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Abstract. Protocol Composition Logic (PCL) is a logic for proving authentication
and secrecy properties of network protocols. This chapter presents the central con-
cepts of PCL, including a protocol programming language, the semantics of pro-
tocol execution in the presence of a network attacker, the syntax and semantics of
PCL assertions, and axioms and proof rules for proving authentication properties.
The presentation draws on a logical framework enhanced with subtyping, setting
the stage for mechanizing PCL proofs. and gives a new presentation of PCL se-
mantics involving honest and unconstrained principals. Other papers on PCL pro-
vide additional axioms, proof rules, and case studies of standardized protocols in
common use.

1. Introduction

Protocol Composition Logic (PCL) [5,6,7,8,9,10,11,12,17,18,23,38,39] is a formal logic
for stating and proving security properties of network protocols. The logic was originally
proposed in 2001 and has evolved over time through case studies of widely-used proto-
cols such as SSL/TLS, IEEE 802.11i (WPA2), and variants of Kerberos. In typical case
studies, model checking [31,30,36] is used to find bugs in a protocol design. After bugs
found using model checking are eliminated, PCL can be used to find additional problems
or prove that no further vulnerabilities exist. While model checking generally only ana-
lyzes protocol execution up to some finite bound on the number of protocol participants,
PCL is designed to reason about the unbounded set of possible protocol executions.
While the version of PCL considered in this chapter is based on a symbolic computation
model of protocol execution and attack, variants of PCL have been developed and proved
sound over conventional cryptographic computational semantics [11,12,37,38,40].

The central research question addressed by PCL is whether it is possible to prove
properties of practical network security protocols compositionally, using direct reason-
ing that does not explicitly mention the actions of a network attacker. Intuitively, “direct
reasoning” means that we draw conclusions about the effect of a protocol from the in-
dividual steps in it, without formulating the kind of reduction argument that is used to
derive a contradiction from the assumption that the protocol is vulnerable to attack. For
example, an axiom of PCL says, in effect, that if a principal creates a nonce (unguessable
random number), and another principal receives a message containing it, then the first
principal must have first sent a message containing the nonce.

The PCL assertions about protocols are similar to Hoare logic [24] and dynamic
logic [21], stating before-after conditions about actions of one protocol participant. In
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conventional terminology adopted by PCL, a thread is an instance of a protocol role
executed by a principal, such as Alice executing the client role of SSL. The PCL formula
ϕ [actseq]T ψ states that if thread T starts in a state where precondition ϕ is true, then
after actions actseq are executed by T, postondition ψ must be true in any resulting
state. While this formula only mentions the actions actseq of thread T, states which
are reached after T executes actseq may arise as the result of these actions and any
additional actions performed by other threads, including arbitrary actions by an attacker.

PCL preconditions and postconditions may include any of a number of action pred-
icates, such as Send(T, msg), Receive(T, msg), NewNonce(T, msg), Dec(T, msgencr, K),
Verify(T, msgsigned, K), which assert that the named thread has performed the indicated
action. For example, Send(T, msg) holds in a run if thread T sent the term msg as a mes-
sage. One class of secrecy properties can be specified using the predicate Has(T, msg),
which intuitively means that msg is built from constituents that T either generated or re-
ceived in messages that do not hide parts of msg from T by encryption. One formula that
is novel to PCL is Honest(Pname), which asserts that all actions of principal Pname are
actions prescribed by the protocol. Honest is used primarily to assume that one party has
followed the prescribed steps of the protocol. For example, if Alice initiates a transaction
with Bob and wishes to conclude that only Bob knows the data she sends, she may be
able to do so by explicitly assuming that Bob is honest. If Bob is not honest, Bob may
make his private key known to the attacker, allowing the attacker to decrypt intercepted
messages. Therefore, Alice may not have any guarantees if Bob is dishonest.

In comparison with a previous generation of protocol logics such as BAN logic [4],
PCL was also initially designed as a logic of authentication. Furthermore, it involves an-
notating programs with assertions, does not require explicit reasoning about the actions
of an attacker, and uses formulas for freshness, for sending and receiving messages, and
for expressing that two agents have a shared secret. In contrast to BAN and related log-
ics, PCL avoids the need for an “abstraction” phase because PCL formulas contain the
protocol programs. PCL also addresses temporal concepts directly, both through modal
formulas that refer specifically to particular points in the execution of a protocol, and
through temporal operators in pre- and post-conditions. PCL is also formulated using
standard logical concepts (predicate logic and modal operators), does not involve “juris-
diction” or “belief”, and has a direct connection with the execution semantics of network
protocols that is used in explicit reasoning about actions of a protocol and an attacker,
such as with Paulson’s inductive method [34] and Schneider’s rank function method ??
and [42].

An advantage of PCL is that each proof component identifies not only the local
reasoning that guarantees the security goal of that component, but also the environmental
conditions that are needed to avoid destructive interference from other protocols that
may use the same certificates or key materials. These environment assumptions are then
proved for the steps that require them, giving us an invariant that is respected by the
protocol. In formulating a PCL proof, we therefore identify the precise conditions that
will allow other protocols to be executed in the same environment without interference.

In this book chapter, we explain the use of PCL using the simplified handshake
protocol used in other chapters . We present PCL syntax and its symbolic-execution se-
mantics in a semi-formal way, as if we were encoding PCL in a logical framework. The
logical framework we use is a typed language of expressions which includes a form of
subtyping that allows us to make implicit conversions between related types. For exam-
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Figure 1. Handshake protocol, in arrows-and-messages form

ple, different types of keys are subtypes of the type key of all keys. While PCL includes
formal axioms and proof rules for proving properties of protocols, there is a portion of
the logic (the entailment relation between precondition/postcondition formulas) that is
not formalized. However, when PCL is encoded in a logical framework, this unformal-
ized portion of PCL is handled by the underlying logic of the logical framework. Finally,
it should be noted explicitly that PCL is a logical approach that has been developed in
different ways in different papers, as part of both a basic research project to find effective
ways of proving properties of protocols, and as part of an ongoing effort to carry out case
studies on practical protocols, each of which may require different cryptographic func-
tions or make different infrastructure assumptions. Therefore, this chapter is intended to
explain PCL, show how its syntax and semantics may be defined, describe representative
axioms and proof rules, and show how they are used for sample protocols. This chapter
is not a comprehensive presentation of all previous work on PCL or its applications.

