol. Using a new form of PCL composition
principle, formulated as staged composition in this paper,
we combine the component proofs to show that any staged
use of the protocol components achieves the stated security
goals. It follows that the components compose securely for
a range of failure recovery control flows, including the im-
provements proposed in [21]. The general result also proves
security for other configurations presented in the 802.11i
Standards document, including the use of a Pre-Shared Key
(PSK) or cached Pair-wise Master Key (PMK). In addition
to devising a new composition principle for PCL, we also
extend the logic to handle local memory associated with
reusing generated nonces. The memory feature is needed to
prove correctness of an unusual feature of the improved 4-
Way Handshake protocol [21] that involves reusing a nonce
to avoid a Denial of Service (DoS) attack.

An advantage of PCL is that each proof component identi-
fies not only the local reasoning that guarantees the security
goal of that component, but also the environmental condi-
tions that are needed to avoid destructive interference from
other protocols that may use the same certificates or key
materials. These environment assumptions are then proved
for the steps that require them, giving us an invariant that
is respected by the protocol. In formulating the proof, we
identify the precise conditions that will allow other protocols
to be executed in the same environment without interfering
with 802.11i. Moreover, our proof provides certain insights



into the component protocols. For example, one proof step
in showing authentication for the 4-Way Handshake proto-
col reveals that the authenticator (the access point) must
be a different principal from the supplicant (typically a lap-
top); without this separation a reflection attack is possible.
While this condition is entirely reasonable in standard enter-
prise installations, it could be violated in an ad hoc network
configuration and cause vulnerabilities. Briefly, our analysis
yields the following suggestions for implementers:

• To prevent a reflection attack on the 4-Way Handshake
and Group Key Handshake, no principal can be both
an authenticator and supplicant.

• For TLS security, if a key associated with the CA-
issued certificate is used in other protocols, all uses
must conform to conditions enumerated in this paper.

• Failure recovery can roll back to the end of any com-
pleted component, respecting the invariants discussed
in this paper.

Our results suggest that PCL is suitable for compositional
analysis of large protocols, yielding assurance and guidelines
for implementation and deployment. Among the methods
and security studies carried out in recent years, such as [35,
8, 23, 37, 26, 29, 28, 27, 31, 4], the closest to our study
appear to be Paulson’s investigations [32, 33] of TLS and
SET [36]. Some advantages of our approach over Paulson’s
inductive method are a compositional proof method and a
higher level of abstraction. Paulson’s method involves di-
rect reasoning about an inductively defined set of protocol
execution traces, built from the protocol specification and
attacker actions. PCL, however, has an axiomatic system
that abstracts away arguments about traces and eliminates
the need to reason explicitly about attacker actions. This
feature, along with the Floyd-Hoare style specification, make
proofs in PCL concise and readable. Because the semantic
soundness of PCL shows that each of the axioms and in-
ference rules are correct for arbitrary protocol runs in the
presence of a symbolic attacker, the PCL proof system pro-
vides the same semantic guarantees as Paulson’s method,
without requiring a set of lemmas to be reproved for each
protocol that is studied.

The rest of the paper is organized as follows. Section 2
briefly describes the IEEE 802.11i Standard and the Proto-
col Composition Logic (PCL). Sections 3, 4 and 5 present
the analysis of the 4-Way Handshake, the TLS protocol, and
the Group Key Handshake, respectively. Section 6 describes
the staged composition principle which takes into account
the structure of complicated control flows and proves the
safe composition of various components of 802.11i. Finally,
Section 7 concludes the paper.

2. OVERVIEW

2.1 Overview of 802.11i
The IEEE 802.11i Standard [2] defines data confidential-

ity, mutual authentication, and key management protocols
intended to provide enhanced security in the MAC layer
of a wireless network. This set of protocols together de-
fines a “Robust Security Network Association”(RSNA). The
RSNA establishment procedure involves three entities called
the Supplicant (the wireless station), the Authenticator (the

access point), and the Authentication Server (typically a
RADIUS server).

In this paper, we focus on the mutual authentication and
key management protocols. A typical RSNA establishment
procedure starts by executing an EAP authentication be-
tween the supplicant and the authentication server, typi-
cally using EAP-TLS, with the authenticator acting as a
relay. After the successful completion of the EAP-TLS ses-
sion, the supplicant and the authentication server verified
each other’s identity and agreed on a shared secret. Then
the authentication server moves the secret to the authen-
ticator; the authenticator and supplicant derive a shared
Pair-wise Master Key (PMK) from this secret. Afterwards,
the authenticator and the supplicant execute a session of
the 4-Way Handshake protocol, from which a fresh Pair-wise
Transient Key (PTK) is derived to secure subsequent data
traffic. Note that, in practice, the authentication server can
be implemented either in a single device with the authen-
ticator, or through a separate server. In the latter case, it
is assumed that the link between the authentication server
and the authenticator is physically secure. Therefore, while
modelling the protocol, it is safe to make a simplifying as-
sumption that the authentication server and the authenti-
cator are the same principal.

While the typical run described above is relatively straight-
forward, the complete specification is much more compli-
cated due to additional optional components and alterna-
tive configurations. For example, 802.11i can adopt other
EAP methods for authentication, such as password-based
authentication, instead of EAP-TLS. Moreover, in the case
of multicast applications, the authenticator can also distrib-
ute a fresh group key to all supplicants in a group after the
PTK has been established.

In this paper, we focus on the complete RSNA establish-
ment procedure that consists of four components: TLS, 4-
Way Handshake, Group Key Handshake, and data sessions.
These components are designed to be executed sequentially;
however, in order to prove security properties of this proce-
dure, we also have to consider all other possible executions.
For example, 4-Way Handshakes can be periodically re-run
to refresh the PTK. Failure of one component also leads to
other possible execution sequences. In the original 802.11i
specification, the entire sequence is restarted if one compo-
nent fails, as shown in Figure 1(a). As observed in [21], this
failure recovery mechanism is quite inefficient and may be
improved as shown in Figure 1(b). We therefore formulate
our proof in a way that demonstrates the desired security
properties for both control flow graphs.

2.2 Overview of Proof Method
We use Protocol Composition Logic (PCL) [17, 11, 14, 13]

to prove correctness of the 802.11i protocols. This section
contains a brief discussion of PCL relevant to this analysis.

Modelling protocols. A protocol is defined by a set of
roles, each specifying a sequence of actions to be executed by
an honest agent. Protocol roles are represented using a sim-
ple “protocol programming language” based on cords [17].
Figure 2 shows a simple two message protocol in the informal
arrows-and-messages notation and the formal programs for
roles of the same protocol using the cords notation. Program
Init describes the actions of a thread X executing the initia-
tor role in the protocol with agent Ŷ as the responder. The



TLS

4-Way

Data

Group
Key

Success

Fail
Success

Success

Fail

Fail

Fail

TLS

4-Way

Data

Group
Key

Success

Fail
Success

Success

Fail

Fail

Fail

Update

Update

Update

Update

Update

Update

(a) Original Failure Recovery (b) Improved Failure Recovery

Figure 1: The 802.11i Control Flow

possible protocol actions include nonce generation, signa-
tures and encryption, communication steps, and decryption
and signature verification via pattern matching. Programs
can also depend on input parameters (typically determined
by context or the result of set-up operations) and provide
output parameters to subsequent operations.

