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Abstract. There is a significant body of empirical work on statisti-
cal de-anonymization attacks against databases containing micro-data
about individuals, e.g., their preferences, movie ratings, or transaction
data. Our goal is to analytically explain why such attacks work. Specif-
ically, we analyze a variant of the Narayanan-Shmatikov algorithm that
was used to effectively de-anonymize the Netflix database of movie rat-
ings. We prove theorems characterizing mathematical properties of the
database and the auxiliary information available to the adversary that
enable two classes of privacy attacks. In the first attack, the adversary
successfully identifies the individual about whom she possesses auxiliary
information (an isolation attack). In the second attack, the adversary
learns additional information about the individual, although she may not
be able to uniquely identify him (an information amplification attack).
We demonstrate the applicability of the analytical results by empirically
verifying that the mathematical properties assumed of the database are
actually true for a significant fraction of the records in the Netflix movie
ratings database, which contains ratings from about 500,000 users.
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1 Introduction

In recent years, there has been a steady increase in the number of publicly re-
leased databases containing micro-data about individuals, e.g., their preferences,
movie ratings, or transaction data. There are a number of reasons for this phe-
nomena, for example, enabling useful tasks such as improving recommendation
systems [8] and providing transparency about the activities of government agen-
cies, such as the justice system [1].

At the same time, these databases raise privacy concerns because they contain
personal information about individuals that they may not want to share with the
whole world. In order to alleviate these concerns, various techniques have been
proposed to “anonymize” databases before releasing them. These anonymiza-
tion techniques have been developed in response to specific classes of attacks
observed in practice. It is now well known that just removing obvious identi-
fiers, such as names, social security numbers and IP addresses, is not sufficient
for anonymization—an adversary can use auxiliary information acquired from
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other sources to de-anonymize individual data records by computing database
joins. Examples of attacks of this form include de-anonymizing records in a hos-
pital discharge database and AOL search logs [2, 16]. More recently, a class of
statistical de-anonymization attacks have been presented that work on high-
dimensional micro-data and the applicability of the attack has been empirically
demonstrated on the publicly available Netflix movie ratings database; the at-
tacks work even when the released data has been perturbed and the auxiliary
information available to the adversary is noisy [11].

Our goal is to analytically explain why such attacks work. Specifically, we
analyze a variant of the Narayanan-Shmatikov weighted algorithm that was
used to effectively de-anonymize the Netflix database of movie ratings. Roughly,
this algorithm takes as input noisy auxiliary information about an individual
(e.g., movie ratings) and a database, and outputs the record in the database
that has the highest score on the common attributes. The score is a weighted
sum of the similarity of individual attributes where rare attributes are assigned
higher weights. We prove theorems characterizing mathematical properties of
the database and the noisy auxiliary information available to the adversary that
enable two classes of privacy attacks. In the first attack, the adversary success-
fully identifies the individual about whom she possesses auxiliary information
(an isolation attack), i.e., the algorithm outputs the correct record. In the sec-
ond attack, the adversary learns additional information about the individual,
although she may not be able to uniquely identify him (an information amplifi-
cation attack), i.e., the algorithm outputs a record of a ‘similar’ individual. We
empirically verify that the mathematical properties assumed of the database are
actually true for a significant fraction of the records in the Netflix movie rat-
ings database, which contains ratings from about 500,000 users, even when the
auxiliary information is noisy. Thus, our theorems formally explain why these
attacks work on the Netflix database.

The analytical and empirical study led to several insights about the nature
of de-anonymization attacks. First, it provides a technical characterization of
an observation due to Narayanan and Shmatikov [12] that “any information
that distinguishes one person from another can be used to re-identify anony-
mous data”. This intuition is reflected in the weighted scoring algorithm: rare
attributes directly correspond to distinguishing attributes because, by defini-
tion, a record’s non-null value for a rare attribute means that that record is
different from the many records that have null value for the rare attribute. In
addition, the weighted linear combination is combining different distinguishing
attributes into a single metric that distinguishes the records better than the
individual attributes. While the effectiveness of this idea has been empirically
demonstrated [11], to the best of our knowledge our theorem about the isola-
tion attack is the first analytical characterization of this idea. (Note that while
Narayanan and Shmatikov present analytical results about a simpler unweighted
algorithm, they do not analyze the weighted algorithm that was actually used
in the empirical study.)
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Second, we formulate and prove the theorem about the information amplifica-
tion attack under the following assumption: records which agree on distinguishing
(rare) attributes must be similar overall. This assumption is justified by the ob-
servation that people with similar tastes, e.g., in rare movies are likely to also
share similar opinions on other movies. It is important to note that this assump-
tion may not hold for all databases, but our empirical results demonstrate that
it holds for the Netflix database.

Third, in formulating our theorems, a guiding consideration was that the
assumptions should be empirically verifiable on a released database even if we
do not know what distribution the database was drawn from. We conduct ex-
periments to verify the assumptions on the Netflix database. We find that the
assumptions for both the theorems for the weighted algorithm are true for a
significant fraction of the records. In particular, the assumptions required for
the isolation attack hold for 90% of the records when the perturbation in the
auxiliary information is less than 10%. As expected, the percentage of records
for which the assumption holds decreases as the perturbation is increased, and
increases as the number of attributes in the auxiliary information is increased.
For the information amplification attack, we verify that if auxiliary information
auxy about a target record y is not too perturbed (< 10%) and a significant
fraction of the attributes in auxy (> 0.75) are rare, then for a significant frac-
tion of target records (> 0.90), if any record r is similar (similarity value > 0.75)
to auxy, then r is also similar (similarity value > 0.65) to y. Also, as the frac-
tion of rare attributes in auxiliary information increases and the threshold for
similarity between auxiliary information and the output record increases, the
similarity between the target record and the output record increases.