2. Example

2.1. Sample protocol

The running example protocol used in this book is a simple handshake protocol between
two parties. This is shown using a common “arrows-and-messages” notation in Figure 1.
Note that we use JmsgKK for the digital signature of msg with the signing key K. For
protocols that assume a public-key infrastructure, we write pk (Alice) for Alice’s pub-
lic encryption key, dk (Alice) for the corresponding private key known only to Alice,
sk (Alice) for Alice’s private signing key, and vk (Alice) for the corresponding publicly
known signature verification key. When needed, 〈m1, . . . ,mn〉 is a tuple of length n.

As discussed in other chapters, this protocol is vulnerable to attack if the identity
of the intended responder, B, is omitted from the first message. We will focus on the
corrected protocol because the primary purpose of PCL is to prove security properties of
correct protocols. However, we will also discuss how the proof fails if B is omitted from
the first message. The way that the proof fails for an insecure protocol can often be used
to understand how the protocol may be vulnerable to attack.

2.2. Expressing the protocol in PCL

Since PCL is a logic for proving the correctness of a protocol from its definition, we must
express the protocol explicitly, with enough detail to support a rigorous proof. In PCL,
we express the protocol as a set of programs, in a high-level language, one program for
each participant in the protocol.

The PCL proof system allows us to reason about each program, called a protocol
role, individually and to combine properties of different roles. Because each of the opera-
tions used to construct, send, receive, or process an incoming message may be important
to the correctness of a protocol, we represent each of these steps as a separate action.
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One way to understand why a more detailed representation of the protocol is needed
is to look back at Figure 1, and think about what is clear from the figure itself and what
needs to be clarified in English. For example, the English description says, “the initiator
A creates a fresh session key k”, but there is nothing in Figure 1 that indicates whether k
is created by A, or known previously to both parties. The same figure would be used for
a protocol in which A and B both know k in advance and B only accepts the first message
if the shared value k is sent. Part of the rigor of PCL is that we use a precise protocol
language that unambiguously determines the set of possible protocol runs.

The handshake protocol in Figure 1 has two roles, the Init role for the initiator
and the Resp role for responder in the protocol. These roles are written out in detail
in Figure 2. While we will later introduce syntactic sugar that simplifies some of the
notation, Figure 2 shows every cryptographic action and every step in the construction
and manipulation of each message explicitly. Instead of assuming that a received message
has a specific format, for example, the responder role uses projection functions (π1, π2,
. . . ) on tuples to separate a message into parts.

For clarity, we write many actions in the form `oc := exp, where the form on the
right-hand side of the assignment symbol := determines the value stored in location `oc.
The assignable locations used in a role are local to that role, but may be used to compute
values sent in messages. We write !`oc for the value stored in location `oc. Since all of
our roles are straight-line programs, it is easy to choose locations so that each location
is assigned a value only once in any thread; in fact we make this a requirement. This
single-assignment requirement simplifies reasoning about a protocol role.

For each pair of principals A and B, the program executed by initiator A to commu-
nicate with intended responder B is the sequence of actions Init(A,B) shown in Figure 2.
In words, the actions performed by the initiator are the following: choose a new nonce
and store it in local storage location k, sign the message 〈A,B, !k〉 containing the princi-
pal names A and B, and send the encryption of this message. Because digital signatures
do not provide confidentiality, we assume that there is a function unsign that returns the
plaintext of a signed message. In this handshake protocol, the receiver uses parts of the
plaintext to identify the verification key of the sender and verify the signature. We call a
principal executing a role a thread.

If principal B executes the responder role Resp(B), the actions of the responder
thread are exactly the actions given in Figure 2. Specifically, the responder thread re-
ceives a message enca that may be an encrypted message created by an initiator thread.
In order to determine whether the message has the correct form to be an initiator’s mes-
sage, the responder decrypts the message with its private decryption key dk (B) and then
extracts the plaintext from what it expects to be a signed message. If decryption fails, or
if the result of decryption does not have the correct form to have the plaintext removed
from a signed message, then the thread stops at the action that fails and does not pro-
ceed further. If possible, the responder thread then retrieves the first, second, and third
components of the triple that is the message plaintext, and verifies the digital signature
using the principal name A sent in the message. If the signature verifies, and the sec-
ond component of the plaintext tuple matches the responder’s principal name, then the
responder generates a new nonce s, encrypts it under k, and sends the result. An assert
action assert: msg= msg′, such as the one used to check idB, succeeds only if the two
messages are equal.
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Init(A,B : principal_name) = {

k := newnonce;
siga := sign 〈A,B, !k〉, sk (A) ;
enca := enc !siga, pk (B) ;
send !enca;

encb := receive;
s := sd !encb, !k;

}

Resp(B : principal_name) = {

enca := receive;
siga := dec !enca, dk (B) ;
texta := unsign !siga;
idA :=π1!texta;
idB :=π2!texta;
k :=π3!texta;
assert: !texta= 〈!idA, !idB, !k〉;
verify !siga, vk (!idA) ;
assert: !idB=B;
s := newnonce;
encb := se !s, !k;
send !encb;

}

Figure 2. Explicit presentation of handshake protocol

Roles are typically parameterized by the names of principals relevant to execution
of the role, such as parameters A and B in Figure 2. When a role is defined, the first
argument is treated as the principal who executes the role. The difference between the
first parameter and the other parameters is that private keys associated with the first
parameter may be used in the actions of the role. Technically, the information available
to each role is limited to its role parameters, values explicitly named in the role, and the
result of applying allowed key functions such as dk(·), which names a private decryption
key. Visibility to key functions is determined by a part of the protocol definition called its
setup assumptions. Our formalization of setup assumptions is described in Section 3.1.

While Figure 2 is completely precise, it is sometimes convenient to adopt abbre-
viations and notational conventions that make the roles easier to read. For example,
Figure 3 uses a few syntactical simplifications to define the same roles as Figure 2.
Specifically, we use a pattern-matching form 〈idA, idB, k〉 := texta to set three loca-
tions to the three components of a tuple, as abbreviation for the three assignments us-
ing projection functions given in Figure 2 and the subsequent structural assertion that
texta is a tuple of arity 3. We also omit ! and write `oc instead of !`oc in expressions.
Since all identifiers are typed, and the type of locations is different from other types,
this is unambiguous; occurrences of ! can always be inserted mechanically based on the
types of expressions. Some papers on PCL use a form “match texta as 〈A,B, k〉”
that combines structural checks and assignment. While succinct, a potentially confus-
ing aspect of match is that its effect depends on the context: because A and B are pre-
viously defined, this example match is an assert about them, while because k is not
previously defined, the example match sets k to the third component of texta. Thus,
writing match texta as 〈A,B, k〉 in the middle of Resp(B) would be equivalent to
assert: π1texta = A; assert: π2texta = B; k := π3texta, together with a structural as-
sertion for checking the arity of texta (see above). For simplicity, we will avoid match
in this presentation of PCL, although protocols written using match may be understood
using this presentation of PCL as just explained.