Protocol logic and the proof system. The syntax of the
logic and informal descriptions of the logical predicates is
given in [18, 13]. Most protocol proofs use formulas of the
form θ[P ]Xφ, which means that starting from a state where
formula θ is true, after actions P are executed by the thread
X, the formula φ is true in the resulting state. Formulas
φ and ψ typically make assertions about temporal order of
actions (useful for stating authentication) and/or the data
accessible to various principals (useful for stating secrecy).

The proof system extends first-order logic with axioms
and proof rules for protocol actions, temporal reasoning,
knowledge, and a specialized form of invariance rule called
the honesty rule. The honesty rule is essential for combining
facts about one role with inferred actions of other roles. In-
tuitively, if Alice receives a response from a message sent to
Bob, the honesty rule captures Alice’s ability to use prop-
erties of Bob’s role to reason about how Bob generated his
reply. In short, if Alice assumes that Bob is honest, she may
use Bob’s role to reason from this assumption.

Compositional proof method. Following the modular de-
sign of the protocol, we extensively use the compositional
approach developed in [14, 13] and prove properties of the
whole protocol by combining proofs of its parts.

We separately prove security guarantees of the form Γ ⊢
θ[P ]Xφ for 4-Way Handshake, TLS, and the Group Key
Handshake in Sections 3, 4, and 5 respectively. Here Γ in-
cludes invariants of the specific protocol component. Assum-
ing that these invariants are satisfied, the respective com-
ponents possess the stated properties. For each component,
invariants are proved using the honesty rule, showing that

X → Y : x
Y → X : x, SIGY (X,x)

Init = (X, Ŷ )[new x;send X̂, Ŷ , x;

receive Ŷ , X̂, x, s;
match s/SIGY (X,x); ]X

Resp = (Y )[receive X̂, Ŷ , x;

send Ŷ , X̂, SIGY (X,x); ]Y

Figure 2: Arrows-and-messages vs cords

the component is secure in isolation.
In order to prove properties of the complete protocol, we

combine guarantees provided by the different components.
For example, the 4-Way Handshake provides authentication
assuming that the Pair-wise Master Key established by TLS
is a shared secret between the supplicant and the authenti-
cator. The combined protocol consisting of a TLS session
followed by a 4-Way Handshake therefore provides authenti-
cation. Technically, sequential composition involves match-
ing a postcondition of one protocol to a precondition of the
other, as well as checking that the two protocols satisfy each
other’s invariants. Ensuring that the protocol components
compose safely given the error handling mechanisms in Fig-
ure 1 requires an extension of the existing composition the-
orems. The new composition theorem as well as its applica-
tion to 802.11i is presented in Section 6.

We do not present an analysis of the data confidentiality
protocol, used once keys are established, in this paper. Since
the current logic is based on an execution model based on
idealized cryptography, a correctness proof of the data trans-
fer protocol is unlikely to be very informative. However, it
could be prudent to study the data confidentiality protocol
in another manner.

3. 4-WAY HANDSHAKE
In this section, we prove security properties of the 4-

Way Handshake protocol and the modified 4-Way Hand-
shake proposed in [20, 21]. The 4-Way Handshake generates
the Pairwise Temporary Key (PTK) for data confidential-
ity protocols and the Group Key Handshake Protocol, using
a pre-established secret shared between the authenticator
and the supplicant. The pre-established secret, called the
Pair-wise Master Key (PMK), may be set up via mutual
authentication protocols (de facto EAP-TLS), or it may be
pre-configured as a Pre-Shared Key (PSK).

3.1 Modelling 4-Way
During the handshake, the authenticator and supplicant

generate fresh nonces, then derive a fresh PTK based on
the shared PMK, the nonces, and their MAC addresses.
They authenticate the key material generated using keyed
hashes. The authenticator and supplicant roles of the 4-
Way Handshake are described formally using the program-
ming language introduced in the previous section, which are
listed in Table 1. We describe the authenticator program
4WAY : AUTH in details below.

This program has three input parameters - the authen-
ticator and the supplicant identifiers, and the PMK rep-
resented by the variable pmk. The first action executed



4WAY : AUTH = (X, Ŷ , pmk)

[new x; send X̂, Ŷ , x,“msg1” ;

receive Ŷ , X̂, z; match z/y, “msg2”,mic1;
match HASHpmk(x, y)/ptk; match mic1/HASHptk(y,“msg2”);

send X̂, Ŷ , x, “msg3”,HASHptk(x,“msg3”);

receive Ŷ , X̂, w;
match w/“msg4” ,mic2; match mic2/HASHptk(“msg4”)]X

4WAY : SUPP = (Y, pmk)

[receive X̂, Ŷ , z; match z/x, “msg1” ;
new y; match HASHpmk(x, y)/ptk;

send Ŷ , X̂, y, “msg2”,HASHptk(y,“msg2”);

receive X̂, Ŷ , w;
match w/x, “msg3” ,mic; match mic/HASHptk(x, “msg3”);

send Ŷ , X̂, “msg4” ,HASHptk(“msg4”)]Y

Table 1: 4-Way Handshake Program

by the authenticator X involves generating a fresh nonce
x using the action new . Then X sends out Message 1 to
Y , which contains the nonce x and the string “msg1”. In
practice, message indicators are represented by sequences of
bits, but we use strings here for readability. Authentica-
tor X waits to receive a response from Y and then checks
whether the received message is the expected Message 2
using a match action, which verifies the Message Integrity
Code (MIC) based on the ptk derived. If Message 2 is valid,
X sends out Message 3 including the nonce x, the string
“msg3” and the MIC, and waits for the response. Once a
valid Message 4 is received and verified, X completes the
4-Way Handshake and subsequently uses the derived ptk.

Note that in the 802.11i specifications, the PTK is di-
vided into several parts: KCK (Key Confirmation Key) for
computing MIC, KEK (Key Encryption Key) for encrypting
the group key, and TK (Temporary Key) for protecting data
packets. For expository convenience, we use ptk to refer to
all of these parts.

3.2 Security Properties
The desired security properties for the 4-Way Handshake

as identified by the standard (see Section 8.4.8 in [2]) are:

1. Confirm the existence of the PMK at the peer.

2. Ensure that the security association key (PTK) is fresh.

3. Synchronize the installation of session keys into the
MAC.

4. Transfer the GTK from the Authenticator to the Sup-
plicant.

5. Confirm the selection of cipher suites.

The definitions below formalize two security properties called
key secrecy and session authentication. Items 1, 2, 3, and
5 are captured by session authentication; moreover, session
authentication can be asserted only when the key secrecy is
guaranteed. We discuss item 4 in Section 5. These con-
ditions state the security guarantees for the authenticator
precisely. The guarantees for the supplicant are analogous,
but omitted due to space constraints. Informally, the for-
mula φ4way,sec below states that only the authenticator and
the supplicant possess the PTK.

Definition 3.1 (4-way key secrecy).
The 4-Way Handshake is said to provide key secrecy if φ4way,sec

holds, where

φ4way,sec ::= Honest(X̂) ∧ Honest(Ŷ ) ⊃

((Has(Ẑ, ptk) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ )) ∧

Has(X̂, ptk) ∧ Has(Ŷ , ptk)

The formula below formalizes a standard notion of au-
thentication called matching conversations [6]. It guaran-
tees that the two principals have consistent views of protocol
runs. It follows that they agree on terms such as the cipher
suite and the freshly generated PTK.