Finally, we comment on the relation of our results to prior work on quasi-
identifers. Observing that de-anonymization attacks are possible even when ob-
viously identifying information (such as names and social security numbers) is
removed from micro-data databases, Samarati and Sweeney [13, 15] introduced
the concept of quasi-identifers—attributes that could be used to re-identify in-
dividuals by linking with another source. An important challenge that this line
of work does not address (see also [9,10,17]) is how to identify quasi-identifiers.
As mentioned earlier, our formalization captures the intuition that any attribute
can be a quasi-identifier—the rarer the attribute, the greater is its contribution
towards distinguishing an individual. Thus, one might view our results as provid-
ing a semantic characterization of database properties and auxiliary information
that provably enable de-anonymization by linking in this more general setting.
Note that in our characterization, the analog of a quasi-identifier (the prop-
erty that enables linking attacks) is not just a property of the database; it also
depends on the adversary’s auxiliary information.

The rest of the paper is organized as follows. Section 2 describes related
work. Section 3 presents preliminary definitions. Section 4 presents an analysis
of the simpler generic (unweighted) algorithm for de-anonymization [11]. Sec-
tion 5 presents the main technical results of the paper—the analysis of isolation
and information amplification attacks using the weighted algorithm. Section 6
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presents empirical results demonstrating that the analytical results apply to the
Netflix database. Finally, Section 7 presents conclusions and directions for future
work.

2 Related Work

Dwork and Naor [5] prove a fundamental tradeoff between utility and a strong
form of privacy property (due to Dalenius [4]) capturing the intuition that noth-
ing about an individual should be learnable from the database that cannot be
learned without access to the database. They prove that it is not possible to
satisfy this definition if the database is to have any utility assuming that the
adversary has arbitrary auxiliary information. In contrast, in our work we seek
to characterize a restricted class of auxiliary information (which adversaries may
realistically possess) and database perturbation techniques (employed in practice
to release micro-data) for which de-anonymization attacks provably work. The
starting point of our analysis is the formal model proposed by Narayanan and
Shmatikov, which they used to analyze a simpler algorithm [11] (see also [3]). In
the original paper by Narayanan and Shmatikov [11], two algorithms have been
proposed- generic and weighted scoring algorithms. The first algorithm (generic
scoring algorithm) is analyzed, however, it is not used in the actual attack. In
our work, we analyze a minor variant of the weighted scoring algorithm, used
in the attack on Netflix database by Narayanan and Shmatikov. We present
an alternative definition of the similarity metric (as mentioned in Section 3),
a different notion of “eccentricity” (as described in Section 5) and prove the-
orems characterizing both the isolation and information amplification attacks
using the weighted algorithm that was only empirically evaluated in their paper.
In addition, we empirically validate that the assumptions hold on the Netflix
database.

Boreale et al [3] present an alternative approach to analyzing de-anonymization
attacks. Specifically, the authors model the process of de-anonymization of a
database using an Information Hiding System (IHS) whose input includes identi-
fied records, output includes observable information (e.g., perturbed attributes),
and the conditional probability matrix models the process of acquiring auxil-
iary information. They prove theorems characterizing information leakage using
a sparsity assumption about rows in the database (which roughly captures the
idea that no two records in the database are similar except with low probability)
and assuming that the auxiliary information includes attributes sampled uni-
formly at random. In contrast, we use an assumption about sparsity of columns
(rare attributes) and leverage knowledge of rare attributes in the auxiliary in-
formation to provide an analysis of the weighted algorithm of Narayanan and
Shmatikov, which as also remarked by Boreale et al., allows more effective de-
anonymization.

In a separate attack, ratings from an “anonymized” database released by
another recommender service, Movielens, were linked to individuals by using
movies publicly mentioned by users online [7]. We use a similar scoring method-
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ology as was proposed by Narayanan and Shmatikov [11] and Frankowski et
al [7], however the algorithms we analyze allow for information to be perturbed,
unlike the attack on the MovieLens database.

Differential privacy is useful for releasing privacy-preserving statistics [5, 6].
However, the focus of this work is on databases containing microdata.

3 Definitions

In this section, we describe notation used throughout the paper and present defi-
nitions of the asymmetric similarity metric and perturbed auxiliary information.

Let D0 denote the original database containing individuals’ records (which
have not been anonymized). An ‘anonymized’ version of this database is released
as D with n rows and c columns. D is obtained by running an anonymization
algorithm on the original database D0. Each row in the database corresponds to
a different individual’s record and each column corresponds to an attribute. Let
r(i) denote the value of ith column for the row corresponding to record r ∈ D.
The target record (i.e., the record the adversary is looking for), denoted by y,
is assumed to be always present in the released database D. The set of non-null
values of any record r is denoted by supp(r); similarly, the set of non-null values
in any column i is denoted by supp(i).

In order to compare the values of any two records in the database, we define
a similarity metric S.