2.3. The protocol attacker

A protocol determines a set of runs, each with a sequence of actions by one or more
principals. Since we are concerned with the behavior of protocols under attack, not all of
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Init(A,B : principal_name) = {

k := newnonce;
siga := sign 〈A,B, k〉, sk (A)
enca := enc siga, pk (B)
send enca;

encb := receive;
s := sd encb, k;

}

Resp(B : principal_name) = {

enca := receive;
siga := dec enca, dk (B) ;
texta := unsign siga;
〈idA, idB, k〉 :=texta;
verify siga, vk (idA) ;
assert: idB=B;
s := newnonce;
encb := se s, k
send encb;

}

Figure 3. Explicit presentation of handshake protocol, with abbreviations

AuthResp : true[Resp(B)]T


Honest(idA[T]) ∧ idA[T] , B

⇒

 ∃T′ : T′.pname = idA[T]

∧Send(T′, enca[T]) C Receive(T, enca[T])
∧Receive(T, enca[T]) C Send(T, encb[T])




Figure 4. Property AuthResp

the principals are assumed to follow the protocol. More specifically, we define a run of a
protocol by choosing some number of principals, assigning one or more roles to each of
them, choosing keys, and considering the effect of actions that may or may not follow the
roles. If a principal follows the roles assigned to it, then we consider the principal honest.
The attacker is represented by the set of dishonest principals, which may act arbitrarily
using the cryptographic material assigned to them.

2.4. Authentication properties

Our formulation of authentication is based on the concept of matching conversations [3].
This requires that whenever Alice and Bob accept each other’s identities at the end of
a run, their records of the run match, i.e., each message that Alice sent was received by
Bob and vice versa, each send event happened before the corresponding receive event,
and the messages sent by each principal appear in the same order in both the records.
An example of such an authentication property formalized as the PCL modal formula
AuthResp is shown in Figure 4. Note that the last line on the right of AuthResp seems
trivial; while not important for authentication, we are leaving it in to illustrate that PCL
can prove ordering properties of individual roles (whose veracity really follows from
honesty). (An analogous property AuthInit can be defined easily.)

Intuitively, AuthResp says that starting from any state (since the precondition is true),
if B executes the actions in the responder role purportedly with idA, then B is guaranteed
that idA was involved in the protocol at some point (purportedly with B) and messages
were sent and received in the expected order, provided that idA is honest (meaning that
she always faithfully executes some role of the protocol and does not, for example, send
out her private keys) and is a different principal from B.
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3. Syntax

The syntax for expressing the roles of a protocol, PCL assertions for reasoning about
them, and a symbolic framework for modeling protocol execution, may all be presented
as a single typed language. We present this language as a set of type names, subtype
relations, and typed constants (symbols that are used to write expressions) in a logical
framework with explicit typing and subtyping. Through subtyping, we are able to con-
sider different types of keys as subtypes of the type key of keys, for example, and sim-
ilarly consider key a subtype of the type message of messages that may be sent on the
network.

3.1. Protocols, roles, and setup assumptions

Protocols. A protocol is defined by a set of roles and setup assumptions. In Table 2, we
define the type protocol of protocols as a set of parameterized roles (discussed below),
using the logical framework described in section 3.2. The set of protocol executions
are then defined using a set of instantiated roles and an initial state satisfying the setup
assumptions.

Roles. A role is a sequence of actions, divided into subsequences that we refer to as basic
sequences. As defined in Table 2, a basic sequence is a sequence of actions. A role may
have one or more parameters that are instantiated for each thread that executes the role.
These parameters generally include the name of the principal executing the role and the
names of other principals with whom execution of this role involves communicating.

Setup assumptions. The initial conditions that must be established before a protocol can
be executed are called setup assumptions. In this chapter, we consider initialization con-
ditions that determine the set of keys that may be used by each principal in the roles
they execute. For example, a protocol may assume that each principal has a public key-
pair, and that the public key of this pair is known to every other principal. Additional
assumptions about protocol execution may also be stated in PCL preconditions.

The key assumptions we consider in this book chapter are expressed by giving a set
of functions that are used to name keys, and specifying which principals have access to
each key. The key assumptions may also restrict the ways that keys provided by setup
assumptions can be sent by honest principals.

Every PCL key belongs to one of five disjoint types: sym_key for symmetric keys,
asym_enc_key for asymmetric encryption keys, asym_dec_key for asymmetric de-
cryption keys, sgn_key for signing keys, and ver_key for signature verification keys.

The technical machinery for restricting use of certain setup keys involves an ad-
ditional type conf_key of confidential keys that cannot be released by honest prin-
cipals, and confidential subtypes of each of the five key types. For example, the type
conf_asym_dec_key of confidential asymmetric decryption keys is a subtype of both
asym_dec_key and conf_key. Similarly, the type conf_sgn_key of confidential sign-
ing keys is a subtype of both sgn_key and conf_key. More generally, any confidential
key type conf_xyz_key is a subtype of both the corresponding unrestricted key type
xyz_key and conf_key.

The specific setup assumptions we use for the example protocols considered in this
chapter provide public-key encryption and signature infrastructure. These assumptions
are expressed using the following key functions (mapping principal names to various
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types of keys), key-pair relations, and key possession properties (stating which principals
have access to which keys):

pk : principal_name→ asym_enc_key
dk : principal_name→ conf_asym_dec_key
sk : principal_name→ conf_sgn_key
vk : principal_name→ ver_key
∀Pname : AKeyPair(pk (Pname) , dk (Pname)) ∧ SKeyPair(sk (Pname) , vk (Pname))
∀(T, Pname) : Setup(T, pk (Pname))
∀(T, Pname) : T.pname = Pname⇒ Setup(T, dk (Pname))
∀(T, Pname) : T.pname = Pname⇒ Setup(T, sk (Pname))
∀(T, Pname) : Setup(T, vk (Pname))

These specifications are used to choose and distribute keys in the setup phase of protocol
execution. Note that for the form of public-key infrastructure expressed here, an honest
principal Princwill be prevented from sending dk (Princ.pname) or sk (Princ.pname)
in any message. (This restriction on behavior of honest principals will be enforced by
a syntactic condition on roles.) It is possible to change the setup assumptions to allow
an honest principal to send the decryption key of its asymmetric key-pair by changing
the type of dk (·) above. However, since many protocols do not send messages that re-
veal these keys, we usually find it convenient to make this assumption from the outset
and eliminate the need to prove separately that the protocol preserves confidentiality of
selected keys. It is possible to carry such proofs out in PCL if desired.