Definition 3.2 (4-way authentication).
The 4-Way Handshake is said to provide session authenti-
cation for the authenticator if φ4way,auth holds, where

φ4way,auth ::= Honest(X̂) ∧ Honest(Ŷ ) ⊃

∃Y.ActionsInOrder(

Send(X, X̂, Ŷ ,Message 1),

Receive(Y, X̂, Ŷ ,Message 1),

Send(Y, Ŷ , X̂,Message 2),

Receive(X, Ŷ , X̂,Message 2),

Send(X, X̂, Ŷ ,Message 3),

Receive(Y, X̂, Ŷ ,Message 3),

Send(Y, Ŷ , X̂,Message 4),

Receive(X, Ŷ , X̂,Message 4))

The main result of this section is Theorem 1, which states
the security guarantees for the authenticator. A proof of this
theorem appears in Appendix B. A similar guarantee holds
for the supplicant. We omit the theorem and the proofs for
the supplicant due to space constraints.

Theorem 1 (4-Way Authenticator Guarantee).
(i) On execution of the authenticator role, key secrecy and
session authentication are guaranteed if the formulas in Ta-
ble 2 hold. Formally,

Γ4way,1 ∧ Γ4way,2 ⊢

θ4way [4WAY:AUTH]Xφ4way,auth ∧ φ4way,sec



θ4way := Has(X̂, pmk) ∧ Has(Ŷ , pmk) ∧ NonceSource(Y, pmk,ENCX̂(pmk))

Γ4way,1 := Computes(X̂, HASHpmk(x, y)) ⊃ ¬(Send(X̂,m) ∧ Contains(m,HASHpmk(x, y))

Γ4way,2 := (Honest(X̂) ∧ Receive(X,Message 1) ⊃ ¬Send(X,Message 3))∧

(Honest(X̂) ∧ Send(X,Message 1) ⊃ ¬(Send(X,Message 2) ∧ Send(X,Message 4)))

Table 2: 4-Way Handshake Precondition and Invariants

(ii) Γ4way,1 is invariant of the 4-Way Handshake; Γ4way,2 is
an assumption on the environment. Formally,

4WAY ⊢ Γ4way,1

The theorem states that starting from a state in which the
precondition holds, if the authenticator role is executed,
then in the resulting state the desired authentication and
secrecy properties are guaranteed. The precondition θ4way

listed in Table 2 requires that the PMK is only sent out
under encryption. The authenticator deduces its security
properties based on the actions that it performs, the prop-
erties of certain cryptographic primitives and knowledge of
the behavior of an honest supplicant. (By definition, an
honest principal behaves in accordance with the protocol.)
In the case of the 4-Way Handshake, the expected behavior
of an honest principal is captured by the formulas Γ4way,1

and Γ4way,2 listed in Table 2. The first statement of the the-
orem states that, assuming these formulas hold, the security
property is guaranteed.

Invariants are generally proved by induction over pro-
grams using the Honesty Rule. However, the detailed proofs
are omitted here due space limitations. The second part of
the theorem states that Γ4way,1 is an invariant of the 4-Way
Handshake protocol. The formula Γ4way,2 states that no
principal performs the roles of both the supplicant and the
authenticator. This is a reasonable assumption for a typi-
cal 802.11i deployment. As noted in [21], security of 802.11i
may be compromised if this condition is violated.

3.3 Operating Environment
In this section, we discuss the characteristics of an oper-

ating environment in which the 4-Way Handshake Protocol
provides security guarantees. The first goal is to identify the
class of protocols that may run concurrently with the 4-Way
Handshake without degrading its security; the second goal
is to identify other application scenarios in which the 4-Way
Handshake may be deployed safely. Our analysis provides
insight in both directions.

As discussed above, in order to provide the key secrecy
and session authentication properties, the 4-Way Handshake
must be executed in an environment where the formulas
listed in Table 2 are satisfied. Γ4way,1 states that the sup-
plicant and the authenticator derive the PTK locally and
do not reveal it. It is possible that protocols executing con-
currently with the 4-Way Handshake may share state and
have access to these shared secrets. In this case, our formu-
las require that these protocols do not reveal these secrets.
Note that the shared PMK should also be kept secure; we
will discuss that in the TLS invariants.

Γ4way,2 states the requirement that an honest principal
does not execute both the authenticator and the supplicant
roles. It expresses this by requiring that a principal that
performs actions corresponding to one role does not per-

form actions corresponding to the other. If Γ4way,2 does not
hold, a simple reflection attack can be demonstrated [21].
It is highly unlikely that this condition would be violated
in a wireless LAN environment, as we do not expect a lap-
top to play the role of an authenticator, or an access point
to play the role of a supplicant. However, 802.11i may be
deployed in an ad-hoc network environment, in which case
it is conceivable that nodes play both roles and violate this
assumption.

3.4 Improved 4-Way Handshake
The 4-Way Handshake, described in the previous section

suffers from a DOS vulnerability [20, 21]. The vulnerability
results from the lack of any authentication in Message 1,
which allows the attacker to block the supplicant role. It is
possible to work around this flaw by allowing an arbitrary
number of sessions, but this may result in a memory exhaus-
tion attack since the supplicant must store all the nonces
that it generates for various sessions. A modification that
involves nonce re-use is discussed in [20, 21] and has been
adopted by the 802.11i standards committee. The modified
supplicant program is listed in the pseudo-code that follows,
while the authenticator program is the same as the one in
Table 1.

Algorithm 3.1: Mod-4-Way:Supp(Y, pmk)

new y;
repeat

receive X̂, Ŷ , z;
if match z/x, “msg1”;
then

match HASH pmk(x, y)/ptk;

send Ŷ , X̂, y,“msg2” ,HASH ptk(y,“msg2”);
until

match z/x, “msg3” ,HASH ptk(x,“msg3”);

send Ŷ , X̂, “msg4”,HASH ptk(“msg4”);

It is easy to see that the modified protocol cannot be
blocked by the attacker. Also re-using the nonce until one
4-Way Handshake completes allows the supplicant to avoid
storing state, which prevents memory exhaustion. Since the
suggested fix involves nonce reuse, and nonces are generally
used to provide freshness guarantees, it is not obvious that
the authentication property is preserved under this modi-
fication. The main result of this section is the following
theorem.

Theorem 2 (Modified 4-Way Guarantee).
For the authenticator, the session authentication and the
key secrecy guarantees for the modified protocol are identical
to Theorem 1.

Intuitively the authenticator guarantee continues to hold
because nonce re-use occurs within the repeat - until loop



TLS : Client = (X, Ŷ , V erSUx)[

new Nx; send X̂, Ŷ , Nx, V erSUx;

receive Ŷ , X̂, Ny, V erSUy, cert; match cert/SIGĈA(Ŷ ,Ky);
new secret;

send X̂, Ŷ , SIGĈA(X̂, V x),
SIGV x(handShake1), ENCKy(secret),HASHsecret(handShake1, “client”);

receive Ŷ , X̂, hash; match hash/HASHsecret(handShake2, “server”); ]X
TLS : Server = (Y, V erSUy)[

receive X̂, Ŷ , Nx, V erSUx; new Ny;

send Ŷ , X̂,Ny, V erSUy,SIGĈA(Ŷ ,Ky);

receive X̂, Ŷ , cert, sig, encsec, hash; match cert/SIGĈA(X̂, V x);
match sig/SIGV x(handShake1); match encsec/ENCKy(secret);
match hash/HASHsecret(handShake1, “client”);

send Ŷ , X̂,HASHsecret(handShake2, “server”); ]Y

Table 3: TLS: Client and Server Programs

of a single session. The formalization of authentication -
matching conversations - usually refers to all the actions of
a principal in a session. Since an attacker can inject a forged
Message 1 an arbitrary number of times, and the suppli-
cant will respond to it, we exclude certain messages from
the matching conversation. Authentication in this form is
implied by our proof. The supplicant guarantees are identi-
cal to the original 4-Way Handshake.