Definition 1 (Asymmetric Similarity Metric). Similarity of record r when
compared against record y is defined as:

S(y, r) ,
∑

i∈supp(y)

T (y(i), r(i))

|supp(y)|
(1)

where

T (y(i), r(i)) , 1− |y(i)− r(i)|
p

(2)

and p is the maximum possible difference between values of the column i.

Here, T (y(i), r(i)) is defined as a scaled measure of difference between two
records y and r when compared on the ith attribute. The value of each column
is scaled by p (the range of values for the column), so that the value for T (., .)
lies in the interval [0, 1].

In contrast, Narayanan and Shmatikov use a symmetric similarity measure
Sim that compares two records on the union of the non-null attributes in the
two records [11]. Observe that when S(y, r) is high, r reveals information about
the attributes of y. However, even if S(y, r) is high, Sim(y, r) could be low if r
has a large number of a non-null attributes that do not overlap with non-null
attributes in y. Thus, we believe that S is a better measure to use in the design
and analysis of de-anonymization attacks than Sim.
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Definition 2 ((m, γ)-perturbed auxiliary information). Auxiliary infor-
mation about record y ∈ D, denoted by auxy, contains perturbed values of m
non-null attributes sampled from attributes in record y. auxy is defined to be
(m, γ)-perturbed if ∀i ∈ supp(auxy).T (y(i), auxy(i)) ≥ 1− γ where 0 ≤ γ ≤ 1.

Note that the definition above abstracts away from whether the perturbation
is in the released database or in the auxiliary information by noting that the
relevant property is a lower bound on the attribute-wise similarity between the
auxiliary information and the target record. The structure of auxy is similar to
that of a record in the database, with m columns (|supp(auxy)| = m).

4 Analysis of Generic Scoring Algorithm

In this section, we analyze and obtain provable bounds for the generic scor-
ing algorithm proposed by Narayanan and Shmatikov. The generic algorithm
considers all the attributes in the auxiliary information as equally important
for re-identification. Our theorem uses the asymmetric similarity metric defined
in Section 3 and gives a lower bound on the similarity of the record output
by the algorithm with the target record y. However, this algorithm might not
de-anonymize records effectively as the effect of perturbation in even a single
attribute of the auxiliary information would lower the overall score [11]. We
include this analysis for completeness.

The scoring function used by the generic scoring algorithm is defined below.

Definition 3 (Scoreg). Scoreg(auxy, r) of a record r ∈ D w.r.t. auxiliary in-
formation auxy about target record y is defined as:

Scoreg(auxy, r) = mini∈supp(auxy)T (auxy(i), r(i)) (3)

The Narayanan-Shmatikov generic scoring algorithm is described in Algo-
rithm 1.

Algorithm 1 Generic Scoring Algorithm

– Fix a target record y
– auxy is (m, γ)-perturbed auxiliary information about target record y
– Compute Scoreg(auxy, r) for every record r in the dataset
– Form a matching set of records that satisfy:

M = {r ∈ D : Scoreg(auxy, r) ≥ 1− γ} (4)

– Output a randomly chosen record from the matching set.

We prove a lower bound on the similarity of the record output by the algo-
rithm with the target record, assuming that the auxiliary information is (m, γ)
perturbed. The full proof is included in the appendix.
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Theorem 1. Let y denote the target record from given database D. Let auxy
denote (m, γ)-perturbed auxiliary information, uniformly sampled from the at-
tributes in record y. Let ε > 0. Then with probability ≥ 1 − g, a record o can
be found in the dataset such that the value of S(y, o) is greater than 1− 2γ − ε,
where g = e−2∗ε

2∗m

5 Analysis of Weighted Scoring Algorithm

In this section, we analyze a variant of the weighted scoring algorithm pro-
posed by Narayanan and Shmatikov. The weighted scoring algorithm gives higher
weight to ‘rare’ attributes in the auxiliary information. We present the algorithm
and two theorems characterizing the effectiveness of the algorithm for isolation
and information amplification attacks. Specifically, we prove that if the score of
a record is significantly higher than the scores of other records, then the record
can be isolated using the weighted scoring algorithm. We also prove a theorem
that quantifies the probability and degree of an information amplification attack
assuming that (a) a fraction of the attributes in perturbed auxiliary informa-
tion is rare; and (b) if people agree on several rare attributes, then with high
probability they are also similar on other attributes.

We begin by presenting definitions that are used in the description of the
algorithm and its analysis.

Definition 4 (Weight of an attribute). The weight of an attribute i is de-
noted by wi and is defined as wi = 1

log2 |supp(i)|
1.

We denote the scaled sum of weights of attributes in auxy byM =

∑
i∈supp(auxy) wi

|supp(auxy)|
where auxy refers to the perturbed auxiliary information corresponding to the
target record y. Next, we formalize the notion of rarity of an attribute.

Definition 5 (t-rare attribute). An attribute is said to be t-rare if wi =
1

log2 |supp(i)|
≥ t where t is a threshold value and 0 < t ≤ 1.