Setup assumptions for symmetric keys can be expressed similarly, as needed for pro-
tocols that may require shared symmetric keys. For example, one form of key setup as-
sumptions for Kerberos can be expressed by stating that there is a symmetric key ckdc(X)
for each client X, known to X and the Key-Distribution Center (KDC), a symmetric key
stgs(Y) for each server Y , known to Y and the Ticket-Granting Service (TGS), and a key
shared between the KDC and the TGS. While other forms of setup assumptions are pos-
sible in principle, the present formulation using a set of key functions (and key constants)
and a set of sharing assumptions is sufficient for many protocols.

3.2. Logical framework

A logical framework is a framework that provides a uniform way of encoding a logical
language, its inference rules, and its proofs [22]. Without going into detail about logical
frameworks and their use in formalizing specific logical systems, we discuss a specific
framework briefly because it allows us to define the syntax, core aspects of the symbolic
model of protocol execution, and the proof system of PCL succinctly and precisely.

The logical framework we use is a typed language of expressions that includes pair-
ing, functions (to represent variable binding, as in quantified formulas), finite lists, and
finite sets. We also assume a form of subtyping that is similar to order-sorted algebra
[19]. This provides a convenient formalism for giving every expression a type, but allow-
ing expressions of one type to be used as expressions of another without syntactic con-
version functions. The logical framework we use, which might be called an order-sorted
logical framework, has the following grammar:

type ::= basic_type | type × . . . × type | type→ type |List(type) | Setfin(type)
term ::= f ct_symb : type | variable : type

| 〈term1 . . . termn〉 | πi term
| λ variable : typev . term | term term1 . . . termn (n = 0, 1, 2, ...)
| . . .
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In words, types are built from basic type names (chosen below for PCL) using product
types (tuples), function types, and types of finite lists and finite sets. Terms, also called
“expressions”, are either basic constants (symbols chosen below for PCL), lambda ex-
pressions, function application, or additional forms for defining or using finite lists or
finite sets.

The logical framework we use has standard typing rules. For example, writing
term : type to mean a term has a specific type, if f : type1 → type2 and x : type1,
then f x : type2. A lambda expression λvar:typev . exp defines the function that, given
argument var, has value exp. If var has type typev and term has type typet, then
(λvar : typev . term) has type typev → typet. We will not use lambda expressions in PCL,
except that lambda is used as a binding operator to express parameterization (of protocol
roles) and quantification (for assertions).

We use two operator families, tupling (〈·, . . . , ·〉) and projection (πi), to construct
and deconstruct tuple (×) types. For instance,

〈
‘message1’, ‘message2’, ‘message3’

〉
is

a triple of messages. To extract the third component from it, we write π3
〈
‘message1’,

‘message2’, ‘message3’
〉
. We use the element symbol ∈ to also denote membership in a

list and the operator : for concatenation of elements of a list type.
We write type1 v type2 to indicate that type1 is a subtype of type2. In this case, an

expression of type type1 can be used as an expression of type type2.
A particular detail that we adopt from order-sorted algebra [19] for convenience is

the use of “type retracts”. If type1 v type2, then an expression of the supertype type2 can
sometimes be used as an expression of the subtype type1, which is the opposite of what
is normally associated with subtyping. However, this is semantically reasonable if we
regard the “retracted” expression of the smaller type as the result of applying a “cast” (as
in common programming languages) mapping the supertype to the subtype. Intuitively,
the meaning of this retract (or cast) is to check the value of the expression, and leave the
value of the expression unchanged if it is semantically of the smaller type and otherwise
disallow the operation containing the expression with the retract.

3.3. PCL types and subtyping

The PCL types are presented in Table 1. For clarity and flexibility, we use separate types
for nonces (unguessable fresh values generated during protocol execution), and different
types of keys. A principal_name is a name given to a principal who may execute one
or more roles of a protocol, a role_name is a name of a role, used to distinguish between
different roles of a protocol, actions are steps executed during a run of protocol. We
use thread_ids to give each thread (principal executing a sequence of actions) a unique
identifier. Each thread may assign values to local variables that we give type location,
so that we may distinguish assignable variables from logical variables (“program con-
stants”) whose values are not changed by actions of principals. The type of messages
includes nonces, keys, the result of cryptographic operations, and any other values that
may be sent from one thread to another. Types action_formula, nonmodal_formula,
modal_formula, formula, and statement are different types of assertions about pro-
tocols and their execution. The types used in PCL are either basic types given in the
table, or composite types constructed from them using the four operators ×, →, List(·),
and Setfin(·). The binary infix constructors × and→ create product types and functional
mappings, respectively; the unary constructors List(·) and Setfin(·) create lists and finite
sets, respectively.
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Table 1. PCL Types

type name meta-variables
nonce N1, N2, . . .

sym_key, conf_sym_key K1, K2, . . .

asym_enc_key, conf_asym_enc_key K1, K2, . . .

asym_dec_key, conf_asym_dec_key K1, K2, . . .

sgn_key, conf_sgn_key K1, K2, . . .

ver_key, conf_ver_key K1, K2, . . .

conf_key K1, K2, . . .

key K1, K2, . . .

principal_name Pname1, Pname2, . . . ; X1, Y2, . . . ; A1, B2, . . .

role_name rname1, rname2, . . .

action act1, act2, . . .

thread_id tid1, tid2, . . .

location `oc1, `oc2, . . .

message msg1, msg2, . . .

action_formula af1, af2, . . .

nonmodal_formula ϕ1, ϕ2, . . . ;ψ1, ψ2, . . .

modal_formula Φ1,Φ2, . . . ; Ψ1,Ψ2, . . .

formula fml1, fml2, . . .

statement stm1, stm2, . . .

Table 2. PCL Type abbreviations

type name : abbreviation meta-variables
thread : principal_name × role_name T1, T2, . . .

× List(principal_name) × thread_id
principal : principal_name × List(key) Princ1, Princ2, . . .

actionseq : List(action) actseq1, actseq2, . . .

basicseq : List(action) basicseq1, basicseq2, . . .

role : role_name × List(basicseq) role1, role2, . . .

protocol : Setfin(List(principal_name)→ role) P1,P2, . . .

event : thread_id × action ev1, ev2, . . .

store : thread_id × location → message st1, st2, . . .

run : Setfin(principal) × Setfin(thread) R1,R2, . . .

× List(event) × store

PCL also uses type abbreviations, presented in Table 2. These are non-constructive
definitions, also known as “syntactic sugar”. An example of a composite type is
thread , which is constructed from the basic types principal_name, role_name, and
thread_id using the two type constructor operators × and List(·).