4. TLS
The TLS/SSL [15] protocol provides end-to-end security

and is widely deployed on the Internet in various security
and e-commerce systems. IEEE 802.11i suggests EAP-TLS,
which is an encapsulated version of TLS protocol, to mutu-
ally authenticate the supplicant and the authenticator, and
to derive a shared secret key (PMK). In addition to prov-
ing TLS secure in isolation, we improve previous analysis of
TLS [32, 29, 28, 27] by identifying conditions under which
other protocols may run concurrently without introducing
vulnerabilities. Identifying such conditions appears valuable
given the wide deployment of SSL/TLS. Note that we use
the terms client and server for TLS protocol participants,
as in the TLS documentation [15]. When TLS is used with
802.11i, the client corresponds to the supplicant and the
server can reside in the authenticator.

4.1 Modelling TLS
TLS has many possible modes of operation. We restrict

our attention to the mode where both the server and the
client have certificates, since this mode satisfies the mutual
authentication property requirement of the 802.11i Stan-
dard.

The TLS : Client and TLS : Server programs are de-
scribed in Table 3, where V erSU represents the protocol
version and cipher suite, Ky is the server’s public key, V x
is the client’s verification key. We use the match action to
check signatures, verify keyed hashes and perform decryp-
tion. Note that the term handShake1 and handShake2 rep-
resent the concatenation of all the terms sent and received
by a principal up to the point it is used in the program.

4.2 Security Properties
The properties that TLS [15] ought to satisfy include:

1. The principals agree on each other’s identity, proto-
col completion status, the values of the protocol ver-
sion, cryptographic suite, and the secret that the client
sends to the server. For server Ŷ , communicating with
client X̂, this property is formulated in Definition 4.1.

2. The secret that the client generates should not be
known to any other principal other than the client and
the server. For server Ŷ and client X̂, this property is
formulated in Definition 4.2.

Definition 4.1 (TLS Authentication).
TLS is said to provide session authentication for the server
role if φtls,auth holds, where

φtls,auth ::= Honest(X̂) ∧ Honest(Ŷ ) ⊃

∃X.ActionsInOrder(

Send(X, X̂, Ŷ ,m1),

Receive(Y, X̂, Ŷ ,m1),

Send(Y, Ŷ , X̂,m2),

Receive(X, Ŷ , X̂,m2),

Send(X, X̂, Ŷ ,m3),

Receive(Y, X̂, Ŷ ,m3),

Send(Y, Ŷ , X̂,m4))

and m1, m2, m3, m4 represent the corresponding TLS mes-
sages in Table 3.

Definition 4.2 (TLS Key Secrecy).
TLS is said to provide secrecy if φtls,sec holds, where

φtls,sec ::= Honest(X̂) ∧ Honest(Ŷ ) ⊃

Has(X̂, secret) ∧ Has(Ŷ , secret)∧

(Has(Ẑ, secret) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ )

We use the proof system to prove guarantees for both
the client and the server. Due to space constraints, we list
only the guarantee for the authenticator in Theorem 3. The



Γtls,1 := ¬∃m.Send(X,m) ∧ (Contains(m,HASHsecret(handShake1, “server”))
∨Contains(m,HASHsecret(handShake2, “client”)) ∨ Contains(m,SIGV x(handShake1)))

Γtls,2 := Honest(Ŷ ) ∧ Send(Y,m) ∧ ContainsOut(m, secret,ENCKy(secret)) ⊃
(¬Decrypts(Y,m′) ∧ Contains(m′, secret))∨
(Receives(Y,m′′) < FirstSend(Y, secret) ∧ ContainsOut(m′′, secret,ENCKy(secret)))

Table 4: TLS Invariants

client guarantee is similar. The secrecy of the exchanged key
material in TLS is established by combining local reasoning
based on the client’s actions with global reasoning about
actions of honest agents. Intuitively, a client that generates
the secret only sends it out either encrypted with an honest
party’s public key or uses it as a key for a keyed hash (this
is captured by the predicate NonceSource). Furthermore, no
honest user will ever decrypt the secret and send it in the
clear. Specifically, an honest party can send the secret in the
clear only if it receives it in the clear first (this is captured
by the TLS invariant Γtls,2). Secrecy follows directly from
these two facts.

Theorem 3 (TLS Server Guarantee).
(i) On execution of the server role, key secrecy and ses-
sion authentication are guaranteed if the formulas in Table 4
hold. Formally,

Γtls,1 ∧ Γtls,2 ⊢

[TLS:Server]Xφtls,auth ∧ φtls,sec

(ii) The formulas in Table 4 are invariants of TLS. For-
mally, TLS ⊢ Γtls,1 ∧ Γtls,2

4.3 Operating Environment
We now characterize the class of protocols that compose

safely with TLS. As in Section 3.3, we relate invariants in
Table 4 to deployment considerations.

Γtls,1 states that messages of a certain format should not
be sent out by any protocol that executes in the same en-
vironment as TLS. One set of terms represent keyed hashes
of the handshake, where the key is the shared secret estab-
lished by a TLS session; another set refers to signatures on
the handshake messages. A client running a protocol that
signs messages indiscriminately could cause the loss of the
authentication property. Such an attack would only be pos-
sible if the client certificate used by TLS were shared with
other protocols and Γtls,1 were violated by them.

Γtls,2 rules out an undesirable sequence of actions that
may allow an intruder to learn the shared secret. Intu-
itively, if an honest principal is tricked into decrypting a
term containing the secret using its private key, after which
it sends out the contents of the encryption, the secrecy prop-
erty of TLS is lost. Clearly, if principals use an exclusive
public/private key pair for TLS , such an attack is not pos-
sible. However, since another protocol (or another stage of
802.11i) may uses the same public/private key pair as TLS,
it is important to check that these formulas are invariants
of any other protocol.

5. GROUP KEY HANDSHAKE
In multicast applications, the authenticator may distrib-

utes a Group Temporary Key (GTK) to supplicants. Mes-
sages 3,4 of the 4-Way Handshake may optionally set up this

key distribution. The authenticator then runs the Group
Key Handshake protocol periodically to update the GTK.
In this section we prove the correctness of the Group Key
Handshake.

5.1 Modelling Group Key Handshake
The programs for the Group Key Handshake are listed in

Table 5. The authenticator sends GrpMessage1 containing
the GTK, and the supplicant confirms receipt of the GTK
by sending GrpMessage2. The authenticator encrypts the
GTK under the Key Encryption Key (KEK) (represented
by term ptk) and sends it to the supplicant. The authenti-
cator monotonically increases the sequence number for every
key exchange message sent to prevent replay attacks. MICs
are used to provide authentication and message integrity.
The sequence number comparison isLess (a, b) is used by
the supplicant to check that a < b; the expression Succ(a)
represents a number greater than a.