Definition 6 ((δ, t)-rare auxiliary information). Auxiliary information about
record y ∈ D, denoted by auxy, is said to be (δ, t)-rare if the fraction of t-
rare attributes in auxiliary information auxy, denoted by δauxy

equals δ where
0 < δ, t ≤ 1

Definition 7 (Scorew). Scorew(auxy, r) of a record r ∈ D w.r.t. auxiliary in-
formation auxy about target record y is defined as:

Scorew(auxy, r) =
∑

i∈supp(auxy)

wi ∗ T (auxy(i), r(i))

m
(5)

1 We assume that |supp(i)| > 2; for the Netflix dataset we have mini |supp(i)| = 3
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Definition 8 (Eccentricity). We define eccentricity e as

e(auxy, D) = max
r∈D

(Scorew(auxy, r))− max
2,r∈D

(Scorew(auxy, r)) (6)

where r ∈ D, y is the target record and auxy refers to the perturbed auxil-
iary information obtained from target record y. maxr∈D(Scorew(auxy, r)) and
max2,r∈D(Scorew(auxy, r)) refer to the highest and second highest value, respec-
tively, of Scorew(auxy, r) taken over the scores of all the records r in D.

Eccentricity is a measure of how far apart the highest scoring record is from
the second highest score when a scoring algorithm is employed. The eccentricity
measure would be useful in eliminating false positives in the result output by
the algorithm, as described in Algorithm 2.

Algorithm 2 Weighted Scoring Algorithm

– Fix a target record y
– auxy is (m, γ)-perturbed auxiliary information about target record y
– Compute Scorew(aux, r) for every record r in the dataset
– Output the record with the highest score if e(auxy, D) > T , where T is a preset

threshold2, else output NULL. Let o denote the record output by the algorithm.

Isolation Attack In the first attack, an adversary with some auxiliary information
successfully isolates an individual from a database. We prove that for a given
target record y, if auxiliary information auxy is (m, γ)-perturbed and if the
score of the record o output by the algorithm differs from the second-highest
score by a certain threshold, then o = y. The intuition behind the assumption
in this theorem is that if a record is significantly different from other records on
attributes present in auxiliary information, then the record can be isolated using
the weighted scoring algorithm.

The proof proceeds as follows: by using the assumption that auxy is (m, γ)-
perturbed, we derive a lower bound for the score of target record y when com-
pared with auxy. We prove the main result in the theorem by contradiction. We
assume that the maximum possible value of the scoring function when computed
over all records in the database is not equal to the score of the target record y.
We show that this assumption leads to the conclusion that the maximum pos-
sible score is greater than M , which is not possible since M equals the value of
the scoring function assuming that every attribute in auxy matches completely
with the attributes in the record being compared against.

Theorem 2. Let y denote the target record from given database D. Let auxy
denote (m, γ)-perturbed auxiliary information about record y. If the eccentricity

measure e(auxy, D) > γM where M =

∑
i∈supp(auxy) wi

|supp(auxy)| is the scaled sum of

weights of attributes in auxy, then



Provable De-anonymization of Large Datasets with Sparse Dimensions 9

1. maxr∈D(Scorew(auxy, r)) = Scorew(auxy, y).
2. Additionally, if only one record has maximum score value = Scorew(auxy, y),

then the record returned by the algorithm o is the same as target record y.

Proof. By definition of Similarity metric S(., .), for any record r ∈ D and given

target record y, S(y, r) =
∑
i∈supp(y)

T (y(i),r(i))
k , where k = |supp(y)|.

Also, by definition of Scorew(., .),

Scorew(auxy, r) =

∑
i∈supp(auxy)

wi ∗ T (auxy(i), r(i))

m
(7)

where wi = 1
log2 |supp(i)|

. Given the assumption ∀i ∈ supp(auxy).T (y(i), auxy(i)) ≥
1− γ, we can use equation 7, to conclude that

Scorew(auxy, y) =

∑
i∈supp(auxy)

wi ∗ T (auxy(i), y(i))

m

=

∑
i∈supp(auxy)

wi ∗ T (y(i), auxy(i))

m

≥
∑
i∈supp(auxy)

(1− γ)wi

m
≥ (1− γ) ∗

∑
i wi
m

= (1− γ) ∗M

since T (y(i), auxy(i)) = T (auxy(i), y(i)) by definition.
We prove the result in our theorem by contradiction. We assume that

max
r∈D

(Scorew(auxy, r)) 6= Scorew(auxy, y) (8)

Observe that

max
r∈D

(Scorew(auxy, r)) > Scorew(auxy, y) (from equation 8) (9)

If maxr∈D(Scorew(auxy, r)), is greater than Scorew(auxy, y) then

max
2,r∈D

(Scorew(auxy, r)) ≥ Scorew(auxy, y) (10)

since max2,r∈D(Scorew(auxy, r)) is the second highest value of all scores.
Further, it is assumed that e(auxy, D) > γM , therefore,

max
r∈D

(Scorew(auxy, r)) > γM + max
2,r∈D

(Scorew(auxy, r))

> γM + Scorew(auxy, y) > γM + (1− γ) ∗M = M

which is not possible since M is the maximum possible score for any record r in
the database as shown below

Scorew(auxy, r) =

∑
i∈supp(auxy)

wi

m
∗ T (auxy(i), r(i))

max
r∈D

(Scorew(auxy, r)) ≤
∑
i∈supp(auxy)

wi

m
≤M
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since max(T (., .)) = 1
Therefore, our assumption is wrong and we conclude that

max
r∈D

(Scorew(auxy, r)) = Scorew(auxy, y)

Also, since we assumed that target record y is always part of the released
database D, therefore, if there is only one record with the maximum score and
Scorew(auxy, y) is same as the maximum score then the the record with maxi-
mum score has to be y, which is returned by the algorithm. Hence proved.