The subtype relation v is a partial order: it is reflexive, transitive, and antisymmetric.
PCL uses the following subtype relationships:
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conf_sym_key v sym_key v key
conf_asym_enc_key v asym_enc_key v key
conf_asym_dec_key v asym_dec_key v key

conf_sgn_key v sgn_key v key
conf_ver_key v ver_key v key

conf_sym_key, conf_asym_enc_key, . . . , conf_ver_key v conf_key
conf_key v key

principal_name, nonce, key,×n
i=1 message v message

action_formula v nonmodal_formula
nonmodal_formula, modal_formula v formula

Here, n may be any non-negative integer. Some clarification may be useful regarding
product types: ×0

i=1 message denotes the empty product type for message; its only mem-
ber is 〈 〉:message; thus the empty tuple 〈 〉 is a message.

The types defined in this section include types used in writing PCL protocols, types
used in writing assertions about them, and types used in defining the symbolic execution
semantics of protocols. The type protocol itself is used to characterize the definition of
a protocol. As it appears in Table 2, the type protocol consists of a set of parameterized
roles. We call a function List(principal_name)→ role from principal names to roles
a parameterized role, and the result of applying a parameterized role to a list of principal
names a role instantiation. The first argument is assumed to be the principal executing
the role; this is relevant to determining which keys can be used in executing the role.
Although a protocol may also specify setup assumptions, we consider them a separate
set of typed constants and formulas that is not part of the type protocol.

Although basicseq and actionseq are both lists of actions, we use the two types
differently. In the semantics section we define honesty of principals by requiring honest
principals to execute zero or more basic sequences. This is a way of requiring an honest
party to complete atomic blocks of actions, without pausing, reflecting the fact that on
the network, a host may complete local actions unilaterally, but must pause to receive
input off the network. We consider the division of a role into basic sequences part of the
definition of a protocol, but we will require that if a basic sequence contains a receive
action, the receive action is the first action of the basic sequence. (Hence, it follows
that any basic sequence can only contain one receive action.) The reason for this re-
striction is that receive actions can block protocol execution. In figures, we use blank
lines to indicate boundaries between basic sequences.

3.4. Protocol actions and roles

As indicated by the types in Table 2, protocols are defined using lists of actions. These
actions, as illustrated by example in Section 2, create, send, and receive messages. PCL
constants and functions for naming messages, and actions are listed in Tables 3 and 4,
resp. User-friendly PCL notation for cryptographic functions is given in Table 5.

The terms used in PCL messages are taken modulo a set of equations axiomatized
in Table 6. (There are also equivalences induced by stores, which are mappings from
assignable variables of type location, as discussed in the section on semantics below.) In-
stead of the functional notation based on the presentation of PCL in a logical framework
with subtyping, we use what we refer to as PCL syntax, presented in Table 7.

There are some details about the relationship between nonces and dynamically gen-
erated keys that merit discussion. In principle, there are several ways that cryptographic



12 A. Datta et al. / Protocol Composition Logic

Table 3. Constant symbols in PCL

symbol type
ky1, ky2, . . . ; k1, k2, . . . key

Alice, Bob, Charlie, . . . ; A, B, C, . . . principal_name

Init, Resp, . . . role_name

1, 2, . . . thread_id

x, y, siga, encb, texta, idB, k, s, . . . location

‘’, ‘a’, ‘ca’, ‘hello’, . . . (all strings) message

true, false nonmodal_formula

Table 4. Function symbols for PCL actions

function symbol type
! location → message

encmsg message × asym_enc_key → message

decmsg message × asym_dec_key → message

semsg message × nonce→ message

semsg message × sym_key → message

sdmsg message × nonce→ message

sdmsg message × sym_key → message

sgnmsg message × sgn_key → message

unsgnmsg message→ message

send message→ action

receive location → action

newnonce location → action

enc location × message × asym_enc_key → action

dec location × message × asym_dec_key → action

se location × message × nonce→ action

se location × message × sym_key → action

sd location × message × nonce→ action

sd location × message × sym_key → action

sign location × message × sgn_key → action

unsign location × message→ action

verify message × ver_key → action

assign location × message→ action

assert message × message→ action

operations could be modeled using symbolic computation. Cryptographic keys must be
generated using some source of randomness. For dynamically generated keys, we sepa-
rate randomness from key generation. We consider nonce generation n := newnonce as
a symbolic version of choosing a bitstring uniformly at random from bitstrings of appro-
priate length. A nonce n may then be used as an unguessable value or as a random seed
to various deterministic key generation algorithms.

Encryption and signature algorithms typically apply a key generation algorithm
(KeyGen) to deterministically transform a bitstring chosen from one probability distri-
bution to a bitstring chosen from a distribution appropriate for the encryption/signature
algorithm. For symmetric key operations the KeyGen algorithm generates just one key;
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Table 5. Fully functional syntax vs. PCL syntax for cryptographic functions

Fully functional syntax PCL syntax Description
encmsg(msg, K) {|msg|}aK Asymmetric encryption

decmsg(msgencr, K)
{∣∣∣msgencr

∣∣∣}−a

K
Asymmetric decryption

semsg(msg, N) {|msg|}sN Symmetric encryption by nonce
semsg(msg, K) {|msg|}sK Symmetric encryption by pre-shared key

sdmsg(msgencr, N)
{∣∣∣msgencr

∣∣∣}−s

N
Symmetric decryption by nonce

sdmsg(msgencr, K)
{∣∣∣msgencr

∣∣∣}−s

K
Symmetric decryption by pre-shared key

sgnmsg(msg, K) JmsgKK Signature
unsgnmsg(msgsigned) JmsgsignedK− Stripping off the signature

Table 6. Equations in PCL

Equation Types of variables used in equation
πi〈v1, v2, . . . , vi−1, vi, vi+1, . . . , vk〉 = vi [k ∈ N+, i ∈ {1, 2, . . . , k}; v1 : type1, v2 : type2, . . . , vk : typek]{∣∣∣∣{|msg|}aK1

∣∣∣∣}−a

K2
= msg [K1 :asym_enc_key, K2 :asym_dec_key, msg :message,

where (K1,K2) is an asymmetric encryption-decryption keypair]{∣∣∣{|msg|}sN∣∣∣}−s

N
= msg [N :nonce, msg :message]{∣∣∣{|msg|}sK∣∣∣}−s

K
= msg [K :sym_key, msg :message]

JJmsgKKK− = msg [K :sgn_key, msg :message]

for public key algorithms the KeyGen algorithm generates two keys – one public, one
private.