5.2 Security Properties
The properties we prove for the Group Key Handshake

are listed below.

1. The Supplicant is assured that the GTK received in
the current Group Key Handshake was sent by the Au-
thenticator, and was generated by the Authenticator
after the GTK that the supplicant holds from a previ-
ous Group Key Handshake or 4-Way Handshake. This
is called the key ordering property, and is formalized
in Definition 5.1.

2. The Authenticator is assured that the principals with
knowledge of the GTK must have executed a 4-Way
Handshake with the Authenticator. This is called the
key secrecy property, and formalized in Definition 5.2.

Definition 5.1 (group key ordering).

For a supplicant Ŷ , the Group Key Handshake is said to
provide key ordering if φgk,ord holds, where

φgk,ord ::= Honest(X̂) ⊃

(Send(X, X̂, Ŷ , SeqNo1, ENCptk(gtk1)) ∧

Send(X, X̂, Ŷ ,SeqNo2, ENCptk(gtk2)) ∧

isLess(SeqNo1, SeqNo2) ⊃

FirstSend(X, X̂, Ŷ ,SeqNo1, ENCptk(gtk1)) <

FirstSend(X, X̂, Ŷ ,SeqNo2, ENCptk(gtk2)))

Definition 5.2 (group key secrecy).

For an authenticator X̂, the Group Key Handshake is said



GK : AUTH = (X, Ŷ , CurrSeqNo, ptk, gtk)[
match Succ(CurrSeqNo)/NewSeqNo;

send X̂, Ŷ , NewSeqNo, “grp1” , ENCptk(gtk),
HASHptk(NewSeqNo, “grp1”, ENCptk(gtk));

receive Ŷ , X̂, z;
match z/NewSeqNo, “grp2”, HASHptk(NewSeqNo, “grp2”)]X

GK : SUPP = (Y, X̂, OldSeqNo, OldGTK, ptk)[

receive X̂, Ŷ , z;
match z/NewSeqNo, “grp1”, ENCptk(gtk),
HASHptk(NewSeqNo, “grp1”, ENCptk(gtk));
isLess OldSeqNo,NewSeqNo;

send Ŷ , X̂, NewSeqNo, “grp2” ,HASHptk(NewSeqNo, “grp2”); ]Y

Table 5: Group Key Handshake Programs

θgk := Has(X̂, ptk) ∧ Has(Ŷ , ptk) ∧ (Has(Ẑ, ptk) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ )∧
(Send(X,m) ∧ Contains(m,SeqNo) ⊃ isLess(SeqNo, Succ(CurrSeqNo)))

Γgk,1 := Honest(X̂) ∧ (Send(X, X̂, Ŷ ,m′) < Send(X, X̂, Ŷ ,m′′))∧
Contains(m′, SeqNo1) ∧ Contains(m′′, SeqNo2) ⊃ isLess(SeqNo1, SeqNo2)

Γgk,2 ≡ Γtls,2

Γgk,3 := Honest(X̂) ∧ Send(X,GrpMessage 1) ⊃ ¬Send(X,GrpMessage 2)

Table 6: Group-Key Protocol Precondition and Invariants

to provide key secrecy if φgk,sec holds, where

φgk,sec ::=

Honest(Ẑ1) ∧ Honest(Ẑ2) . . .Honest(Ẑn) ⊃

((Has(Ẑ, gtk) ∧ Ẑ 6= X̂) ⊃

Ẑ = Ẑ1 ∨ Ẑ = Ẑ2 · · · ∨ Ẑ = Ẑn)

Note that Ẑ1, Ẑ2, . . . Ẑn lists the set of supplicants that
the authenticator intends to send the GTK. Each member
of this set shares a PTK with the authenticator, established
by a 4-Way Handshake. Though the 802.11i standard is
not very clear with regards to the supplicant guarantee, two
types of properties are conceivable - key freshness and key
secrecy. However, key freshness cannot be achieved for the
supplicant since a message could be lost; hence, we con-
sider key ordering instead, which is a weaker requirement.
Obviously the authenticator knows the key ordering since
it generates the keys. Key secrecy can be guaranteed only
for the authenticator because the supplicants do not have
knowledge of the other supplicants in the group. Theorem 4
states the guarantee for the supplicant and the authentica-
tor.

Theorem 4 (Group Key Guarantee).
(i) After execution of the supplicant role, key ordering is
guaranteed if the formulas in Table 6 hold. Formally,

Γgk,1 ∧ Γgk,2 ∧ Γgk,3 ⊢

θgk[GK:SUPP]Y φgk,ord

(ii) After execution of the authenticator role, key secrecy is
guaranteed if the formulas in Table 6 hold. Formally,

Γgk,1 ∧ Γgk,2 ∧ Γgk,3 ⊢

θgk[GK:AUTH]Xφgk,sec

(iii) Γgk,1 and Γgk,2 are invariants of the Group Key Hand-
shake; Γgk,3 is an assumption on the environment. For-
mally, GK ⊢ Γgk,1 ∧ Γgk,2

5.3 Operating Environment
In this section, we identify the class of operating condi-

tions under which the Group Key Handshake provides se-
curity. Table 6 lists formulas required for the Group Key
Handshake to function correctly. As in Sections 3.3, and
4.3, we regard these formulas as specifications for a safe op-
erating environment.

Γgk,1 states that the authenticator should increase the se-
quence counter monotonically to guarantee the key ordering
property for the supplicant. As pointed out in [20], the se-
quence numbers play an important role in the Group Key
Handshake, but are redundant in the 4-Way Handshake.
Our proof here indicates that sequence numbers in the 4-
Way Handshake are redundant with respect to the key or-
dering properties of the Group Key Handshake as well. This
is intuitively true because the Group Key stage uses key ma-
terial established by the 4-Way stage, thus guaranteeing that
actions of the Group Key protocol are done after actions of
the 4-Way.

As in the case of Γtls,2, Γgk,2 states that the supplicants
and the authenticator should not decrypt a message with the
PTK, and send out the result of the decryption. This could
conceivably happen if the data protection protocol uses the
same encryption key as the Group Key Handshake. For-
tunately in 802.11i the PTK is divided into several parts,
where the GTK is encrypted by KEK and the data confi-
dentiality protocol uses a different part TK (Temporal Key).
Our analysis highlights the need for the key hierarchy in
802.11i. Obviously, the key secrecy property fails if any
member of the group reveals the PMK, PTK, or GTK.



Like the 4-Way Handshake, there is a restriction on a prin-
cipal to not play both the authenticator and the supplicant
roles. This is represented by the formula Γgk,3. This is an
assumption about the operating environment which should
be carefully considered in implementations.

6. COMPOSITION
The components of 802.11i are intended to be used in a

specific order: TLS, 4-Way Handshake, Group Key Hand-
shake, and the data confidentiality protocols. Since this
is an example of sequential composition of protocols, pre-
viously proved composition theorems [14, 13], allow us to
prove the correctness of the composite protocol by com-
bining the independent proofs. However, 802.11i provides
an error-handling strategy that reacts to failures and time-
outs by restarting execution at the beginning. Furthermore,
more efficient error-handling strategies have also been pro-
posed (see Figure 1). Finally, 802.11i allows modes of oper-
ation that use Pre-Shared Keys instead of the TLS stage or
reuse previously cached PMK’s. The previously published
sequential composition theorems do not cover these more
complicated situations.