Information Amplification Attack In the second attack, although an adversary
may not be able to uniquely isolate a record, she can still obtain additional in-
formation about the randomly chosen target record y under certain assumptions
about the database. The intuition that if people agree on several rare attributes,
then with high probability they are similar on other attributes, guided us to de-
fine a function fD for database D. We use fD to measure the overall similarity
of the target record y and r by an indirect comparison of the rare attributes of
y and the record r. The comparison is indirect because we use auxy as a proxy
for y and compare the rare attributes of auxy with r. To capture the intuition
that the agreement must happen on rare attributes the function fD depends on
the fraction of rare attributes in auxy (η1). To capture the intuition that there
should be agreement on the rare attributes, fD also depends on a lower bound
(η2) for S(auxy, r). In addition, to capture the fraction of target records (η3)
for which the overall similarity of the target record y and r is given by fD we
also include η3 as a parameter for fD. We define two parameterized sets before
formalizing this intuition in Property 1.

Definition 9 (Dm,η1). Dm,η1 is the subset of the records of a database D that
have no less than m non-null attributes and at least η1 of those attributes are
t-rare.

We denote the above set as Dm,η1 , ignoring the parameter t for notational ease.

Definition 10 (Auxy,m,η1). Auxy,m,η1 is the set of all (m, γ)-perturbed and
(η1, t)-rare sets of auxiliary information about record y.

Again, we ignore some parameters in Auxy,m,η1 for the sake of notational ease.
We assume that for the given database D there exists a function fD with
Range(fD) ⊆ [0, 1] and the following property:

Property 1 Choose any m and η1. Let y be chosen uniformly at random from
Dm,η1 . Let auxy be chosen uniformly at random from Auxy,m,η1 . Then

∀η2, η3, r. (S(auxy, r) ≥ η2)→ Pr[S(y, r) ≥ fD(η1, η2, η3)] ≥ η3

where r ∈ D. The probability is over the random choices made in choosing y.

We state the theorem below.
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Theorem 3. Let t and γ be in (0, 1). Fix any l1 ∈ (0, 1). Let y denote the
target record chosen uniformly at random from Dm,l1 . Let auxy denote a (m, γ)-
perturbed and (l1, t)-rare auxiliary information about record y chosen uniformly
at random from Auxy,m,l1 . Additionally, we assume the existence of function
fD(., ., .) that satisfies Property 1. Then Pr[S(y, o) ≥ fD(l1, l2, η3)] > η3, where

l2 =
(
∑

i∈supp(auxy) wi)
2∑

i∈supp(auxy) (wi)2
(1−γ)2
m , o is the record output by the Weighted Algorithm

and the probability is taken over the random choices made in choosing y.

The proof proceeds as follows:

1. We derive a relationship between S(auxy, r) and Scorew(auxy, r) by using
the Cauchy-Schwarz inequality [14] for any record r.

2. By using the assumption that auxy is (m, γ)-perturbed, we derive a lower
bound for Scorew(auxy, o). Using this and the last step we obtain a lower
bound for S(auxy, o).

3. By using this bound in conjunction with the function fD stated above, we
give a probabilistic guarantee about S(y, o).

Proof. Let xi(y, r) = T (y(i), r(i)) for any record r ∈ D . Therefore, S(y, r) =∑
i
xi(y,r)
k , where k = |supp(y)|. Also,

Scorew(auxy, r) =

∑
i∈supp(auxy)

wi ∗ T (auxy(i), r(i))

m

=

∑
i∈supp(auxy)

wi ∗ xi(auxy, r)
m

We prove the first part of the proof by Cauchy Schwarz inequality,(∑
i

AiBi

)2

<
∑
i

A2
i

∑
i

B2
i

Therefore ∑
i∈supp(auxy)

wi ∗ xi(auxy, r)

2

<

 ∑
i∈supp(auxy)

w2
i

 ∑
i∈supp(auxy)

xi(auxy, r)
2


Since 0 ≤ T (auxy(i), r(i)) ≤ 1 ∑

i∈supp(auxy)

xi(auxy, r)
2

 ≤
 ∑
i∈supp(auxy)

xi(auxy, r)


Therefore, ∑

i∈supp(auxy)

wi ∗ xi(auxy, r)

2

<

 ∑
i∈supp(auxy)

(wi)
2

 ∑
i∈supp(auxy)

xi(auxy, r)
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By definition of Scorew(auxy, r) and S(auxy, r) we get

(m ∗ Scorew(auxy, r))
2 < (

∑
i∈supp(auxy)

(wi)
2)S(auxy, r)m

S(auxy, r) >
(m ∗ Scorew(auxy, r))

2

m
(∑

i∈supp(auxy)
(wi)2

) =
m ∗ (Scorew(auxy, r))

2∑
i∈supp(auxy)

(wi)2

For the second step of the proof we use the assumption ∀i ∈ supp(auxy).T (y(i), auxy(i)) ≥
1− γ. We can use the definition of Scorew(., .) (equation 7), to conclude that

Scorew(auxy, y) =

∑
i∈supp(auxy)

wi ∗ T (auxy(i), y(i))

m

=

∑
i∈supp(auxy)

wi ∗ T (y(i), auxy(i))

m

≥
∑
i∈supp(auxy)