We will only consider dynamic generation of symmetric encryption keys in this
chapter. For protocols with dynamically generated symmetric keys, the role that gen-
erates a key may send a nonce, relying on the receiving role to apply the same
KeyGen algorithm to the nonce as the role that generated the nonce. Since the op-
erations of key generation and encryption/decryption always go together, we can
model this situation symbolically by having composite encryption/decryption operations,
[· := se ·, N]/[· := sd ·, N], that first apply KeyGen and then encrypt/decrypt. As a result,
these encryption and decryption functions use a nonce instead of key to encrypt or de-
crypt a message.

Many protocols like Kerberos use pre-shared symmetric keys that are not sent
around in the protocol. To model such protocols, in a way that is consistent with our treat-
ment of dynamically-generated keys, we assume separate encryption/decryption opera-
tions that do not incorporate KeyGen. The threads themselves are configured with these
keys according to protocol requirements. For example, in Kerberos, there are three types
of symmetric keys: shared between two principals in Client and KAS roles, in KAS and
TGS roles, and in TGS and Server roles. Since a principal can be operating in any one
of these roles with another principal in any one of the peer roles, we have to explicitly
specify the relation in the symbolic representation of the key. In one of our earlier papers
[38,37] we denoted these keys as kc→k

X,Y , kk→t
X,Y and kt→s

X,Y respectively, between the two prin-
cipals X and Y. Such pre-shared symmetric keys have a type that allows them to be used
internally by threads but not sent on the network by honest principals.

Syntactic restrictions on roles. The type system places a number of restrictions on the
syntax of roles. For example, events and stores are used in the semantics of protocol ex-
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Table 7. Fully functional syntax vs. PCL syntax for actions

fully functional syntax PCL syntax Description
!(`oc) !`oc Contents of assignable location
send(msg) send msg Send message
receive(`oc) `oc := receive Receive message and store in `oc

newnonce(`oc) `oc := newnonce Generate nonce and store in `oc

enc(`oc, msg, K) `oc := enc msg, K Asymmetric encrypt and store in `oc

dec(`oc, msgencr, K) `oc := dec msgencr, K Asymmetric decrypt and store in `oc

se(`oc, msg, N) `oc := se msg, N Symmetric encrypt and store in `oc

se(`oc, msg, K) `oc := se msg, K Symmetric encrypt and store in `oc

sd(`oc, msgencr, N) `oc := sd msgencr, N Symmetric decrypt and store in `oc

sd(`oc, msgencr, K) `oc := sd msgencr, K Symmetric decrypt and store in `oc

sign(`oc, msg, K) `oc := sign msg, K Sign message and store in `oc

unsign(`oc, msgsigned) `oc := unsign msgsigned Store plaintext of signed message in `oc

verify(msgsigned, K) verify msgsigned, K Verify signed message
assign(`oc, msg) `oc :=msg Assign to storable `oc

assert(msg1, msg2) assert: msg1 =msg2 Equality check

ecution and cannot occur in roles because of the typing discipline. Due to typing con-
straints (specifically, location @ message), a location itself is not a message, but the
contents of a location are a message. Therefore, if a protocol sends a message that de-
pends on the contents of a location `oc, the role must use !`oc to refer to the contents
of the location. In addition, we impose the following restrictions on roles, beyond what
follows from typing and subtyping:

• No free variables. A parameterized role of type List(principal_name) → role
appearing in a protocol must not have any free variables. In particular, all keys
must be key constants, key expressions such as pk (Pname) for principal names
that are either constants or parameters of the role, or keys received in messages.

• Single-assignment. Each location must be a location constant, assigned to only
once, and used only after it has been assigned. Since roles are given by loop-free
programs, location names can easily be chosen to satisfy the single-assignment
condition.

• Key confidentiality. If K has type conf_key, then K cannot occur in any assign-
ment action `oc :=K or in any expression (or argument to any action) except as an
argument that is required to have type key.

• Local store operations. The ! operator may occur in roles, to obtain the value
stored in a location. However, ! may not be used outside of roles. The reason
is that because locations are local to threads, !`oc is ambiguous unless this ex-
pression occurs in a role assigned to a specific thread. The Sto(·, ·) function (in
Table 8) has a thread parameter and may occur in formulas but not in roles.

The key confidentiality condition given above allows a role to encrypt a message with a
confidential key and send it, as in the sequence of actions `oc := enc msg, K; send !`oc.
The reason this conforms to the syntactic key confidentiality condition is that enc’s argu-
ment signature is location × message × asym_enc_key; i.e., the third argument is re-
quired to have a key type. Semantically, this preserves confidentiality of the key because
encrypting a message with a key does not produce a message from which the key can be
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recovered. The key confidentiality condition does not allow `oc := enc K1, K2, in which
a confidential key K1 is encrypted under another key, because the contents of `oc could
then be used to construct a message that is sent. In other words, the key confidentiality
condition is designed to be a conservative syntactic restriction on roles (to be followed
by honest principals) that prevents export of confidential keys.

Further abbreviations. For most product types, we use record notation, such as
record.recordelement, to access components of a pair. This aids readability because
we can write T.rpars, using the potentially meaningful abbreviation .rpars (for “role
parameters”) instead of π3T. The abbreviations we use are:
• T.pname := π1T, T.rname := π2T, T.rpars := π3T, T.tid := π4T
• Princ.pname := π1Princ , Princ.klist := π2Princ
• role.rname := π1role, role.bseqs := π2role
• ev.tid := π1ev, ev.act := π2ev
• R.pset := π1R, R.tset := π2R, R.elist := π3R, R.st := π4R

The key functions are similarly projection functions that select keys out of the list of keys
associated with the principal. Here, Princ refers to the contextually unique principal
with principal_name Pname (that principals differ in their principal names is a condi-
tion on feasibility of runs, to be defined later), and we use (1-based) numbered indices in
record notation for list members for legibility’s sake:
• pk (Pname) = Princ.klist.1 dk (Pname) = Princ.klist.2
• sk (Pname) = Princ.klist.3 vk (Pname) = Princ.klist.4

Of course, this last set of definitions related to keys needs to be adapted to the respective
setup assumptions. For role parameters we may also use indices:
• T.rpars = 〈T.rpars.1, T.rpars.2, . . .〉

3.5. PCL assertions

The syntax of PCL assertions is presented in Table 8. Quantifiers are regarded as function
symbols of specific types, presented in Table 9. Relying on lambda abstraction from the
underlying logical framework, we normally write, for example, ∀keyK : stm instead of
∀key(λK.stm).