In this section, we prove that the various components of
802.11i compose safely, for a general class of error-handling
mechanisms, and for the modes of operation mentioned above.
Section 6.1 is a technical section that introduces a new com-
position theorem and may be safely skipped by readers pri-
marily interested in 802.11i. Section 6.2 applies this theorem
to assert the correctness of 802.11i.

6.1 Staged Composition
The sequential composition theorem [14, 13] allows us to

combine the proofs of sub-protocols into a proof of a com-
posed protocol. However, sequential composition only works
for control flows where the components execute one after
the other in sequence. An examination of the control flow
graphs in Figure 1 indicates that the intended sequence of
execution of the sub-protocols forms a chain and the error-
handling strategy introduces a set of backward arcs. This
makes the sequential composition theorem stated in [14,
13] inadequate for our purpose. We introduce the notion of
Staged Composition that extends sequential composition to
handle control flow graphs with an arbitrary set of backward
edges. This is formally stated as Theorem 5.

Recall that a protocol is a set of roles. For instance, the
4-Way Handshake consists of two roles – the authentica-
tor and the supplicant. Each role is a sequence of protocol
steps (send , receive , new and match actions), possibly
depending on an input parameter list and providing an out-
put parameter list. In a correct execution, we expect the
role to run to completion. However, in reality the execution
might be interrupted due to unexpected failures. There-
fore, we partition a role into atomic steps, during each of
which the execution does not block and cannot be inter-
rupted. Since only receive actions require one thread to
wait for another, roles are broken into atomic steps at re-
ceive points. The following definition captures the intuition
that a protocol role may terminate at the end of any of its
atomic protocol steps.

Definition 6.1 (Role-Prefix).
The set of role-prefixes of a role R, RolePref(R) :=

S
0≤i≤k

{(−→x )[b0 . . . bi]X〈−→x 〉}
S
{(−→x )[]X 〈−→x 〉}

S
{R}, where role R = (−→x )[b0 . . . bk]X〈−→y 〉.

A role in the composed protocol corresponds to a possible
execution path in the control flow graph. A backward edge
in a control flow graph from role Ri to role Rj causes control
to proceed from the end of an atomic protocol step of Ri to
the beginning of Rj . The following definition captures the
set of possible executions of a role in a composed protocol.

Definition 6.2 (Staged Role).
The set of staged roles RComp(〈R1, R2 . . . Rn〉) is defined as
the sequential composition ra1

; ra2
; . . . ; ral

, where
ak ∈ {1, 2, . . . , n}, rak

∈ RolePref(Rak
), with a1 = 1.

Furthermore, if raj
= Raj

then aj+1 = aj + 1; otherwise
aj+1 ≤ aj.

Given a chain of roles 〈R1, R2 . . . Rn〉, execution always
starts at R1; progress down the chain happens on successful
completion of a role, with error-handling causing control to
flow to the beginning of an earlier block in the chain. Failure
of a role Rak can happen at multiple points as characerized
by the set RolePref(Rak

) defined above. Finally, a protocol
is simply a set of roles.

Definition 6.3 (Staged Composition).
A protocol Q is in the set of staged compositions
SComp(〈Q1, Q2...Qn〉) of sub-protocols Q1, Q2...Qn, if each
role of Q is in RComp(〈R1, R2...Rn〉), where Ri is a role of
protocol Qi.

Theorem 5 below states the conditions that need to hold
for the composite protocol to be secure under staged com-
position. The first condition states that each protocol guar-
antees certain security properties assuming certain invari-
ants are true. This follows from the correctness proofs of
individual components. The second condition captures the
intuition that the protocols running in the system do not
cause vulnerabilities in each other. The third condition en-
sures that the precondition of a role Ri is discharged by
the postcondition of Ri−1, which is required for sequential
composition without error flows. Finally, the fourth condi-
tion requires that the precondition of a sub-protocol are pre-
served by the protocols steps of all the sub-protocols later in
the chain. This ensures secure composition in the presence
of arbitrary error handling mechanisms.

Theorem 5 (Staged Composition Theorem).
Given protocols Q1, Q2...Qn, if

(i) ∀i, Γi ⊢ θi[Pi]Xϕi

(ii) ∀i, j, Qi ⊢ Γj

(iii) ∀i, ϕi ⊃ θi+1

(iv) ∀B ∈
[
j≥i

ProtocolSteps(Qj), θi[B]θi

then SComp(〈Q1, Q2...Qn〉) ⊢ θ1[P ;Pi]Xφi, where P ;Pi ∈
SComp(〈Q1, Q2, . . . , Qn〉) and Pi ∈ Qi.

Intuitively, we treat branches introduced by the error han-
dling flows as non-deterministic choices, which reduces staged
composition to the previously studied notion of sequential
composition [14, 13]. The set defined in Definition 6.2 rep-
resents all possible linearizations of the executions of a role
in a composed protocol. We omit the proof of Theorem 5
due to space constraints.



6.2 Composition of 802.11i
We now apply the compositional proof method to the

802.11i protocol components by showing that the four con-
ditions required by Theorem 5 are satisfied.

1. We start with the properties of the components proved
independently in sections 3, 4, 5. This corresponds to
asserting condition (i) from Theorem 5.

TLS ⊢ Γtls,1 ∧ Γtls,2

Γtls,1 ∧ Γtls,2 ⊢

[TLS:Server ]φ4way,auth ∧ φ4way,sec

4WAY ⊢ Γ4way,1

Γ4way,1 ∧ Γ4way,2 ⊢ θ4way

[4WAY:AUTH ]φ4way,sec ∧ φ4way,auth

GK ⊢ Γgk,1 ∧ Γgk,2

Γgk,1 ∧ Γgk,2 ∧ Γgk,3 ⊢

θgk[GK:AUTH ]φgk,sec ∧ φgk,ord

2. Next we prove that each component respects the in-
variants of the other components. This is done by
induction over initial segments of the roles of the com-
ponents. These conditions hold because components
use different keys, and use MICs (Message Integrity
Codes) that contain sufficient identity to be distin-
guished from each other.

TLS ⊢ Γ4way ∧ Γgk

4WAY ⊢ Γtls ∧ Γgk

GK ⊢ Γtls ∧ Γ4way

3. We prove that the precondition of the 4-Way authen-
ticator role is implied by the postcondition of the TLS
server role and the precondition of the Group Key au-
thenticator role is implied by the postcondition of 4-
Way authenticator role. At this point, we have the safe
sequential composition of the components of 802.11i.

φtls ⊃ θ4way

φ4way ⊃ θgk

4. Finally, the precondition of the 4-Way Handshake, which
involves not sending out the PMK, is preserved by all
protocol steps of the 4-Way and the Group Key Hand-
shake, allowing restarts of the 4-Way Handshake to be
secure. Similarly, the protocol steps of the Group Key
Handshake do not send out the PTK ensuring restarts
of the Group Key Handshake are secure.

The steps explained above allow us to apply Theorem 5,
and prove the 802.11i authenticator guarantee. A similar
process can be applied to the supplicant. Theorem 6 states
the result of our analysis.