(1− γ)wi

m

≥ (1− γ) ∗
∑
i wi
m

≥ (1− γ) ∗M

since T (y(i), auxy(i)) = T (auxy(i), y(i)) by definition.
Also since o has the max score Scorew(auxy, o) ≥ Scorew(auxy, y) and hence

Scorew(auxy, o) ≥
∑
i∈supp(auxy)

wi ∗ T (auxy(i), y(i))

m

≥ (1− γ)

∑
i∈supp(auxy)

wi

m
≥ (1− γ)M

Substituting in equation derived for S(auxy, o) above,

S(auxy, o) >
m(Scorew(auxy, o))

2

(
∑
i∈supp(auxy)

w2
i )

>
m((1− γ)M)2

(
∑
i∈supp(auxy)

w2
i )
>

(
∑
i∈supp(auxy)

wi)
2∑

i∈supp(auxy)
(wi)2

(1− γ)2

m

Thus, S(auxy, o) > l2.
Finally for the last part of the proof, we use the assumption that y was chosen

uniformly at random from Dm,l1 , auxy was chosen uniformly at random from
Auxy,m,li and the result above that S(auxy, o) > l2 to invoke Property 1 and
claim the following:

Pr[S(y, o) ≥ fD(l1, l2, η3)] ≥ η3

To summarize, we use a function fD parametrized by a database D in for-
mulating and proving the theorem about the information amplification attack.
The idea here is that the theorem provides bounds on the information amplifi-
cation attack for ‘any’ database D for which there exists an fD such that the
assumptions in the above stated theorem holds. Note that the bounds will be
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good (i.e., the information amplification attack is effective) if η3 is close to 1
(i.e., the attack succeeds with high probability) and the value of fD is also close
to 1 (i.e., the target record is very similar to the record output by the algorithm)
given (a) the fraction of rare attributes in the auxiliary information (l1) and (b)
the similarity between the auxiliary information and the record output by the
algorithm (l2). We demonstrate in the next section that the function fD com-
puted for the Netflix database enables us to claim that with high probability, the
output of the Weighted Algorithm run on the Netflix database will be similar to
the target record.

6 Empirical Results

For empirically testing the assumptions in our theorems, we use the ‘anonymized’
Netflix database with 480, 189 users and 17, 770 movies, also used by Narayanan
and Shmatikov. We run the modified Narayanan-Shmatikov weighted scoring
algorithm as described in Section 5. Note that when we use m attributes in
auxiliary information, we filter out records that have less than m attributes.
Additionally, when we have the condition that δauxy is a fixed fraction, this leads
to more records being filtered out as the criteria is not met for these records.
The percentage values claimed in all our results are percentage of records that
are not filtered out. The following table shows the fraction of records that get
filtered out for different values of m and t.

m t Percentage of records m t Percentage of records

8 0.07 28.4 8 0.075 38.4

10 0.07 31.3 10 0.075 41.4

20 0.07 46.6 20 0.075 56.9
Table 1. Percentage of records that get filtered out, when t= 0.07, 0.075

We list some of our key findings and explain these in detail.

1. Isolation Attack
– We verify the percentage of records in the database for which both the

assumptions in Theorem 2 presented in Section 5 hold true, over the
Netflix database. Our empirical analysis verifies that the assumptions
hold true for majority of records.

– We also test the assumptions for varying levels of perturbation in auxy.
– Additionally we compute the percentage of records for which the ec-

centricity assumption holds when we vary threshold for rarity of an at-
tribute, t and number of attributes in auxy, m.

– As compared to the attack demonstrated by Narayanan and Shmatikov [11],
we do not use dates for analysis. However, we consider perturbation in
ratings in auxy, as opposed to exact ratings being present in auxy.
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2. Information Amplification Attack
– We develop an algorithm that computes the value of fD for different

values of the parameters γ, η1, η2 and η3 for any database D and auxiliary
information auxy.

– Our results show that for the Netflix database the function fD is mono-
tonically increasing in η1, η2 and tends to 1 as η1, η2 increases. Then the
weighted scoring algorithm output will be quite similar to the target
record for Netflix database, hence the Narayanan-Shmatikov weighted
scoring algorithm was successful in finding attacks.

6.1 Isolation attack

Verifying assumptions for varying levels of perturbation in auxy For
the first result based on the isolation attack, we plot the fraction of records for
which the eccentricity assumption holds, against the value of perturbation in
auxiliary information auxy, where fraction of rare attributes in auxy (δauxy

) =
0.75. These results have been obtained by averaging the results from a sample of
10, 000 records randomly chosen with replacement. We obtain results for varying
levels of perturbation in auxiliary information, γ = 0.07, 0.1, 0.15, 0.2. The results
are shown and plotted in Figure 1. In this figure, we consider an attribute as rare
if the column corresponding to the movie has weight ≥ 0.07 (t = 0.07) which
implies that any column with less than ∼ 19, 972 entries will be defined as rare.

We conclude that when perturbation in auxy is less than 10%, then the
score of the best-match record exceeds the second-best score by a value greater
than our theoretic threshold (= γ ∗M) for a significant fraction of the records
(> 0.90), which implies that > 90% of the records can be successfully isolated.
Also, we observe that as perturbation in auxiliary information (γ) increases, the
number of records for which the assumption holds decreases. One factor causing
this decrease could be that an increase in γM implies that the best match record
would need to be different from the second highest score by a much higher value
than when γ is lower, which may not always be true. However, we note that even
with 20% perturbation, the assumption holds for > 10% of the records when the
auxiliary information set contains 10 attributes. There are approximately 500000
users in the database; without considering the records that get filtered out, the
attack still affects more than 34,000 users, which is quite significant.