4. Semantics

This section presents the semantics of PCL. In outline, protocol execution determines a
set of runs, each comprising a list of events that occur in the run. The semantics of for-
mulas then determines which formulas are true for each run. Our semantics of protocols
is based on the symbolic model [14,32], commonly called the Dolev-Yao model. In this
model, an honest party or an adversary can only produce a symbolic expression repre-
senting a signature or decrypt an encrypted message if it possesses the appropriate key;
the model does not involve bitstrings, probability distributions, or partial knowledge.

Recall that a protocol run R =
〈
Sprinc, Sth, eventlist, store

〉
consists of a finite set of

principals, a finite set of threads, a finite list of events, and a store mapping assignable
locations to the values they contain (see Table 2). Only certain combinations of princi-
pals, threads, events, and store form a run that could occur as an execution of a protocol.
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Table 8. Function symbols for PCL assertions

function symbol PCL notation type
Sto thread × location → message

Send thread × message→ action_formula

Receive thread × message→ action_formula

NewNonce thread × message→ action_formula

Enc thread × message × key → action_formula

Dec thread × message × key → action_formula

Se thread × message × nonce→ action_formula

Se thread × message × key → action_formula

Sd thread × message × nonce→ action_formula

Sd thread × message × key → action_formula

Sign thread × message × key → action_formula

Unsign thread × message→ action_formula

Verify thread × message × key → action_formula

Assign thread × message→ action_formula

Assert thread × message × message→ action_formula

C infix action_formula × action_formula→ nonmodal_formula

Fresh thread × message→ nonmodal_formula

Has thread × message→ nonmodal_formula

FirstSend thread × message × message→ nonmodal_formula

Atomic message→ nonmodal_formula

b infix message × message→ nonmodal_formula

= infix message × message→ nonmodal_formula

= infix thread × thread → nonmodal_formula

Start thread → nonmodal_formula

Honest principal_name→ nonmodal_formula

¬ ¬ϕ nonmodal_formula → nonmodal_formula

∧ infix nonmodal_formula × nonmodal_formula→ nonmodal_formula

Modal ϕ [actseq]T ψ nonmodal_formula × actionseq × thread× nonmodal_formula

→ modal_formula

|= P : R |= fml protocol × run × formula → statement

Table 9. Quantifiers in PCL

quantifiers type
∀run (run → statement)→ statement
∀thread (thread → statement)→ statement
∀principal_name (principal_name→ statement)→ statement
∀key (key → statement)→ statement
∀message (message→ statement)→ statement
∀type (type→ formula)→ formula (for all types type)

We therefore define the set of feasible runs of a protocol to characterize the well-formed
runs in our model of protocol execution and attack. After preliminary definitions in Sub-
section 4.1, we define the semantics of protocols in Subsection 4.2. Subsection 4.3 gives
an inductive definition of the semantic relation P : R |= ϕ, stating that the formula ϕ
holds on a feasible run R of protocol P.
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4.1. Preliminary definitions

Properties of runs. Recall that each thread T ∈ Sth of a runR =
〈
Sprinc, Sth, eventlist, store

〉
has the form T = 〈Pname, rname, princ_list, tid〉 consisting of a principal name, a role
name, a list of principal_name parameters, and a thread id. The role name T.rname
must name a role of protocol P, where each role defines a sequence of actions. The
events in the event list eventlist are pairs 〈tid, act〉 of actions by specific threads. We
require that the actions in an eventlist do not contain locations (except in positions that
require type location). We also require that the contents of assignable locations in the
store do not contain locations either. We define runs in this way so that actions and stored
values may be compared syntactically (as in the semantics of formulas) without relying
on stores of the run.

For any run R, we define the set GenMsgR(tid) of messages that thread tid can
send out in run R without performing additional explicit actions. Our protocol program-
ming language has operations such as encryption, decryption, and creating or verifying
signatures as explicit actions in the run. This allows us to state formulas expressing which
actions occurred and which did not; if no decryption occurred, for example, then no prin-
cipal has the decrypted message. On the other hand, we treat pairing and projection as
implicit operations – a thread can send a tuple or projection of values it has received or
constructed, without an explicit tupling or projection action in the thread.

We let GenMsgR(tid) be the smallest set satisfying the following conditions, where
T is the unique thread with thread_id tid:

1. Base cases:
• strings:
{‘’, ‘a’, ‘ca’, ‘hello’, . . . (all strings)} ⊆ GenMsgR(tid)
• principal names:
Princ∈R.pset⇒ Princ.pname∈GenMsgR(tid)
• own keys:
T.pname = Princ.pname ∧ K∈Princ.klist⇒ K∈GenMsgR(tid)
• other principals’ keys:

For all Princ∈R.pset :
Setup(T, pk (Princ.pname))⇒ pk (Princ.pname)∈GenMsgR(tid)
Setup(T, dk (Princ.pname))⇒ dk (Princ.pname)∈GenMsgR(tid)
Setup(T, sk (Princ.pname))⇒ sk (Princ.pname)∈GenMsgR(tid)
Setup(T, vk (Princ.pname))⇒ vk (Princ.pname)∈GenMsgR(tid)

• stored messages:
R.st(tid, `oc) defined⇒ R.st(tid, `oc)∈GenMsgR(tid)

2. Inductive cases:
• tupling:
msg1 ∈GenMsgR(tid)∧msg2 ∈GenMsgR(tid)∧ . . .∧msgk ∈GenMsgR(tid)
⇒

〈
msg1, msg2, . . . , msgk

〉
∈GenMsgR(tid)

• projection:
〈. . . , msg, . . .〉∈GenMsgR(tid)⇒ msg∈GenMsgR(tid)

We define the so-called Dolev-Yao closure of a set of messages. Although we do
not use the Dolev-Yao closure to define the set of runs, we do use it to characterize the
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semantics of the Has predicate and to establish soundness of the proof system. The ca-
pability of the Dolev-Yao attacker are characterized by a deduction system. In the fol-
lowing rules, we use msg : DY to indicate that message msg is in the Dolev-Yao closure.
The following ten inference rules characterize the Dolev-Yao attacker of protocols with
asymmetric encryption, symmetric encryption, and signatures.

msg : DY K : DY
{|msg|}aK : DY

K : asym_enc_key
{|msg|}aK′ : DY K : DY

msg : DY
AKeyPair(K’,K)

msg : DY N : DY
{|msg|}sN : DY

N : nonce
{|msg|}sN : DY N : DY

msg : DY
N : nonce

msg : DY K : DY
{|msg|}sK : DY

K : sym_key
{|msg|}sK : DY K : DY

msg : DY
K : sym_key

msg : DY K : DY
JmsgKK : DY

K : sgn_key
JmsgKK : DY
msg : DY

K : sgn_key

msg1, . . . , msgn : DY〈
msg1, . . . , msgn

〉
: DY

〈
msg1, . . . , msgn

〉
: DY

msgi : DY

The side condition AKeyPair(K′, K) above means that (K′,K) is an asymmetric encryption-
decryption keypair. Note that signing a messages does not hide the plaintext (that is, no
ver_key is needed to see the unsigned message).