Theorem 6 (802.11i Guarantee).
(i) The security properties of the components listed in sec-
tions 3.2, 4.2, 5.2 are guaranteed in all modes of IEEE
802.11i, if the assumptions in Table 2, 4, 6 are satisfied.
(ii) Suppose no principals play both the authenticator and
supplicant role, 802.11i satisfies assumptions in Table 2, 4, 6.

Note that most of our effort was on proving individual
components correct. Steps 2, 3, and 4 took considerably less
effort. This shows that it is convenient to apply the com-
positional method to the 802.11i protocol suite. Further-
more, our proof implies the correctness of other deployment
modes in 802.11i, which are different from that in section 2.1.
First, 802.11i may be run without the TLS stage, using Pre-
Shared Keys (PSK) instead. When a PSK is shared by an
authenticator-supplicant pair, the precondition requirement
of the 4-Way Handshake is satisfied, which implies the safety
of this mode. Second, supplicants may also run the 4-Way
Handshake using a PMK cached from an eariler execution
of the composite protocol. This corresponds to restarting
exection from the 4-Way Handshake stage. Since our proof
holds for an arbitrary set of such backward arcs, using a
cached PMK is safe.

7. CONCLUSIONS
We present a formal correctness proof for the IEEE 802.11i

and TLS protocols using Protocol Composition Logic (PCL).
The proof of IEEE 802.11i and TLS supports many design
decisions of the 802.11i committee and reinforces conclusions
of our previous studies [20, 21]. For example, the PCL proof
demonstrates the need for separate keys for supplicant and
authenticator to prevent a reflection attack, supports our
previous intuition that various sequence numbers were un-
necessary, shows that the protocol remains secure when a
nonce-reuse mechanism is adopted in the 4-Way Handshake
to reduce a vulnerability of Denial of Service [20, 21], and
supports the adoption of optimized error-recovery strate-
gies. Developing a single correctness proof for a class of
error-recovery strategies requires a new composition princi-
ple for PCL, which is formulated and proved semantically
sound in this paper.

The compositional nature of our protocol logic distin-
guishes our effort from other methods with similar foun-
dations, such as Paulson’s Inductive method [32] and Mead-
ows’ NRL protocol analyzer [23], which have been applied
to protocols of similar scale and structure. In fact, Meadows
previously identified composability of cryptographic proto-
cols as a significant concern in establishing correctness [24].
A compositional approach is useful both for managing scale
when working with a large protocol and in understanding
how a single protocol interacts with its environment. In
order to achieve compositionality, each individual proof in-
volves a set of protocol invariants that must be satisfied in
any environment where the protocol runs. These conditions
must not only be satisfied by other subprotocols of 802.11i,
but also by other protocols using the same certificates or
other critical data which are run in parallel with 802.11i.
Our proof therefore provides useful deployment information
beyond the correctness of the protocols.

Our high-level logic with provable soundness over arbi-
trary symbolic runs is intended to combine the relative read-
ability and ease of use of BAN-style logics [8] while being
based on the semantic protocol execution model of Paulson’s
method [32]. Although we constructed all proofs manually,
the proof system is completely rigorous and amenable to
future automation. For more details about the PCL proof
system and the actual proofs described in this paper, we re-
fer the reader to our Protocol Composition Logic web site.
Finally, the axioms and rules used in the current proof have
been proved sound for a symbolic model of protocol execu-



tion and attack. We hope that in the future a computa-
tional semantics of PCL, such as suggested in [10], can be
developed for the entire proof system used here, providing
a correctness proof of 802.11i under standard cryptographic
assumptions.
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APPENDIX

A. PCL PROOF SYSTEM EXTENSIONS
The details of the programming language, protocol logic

and proof system in PCL have been described in previous
work [13, 18]. Here we only explain the extra axioms in-
troduced to capture the properties of the keyed hash func-
tion, which is used to compute the Message Integrity Code
(MIC) and derive a fresh Pair-wise Temporary Key (PTK)
in 802.11i.

HASH1 Computes(X,HASHK(x)) ⊃

Has(X,x) ∧ Has(X,K)

HASH2 Computes(X,HASHK(x)) ⊃

Has(X,HASHK(x))

HASH3 Receive(X,HASHK(x)) ⊃

∃Y.Computes(Y,HASHK(x))

∧Send(Y,HASHK(x))

HASH4 Has(X,HASHK(x)) ⊃

Computes(X,HASHK(x)) ∨

∃Y,m. Computes(Y,HASHK(x))

∧Send(Y,m) ∧ Contains(m,HASHK(x))

Define Computes(X,HASHK(a)) ≡

Has(X,K) ∧ Has(X, a)

B. PROOF OF THE 4-WAY HANDSHAKE
GUARANTEE

In Section 3, we state the security of the 4-Way Handshake
in the authenticator side as Theorem 1, which claims both
the security properties, including key secrecy and session
authentication, and the invariants of the 4-Way Handshake.
Here we describe the details of the proof.

The invariants are verified by induction over basice se-
quences. When proving key secrecy of the 4-Way Hand-
shake, we need to show that the secrecy of the key estab-

lished by TLS is preserved. This is accomplished by proving
that the NonceSource predicate is preserved after each step,
and that the Γtls,2 invariant is satisfied by the 4-Way Hand-
shake. The details of the proof can be found in our website.
In the proof of key secrecy, we proved that the following
property holds after each step of the 4-Way Handshake.

SPMK Honest(X̂)∧Honest(Ŷ ) ⊃ Has(Ẑ, pmk) ⊃ Ẑ = X̂∨Ŷ

Using this formula, we will describe the proof details for ses-
sion authentication as an example to show the general proof
structures, stated as θ4way [4WAY : AUTH]Xφ4way,auth.

Recall that session authentication is represented as match-
ing conversations; when the 4-Way Handshake is executed,
the authenticator X̂ can reason as follows:

1. Since the authenticator is honest, obviously it knows
that actions of itself are in order; i.e., Send Message 1,
ReceiveMessage 2, SendMessage 3,ReceiveMessage 4
are matched, pepresented in line (1) of the proof;

2. Since the authenticator received and verified Message
4, there must be some entity Ẑ who computes and sends
out Message 4 at previous stages, which implies Ẑ must
know the ptk used in the MIC to protect the message,
indicated in line (2) and (3);

3. According to the invariants of the 4-Way Handshake
and the properties of keyed hash, Ẑ must be either the
authenticator X̂ itself or the supplicant Ŷ since these
are the only two parties who have the ptk in the system,
described in line (4)-(6);

4. The authenticator knows it does not send out Message
4 by itself; thus, it must be the supplicant who have
computed and sent out Message 4. Furthermore, this
occurs before the authenticator receives this Message
4, as shown in line (7)-(9);

5. The authenticator assumes that the honest supplicant
acts honestly obeying the protocol. Therefore, the sup-
plicant must has a sequence of Receive and Send actions
in order, i.e., Receive Message 1, Send Message 2,
Receive Message 3, Send Message 4, as in line (10);

6. The remaining task is to match the sequence of ac-
tions between the authenticator side and the suppli-
cant side. Since the supplicant must have recevied and
verified Message 3 before sending out Message 4, the
authenticator can similarly reason as in step 2, 3, and
4, and conclude that it must have sent out Message 3
before the supplicant actually received it, as shown in
line (11)-(15);

7. Due to the freshness of the nonce generated by the sup-
plicant, the authenticator can only receive Message 2
after the supplicant sends it. Similarly due to the fresh-
ness of the nonce generated by the authenticator, the
supplicant can only receive Message 1 after the authen-
ticator send it, shown in line (16)-(19).