Additionally in Figure 1, we also vary the number of attributes m in the
auxiliary information auxy; specifically we run the algorithm for m = 10, 20. We
observe that as the number of attributes in auxiliary information set increases,
the fraction of target records for which the eccentricity assumption holds and
thus fraction of target records which can be isolated from a database, increases.

Verifying assumptions for unperturbed auxy We compute the fraction of
records that are isolated for m = 8, γ = 0, δauxy = 0.75. Since the perturbation γ
in auxy is 0, the score of the best-match record exceeds the second-best score by
γM trivially. So for > 99% of the records that have greater than 8 attributes and
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m γ % of records m γ % of records

10 0.07 92.45 20 0.07 99.18

10 0.1 77.73 20 0.1 95.54

10 0.15 39.29 20 0.15 66.73

10 0.2 10.97 20 0.2 22.88

Fig. 1. Percentage of records for which eccentricity assumption holds when t = 0.07

more than 6 rare attributes and 2 non-rare attributes, there is only one record
with the highest score and all these target records can be isolated. However, if
we do not filter out records that have less than 8 attributes we get the result that
72% of all the records can be isolated when threshold for rarity of an attribute,
t = 0.07 and 61% of all the records can be isolated when t = 0.075. This
conclusion is not as good as the results obtained by Narayanan and Shmatikov,
as they de-identified 84% of the records in the database with exact ratings and
no dates at all. However, our results are computed using the generalized variant
of the weighted scoring algorithm and not the heuristically tuned algorithm
that Narayanan and Shmatikov actually use in the experiments. Our guarantees
are supported by the theorems in Section 5, however as the authors themselves
point out, the specifically tuned parameters in their algorithm might not work
for another database.

Additionally in Figure 2, we plot the fraction of records for which eccentricity
assumption holds when we consider an attribute as rare if the weight of the
column i corresponding to the attribute has wi ≥ 0.075 (t = 0.075) which
implies that any column with less than ∼ 10, 000 entries will be defined as rare.
We plot the results for m = 20. In Figure 2, overall less attributes are considered
as rare as compared to Figure 1.

6.2 Information Amplification Attack

Computing fD(η1, η2, η3) We compute fD(., ., .) using the routine shown in
Algorithm 3. In the given code we would ideally want to take n as large as
possible, but, that is not feasible. Hence we take n as 50 and then run the code
60 times and take the average value of fD over the 60 runs as the final computed
value. This is not the exact value of fD, but is a good estimate.
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m γ % of records

20 0.07 99.22

20 0.1 96.49

20 0.15 74

20 0.2 29.84

Fig. 2. Percentage of records for which eccentricity assumption holds when t= 0.075

Algorithm 3 Calculation of fD
Require: m, t, γ

for η1 : {0.7, 0.8, .., 1.0} do
for η2 : {0.5, 0.6, .., 1.0} do

for i : {1, 2, .., n} do
Choose y uniformly at random from Dm,η1
Choose auxy uniformly at random from Auxy,m,η1
ki = minr | S(auxy,r)≥η2 S(y, r)

end for
fD(η1, η2, η3) = η3 percentile of k1, .., kn

end for
end for

Value of fD(η1, η2, η3) for varying levels of perturbation in auxy and
η3 We plot the value of fD(η1, η2, η3) by varying values of η3, i.e. the prob-
ability of a record y having greater than fD(η1, η2, η3) similarity with r given
δauxy

= η1 and S(auxy, r) ≥ η2. We obtain results for varying levels of pertur-
bation in auxiliary information, γ = 0.07, 0.1, keeping the number of attributes
in auxy, m = 10. The results are plotted in Figures 3, 4. In each of these
figures, we plot the value of fD(η1, η2, η3) when η1 = {0.7, 0.8, 0.9, 1.0} and
η2 = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Figures 3, 4 show the value of fD(η1, η2, η3) when
(η3 = 0.9, γ = 0.07) and (η3 = 0.9, γ = 0.1) respectively. We conclude that, keep-
ing γ, η1, η2 constant, the value of fD(η1, η2, η3) decreases as η3 increases, which
reinforces the intuition that a higher probability of a record y having greater
than fD(η1, η2, η3) similarity with r, given δauxy = η1 and S(auxy, r) ≥ η2, is
accompanied by a lower guarantee fD(η1, η2, η3) of similarity.

Additionally, we observe that, for a constant value of η3, the value of fD(η1, η2, η3)
increases as γ increases, but the value of γ is still small, and the function also
becomes smooth with increasing γ, which implies that small perturbation of rare
attributes does not decrease the knowledge of similarity between y and r that is
gained from the knowledge of auxy.
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Fig. 3. Value of f(η1, η2, η3) when η3 =
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Fig. 4. Value of f(η1, η2, η3) when η3 =
0.9 and γ = 0.1

fD(η1, η2, η3) for unperturbed auxy We also compute the value of fD(η1, η2, η3)
when γ = 0, which implies that the auxiliary information has no noise. The re-
sults are plotted in Figures 5, 6 for m = 20. Figures 5, 6 show the value of
fD(η1, η2, η3) when (η3 = 0.75, γ = 0.0) and (η3 = 0.9, γ = 0.0) respectively. All
these graphs show that fD(η1, η2, η3) is monotonically increasing in η1 and η2,
and also tends to 1 as η1, η2 increase.
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7 Conclusion

We have presented a mathematical analysis of the effectiveness of the Narayanan-
Shmatikov weighted algorithm in isolating individuals and carrying out informa-
tion amplification attacks. Our empirical study of the Netflix database of movie
ratings demonstrates that the assumptions about the database used in proving
the theorems hold for a substantial fraction of records in the database. Thus,
our theorems formally explain why these attacks work on the Netflix database.
Indeed enabling this form of empirical validation without requiring knowledge
of the distribution from which the database was drawn was a desideratum for
our approach.