Based on these arguments, all the actions are matched as
in line (20). Hence, the authenticator can conclude that the
security property of session authentication is guaranteed in
the 4-Way Handshake.



AA1,ARP,AA4 θ4way

[4WAY : AUTH]X

Send(X, X̂, Ŷ , x, “msg1”) <

Receive(X, Ŷ , X̂, y, “msg2”,HASHptk(y, “msg2”)) <

Send(X, X̂, Ŷ , x, “msg3”, HASHptk(x, “msg3”)) <

Receive(X, Ŷ , X̂, “msg4” ,HASHptk(“msg4”)) (1)

ARP,HASH3 θ4way

[receive Ŷ , X̂, z;

match z/“msg4” ,mic2; match mic2/HASHptk(“msg4”)]X

Receive(X, Ŷ , X̂, “msg4” ,HASHptk(“msg4”)) ⊃

∃Z.Computes(Z,HASHptk(“msg4”)) ∧ Send(Z,HASHptk(“msg4”)) ∧

(Send(Z,HASHptk(“msg4”)) <

Receive(X, Ŷ , X̂, “msg4”, HASHptk(“msg4”))) (2)

HASH1 Computes(Z,HASHptk(“msg4”)) ≡ Has(Ẑ, ptk) ∧ Has(Ẑ, “msg4”) (3)

HASH4 Has(Ẑ, ptk) ≡ Has(Ẑ,HASHpmk(x, y)) ⊃

Computes(Z,HASHpmk(x, y)) ∨

(∃Y,m.Computes(Y,HASHpmk(x, y)) ∧

Send(Y,m) ∧ Contains(m,HASHpmk(x, y))) (4)

(4),Γ4way,2 θ4way

[receive Ŷ , X̂, z;

match z/“msg4” ,mic2; match mic2/HASHptk(“msg4”)]X

Has(Ẑ, ptk) ≡ Has(Z,HASHpmk(x, y)) ⊃ Computes(Z,HASHpmk(x, y)) (5)

(5),HASH1,SPMK θ4way

[receive Ŷ , X̂, z;

match z/“msg4” ,mic2; match mic2/HASHptk(“msg4”)]X

Honest(X̂) ∧ Honest(Ŷ ) ⊃ Computes(Z,HASHptk(“msg4”)) ⊃

Has(Ẑ, ptk) ⊃ Has(Ẑ, pmk) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ (6)

AA1,Γ4way,3 θ4way

[new x; send X̂, Ŷ , x, “msg1”; ]X

Honest(X̂) ∧ Send(X, X̂, Ŷ , x, “msg1”) ⊃ Ẑ 6= X̂ (7)

(2), (6), (7) θ4way

[4WAY : AUTH]X

Honest(X̂) ∧ Honest(Ŷ ) ⊃

∃Z.Computes(Z,HASHptk(“msg4”)) ∧ Send(Z,HASHptk(“msg4”)) ∧ Ẑ = Ŷ (8)

(2), (8) θ4way

[4WAY : AUTH]X

Honest(X̂) ∧ Honest(Ŷ ) ⊃

Send(Y, Ŷ , X̂, “msg4”, HASHptk(“msg4”)) <

Receive(X, Ŷ , X̂, “msg4”, HASHptk(“msg4”)) (9)

(9), φHONESTY θ4way

[4WAY : AUTH]X

Honest(X̂) ∧ Honest(Ŷ ) ⊃

Receive(Y, X̂, Ŷ , x, “msg1”) <

Send(Y, Ŷ , X̂, y, “msg2”,HASHptk(y,“msg2”)) <

Receive(Y, X̂, Ŷ , x, “msg3”,HASHptk(x,“msg3”)) <

Send(Y, Ŷ , X̂, “msg4”, HASHptk(“msg4”)) (10)



(10),HASH3 θ4way

[4WAY : AUTH]X

Receive(Y, X̂, Ŷ , x,“msg3” ,HASHptk(x,“msg3”)) ⊃

∃Z.Computes(Z,HASHptk(x,“msg3”)) ∧

Send(Z,HASHptk(x,“msg3”)) ∧

(Send(Z,HASHptk(x, “msg3”)) <

Receive(Y, X̂, Ŷ , x,“msg3” ,HASHptk(x, “msg3”))) (11)

HASH1, (5), (6) θ4way

[4WAY : AUTH]X

Computes(Z,HASHptk(x,“msg3”)) ⊃ Has(Ẑ, ptk) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ (12)

Γ4way,3 θ4way

[4WAY : AUTH]X

Honest(Ŷ ) ∧ Receive(Y, X̂, Ŷ , x, “msg1”) ⊃ Ẑ 6= Ŷ (13)

(11), (12), (13) θ4way

[4WAY : AUTH]X

Honest(X̂) ∧ Honest(Ŷ ) ⊃

∃Z.Computes(Z,HASHptk(x,“msg3”)) ∧

Send(Z,HASHptk(x,“msg3”)) ∧ Ẑ = X̂ (14)

(11), (14) θ4way

[4WAY : AUTH]X

Honest(X̂) ∧ Honest(Ŷ ) ⊃

Send(X, X̂, Ŷ , x, “msg3”,HASHptk(x,“msg3”)) <

Receive(Y, X̂, Ŷ , x,“msg3” ,HASHptk(x, “msg3”)) (15)

FS1,AN3 θ4way

[4WAY : AUTH]X

Honest(Ŷ ) ⊃ FirstSend(Y, y, Ŷ , X̂, y,“msg2” ,HASHptk(y,“msg2”)) (16)

(16),FS2 θ4way

[4WAY : AUTH]X

Send(Y, Ŷ , X̂, y, “msg2”,HASHptk(y,“msg2”)) <

Receive(X, Ŷ , X̂, y, “msg2”,HASHptk(y,“msg2”)) (17)

FS1,AN3 θ4way

[new x; send X̂, Ŷ , x, “msg1”; ]X

FirstSend(X,x, X̂, Ŷ , x,“msg1”) (18)

(18),FS2 θ4way

[4WAY : AUTH]X

Send(X, X̂, Ŷ , x, “msg1”) < Receive(Y, X̂, Ŷ , x,“msg1”) (19)

(1, 9, 10, 15, 17, 19) θ4way

[4WAY : AUTH]X

Honest(X̂) ∧ Honest(Ŷ ) ⊃

Send(X, X̂, Ŷ , x, “msg1”) < Receive(Y, X̂, Ŷ , x, “msg1”) <

Send(Y, Ŷ , X̂, y,“msg2” ,HASHptk(y,“msg2”)) <

Receive(X, Ŷ , X̂, y,“msg2” ,HASHptk(y,“msg2”)) <

Send(X, X̂, Ŷ , x, “msg3”,HASHptk(x,“msg3”)) <

Receive(Y, X̂, Ŷ , x,“msg3” ,HASHptk(x, “msg3”)) <

Send(Y, Ŷ , X̂, “msg4”,HASHptk(“msg4”)) <

Receive(X, Ŷ , X̂, “msg4”,HASHptk(“msg4”)) (20)