Our empirical results for the isolation attack are not as strong as those re-
ported by Narayanan and Shmatikov (72% vs. 84% for parameter settings where
a head-to-head comparison was possible). The difference could be caused by the
generality of our assumptions. At a technical level, it would be interesting to
understand if it is possible to prove an isolation theorem with stronger bounds
using different assumptions about the dataset.

The technical result about the information amplification attack is formu-
lated in terms of an abstract function fD that depends on the database D.
Our empirical results demonstrate that for the Netflix database fD(η1, η2, η3) is
monotonically increasing in η1 and η2, and also tends to 1 as η1, η2 increase. Our
theorem predicts that this behavior of fD implies that the Netflix database is
de-anonymizable by the weighted scoring algorithm. It would be interesting to
identify a class of distributions from which if databases are drawn they would
satisfy this property.

Acknowledgments. We thank Anupam Gupta for suggesting the asymmetric
similarity metric. We also thank Arvind Narayanan for useful discussions during
the course of this work.
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Appendix

Theorem 1. Let y denote the target record from given database D. Let auxy
denote (m, γ)-perturbed auxiliary information, uniformly sampled from the at-
tributes in record y. Let ε > 0. Then with probability ≥ 1 − g, a record o can
be found in the dataset such that the value of S(y, o) is greater than 1− 2γ − ε,
where g = e−2∗ε

2∗m

Proof. Let xi(y, r) = T (y(i), r(i)) for any record r . Therefore, S(y, r) =
∑
i
xi(y,r)
k ,

where k = |supp(y)|.
Let Y1, Y2,..Ym be m random variables which take a value equal to any of

the xj ’s and are chosen independently. Z is another random variable defined as

Z =
∑

i Yi

m where i ∈ {1, ...,m}
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We form the matching set M such that,

M = {r ∈ D : Scoreg(auxy, r) ≥ 1− γ}
Using definition of Scoreg(auxy, r)

M = {r ∈ D : mini∈supp(auxy)T (auxy(i), r(i)) ≥ 1− γ}
M = {r ∈ D : ∀i ∈ supp(auxy).T (auxy(i), r(i)) ≥ 1− γ}

Also, given ∀i ∈ supp(auxy).T (y(i), auxy(i)) ≥ 1−γ, we calculate T (y(i), r(i))
for any record r in the matching set, and ∀i ∈ supp(auxy).

T (y(i), r(i)) , 1− |y(i)− r(i)|
p

|y(i)− r(i)| ≤ |y(i)− auxy(i)|+ |auxy(i)− r(i)|
|y(i)− r(i)| ≤ 1− (1− p ∗ γ) + 1− (1− p ∗ γ) = 2 ∗ p ∗ γ

Thus, for any record r in the matching set

∀i ∈ supp(auxy).T (y(i), r(i)) ≥ 1− 2γ

Also, since Yi has an uniform distribution

E[Yi] = x1(y, r) ∗ 1

k
+ x2(y, r) ∗ 1

k
+ · · ·+ xk(y, r) ∗ 1

k
= S(y, r)

We show that expectation of Z is also S(y, r)

E[Z] =

∑
iE[Yi]

m
=
m ∗ E[Y1]

m
=
mS(y, r)

m
= S(y, r)

One-sided Hoeffding bound states that given n independent random variables
X1,X2, . . . ,Xn where Pr(Xi ∈ [ai, bi]) = 1 and X̄ = X1+X2+···+Xn

n , the follow-

ing inequality holds: Pr[X̄ − E[X̄] ≥ ε] ≤ exp
(
−2∗ε2∗n2∑n
i=1(bi−ai)2

)
. Using Hoeffding

bound for Z with the observation that Z takes values in [0, 1] we get

Pr[Z− E[Z] ≥ ε] ≤ exp

(
−2 ∗ ε2 ∗m2∑m
i=1(1− 0)2

)
= exp(−2 ∗ ε2 ∗m)

We can consider the complementary event and get

Pr[Z− E[Z] ≤ ε] ≥ 1− exp(−2 ∗ ε2 ∗m)

Let g = e−2∗ε
2∗m. Therefore, with probability ≥ 1 − g, zi (realized value

of Z) ≤ E[Z] + ε. Thus, with probability ≥ 1 − g, E[Z] ≥ zi − ε, and by
substituting the value of E[Z] we get that with probability ≥ 1 − g, S(y, r) ≥
zi − ε. Additionally, we have shown that for r ∈ M , zi ≥ 1 − 2γ and hence
for r ∈ M , S(y, r) ≥ (1 − 2γ − ε). This implies that the record output by the
generic algorithm described above, is guaranteed to have similarity greater than
1− 2γ − ε with the target record y, with probability ≥ 1− g.