Given a set M of messages, we define the set DolevYao(M) of messages that a sym-
bolic Dolev-Yao [14] attacker can generate from M as follows:
msg0 ∈ DolevYao(M) iff msg0 : DY can be derived using the inference rules above
from the following hypotheses:

(1) msg : DY (for all msg ∈ M)
(2) N : DY (for all N ∈ M)
(3) K : DY (for all K ∈ M)

Messages and protocol state. Our protocol programming language uses assignable lo-
cations to receive messages and perform internal actions such as encryption or decryp-
tion. If a protocol sends a message that depends on the contents of a location `oc, then the
syntax of the role must use !`oc to refer to the contents of the location, and the result is to
send the contents of the location, written as R.st(tid, `oc) for run R and thread_id
tid.

For simplicity, we use the notation R[msg] to refer to the meaning of message msg
in run R. Since we are using a symbolic semantics of protocols and their properties, the
meaning of an expression that appears in a formula is a symbolic expression, but without
locations or dependence on stores. The symbolic meaning R[msg] has a straightforward
inductive definition, with

R[Sto(T, `oc)] = R.st(tid, `oc)
as one base case. Since the other base cases and all inductive cases are trivial, the mean-
ing of a message is the result of substituting values for locations. For actions, which
may contain !`oc, we write [ λ`oc.R.st(tid,`oc)

! ]act, where the substitution of a lambda ex-
pression for ! indicates the result of replacing ! by an explicit function and performing
β-reduction to obtain an expression for the value stored in a given location.
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Since threads generate new nonces and keys, we need a definition that allows us to
see which symbols are not new relative to a run Rprev =

〈
Sprinc, Sth, eventlist, store

〉
. Be-

fore giving this definition, we need some other definitions, concerning the �- (congru-
ence-) and the b- (subterm-) relations:

• Canonical form of messages: The equations in Table 6 form a confluent and ter-
minating rewrite system, when oriented from left to right. The result of applying
these rewrites to a message, until termination, is called the canonical form of the
message.

• �: We use the notation msg1 � msg2 to express that the messages msg1 and msg2
are equal modulo the equational theory presented in Table 6, or equivalently, msg1
and msg2 have the same canonical form. (We use � instead of = to avoid confusion
with nonmodal_formulas.)

• b: We write msg1 b msg2 to indicate that the canonical form of msg1 is a subterm
of the canonical form of msg2.

Using the b-relation, we can now say “key K occurs in R” if:

• K ∈ Princ.klist for some Princ occurring in Sprinc,
• K occurs in some role obtained by applying the parameterized role named
T.rname to its role parameters T.rpars for thread T ∈ Sth,

• K b msg for some msg in eventlist,
• K b msg for some 〈〈tid, `oc〉, msg〉 ∈ R.st

The definition of “nonce N occurs in R” is analogous.
Finally, we give a number of auxiliary definitions that we will need later to state the

semantics of the Honest formula and of modal_formulas:

• R1 : R2 : . . . : Rn: We say that R1 : R2 : . . . : Rn is a division of run R if:

∗ Ri.pset = R.pset for 1 ≤ i ≤ n,
∗ Ri.tset = R.tset for 1 ≤ i ≤ n,
∗ Ri.elist is an initial segment of Ri+1.elist for 1 ≤ i < n,
∗ Ri.st contains only the mappings defined by Ri.elist, for 1 ≤ i ≤ n.

The run components are cumulative because this simplifies our formalism overall.
• events|T: The projection events|T of eventlist events onto a thread T is the

subsequence of events ev from events with ev.tid = T.tid.
• difference: If events1 is an initial segment of events2, their difference (events2\

events1) is the sequence of events such that events1 : (events2 \ events1) =

events2.
• matching: We say that an event ev matches an action act in run R if
ev.act � [ λloc.R.st(ev.tid,loc)! ]act. A list of events matches a list of actions if
both lists are of equal length and corresponding elements match.

4.2. Feasibility of runs

The set of feasible runs of a protocol P is defined inductively. Recall that a run R
consists of a finite set of principals, a finite set of threads, a list of events and a store.

Intuitively, the base case of the inductive definition imposes conditions on the initial
configuration before protocol execution begins. For example, the principal names and
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thread identifiers must be unique and each thread’s role name must be one of the roles of
protocol P. The list of events and the store of the run are initially both empty.

The inductive case of the definition describes how one feasible run Rprev can be
extended to form another feasible run R, by an action performed by one of the threads.
Generally, an action may occur only when certain conditions are satisfied. An action has
the effect of appending the associated event to the list of events in Rprev and possibly
extending the store to record values assigned to additional locations.

The condition for a thread tid to send a message in run R is that the message
should be generable by the thread following the definition of GenMsgR(tid) presented
earlier. When a message is sent, all occurrences of !`oc indicating the contents of a
local storage location in the message are replaced by the concrete message stored at that
location, i.e., R.st(tid, `oc). The conditions for the key generation actions ensure that
the keys are fresh. An encryption action is possible only if the plaintext message and the
encryption key are generable by the thread performing the action, whereas decryption
succeeds only if the encrypted message and the decryption key are generable. Similarly,
signature generation requires both the message and the signing key to be generable by
the thread. Finally, an assignment action succeeds if the message that is being assigned
to a location is generable by the thread, and an equality test on messages succeeds if the
two messages are equal modulo the equational theory of the message algebra.

For convenience, we write R.pnames for the set of principal names and R.tids
for the set of thread ids in R =

〈
Sprinc, Sth, . . .

〉
, i.e., R.pnames = {pn | ∃Princ ∈ Sprinc :

Princ.pname = pn} and R.tids = {tid | ∃T∈Sth : T.tid = tid}.

Base case. An empty run R =
〈
Sprinc, Sth, 〈 〉, { }

〉
is feasible for any protocol P, where

〈 〉 is the empty sequence of events and and { } is the empty store, provided all of the
following conditions are met:
• All principals in set Sprinc differ in their principal_name:
∀
〈
Pnamei, keylisti

〉
,
〈
Pname j, keylist j

〉
∈Sprinc :

Pnamei = Pname j ⇒ keylisti = keylist j
• The keylist for each principal in Sprinc has the keys named in the setup assumptions,
each of the type specified in the setup assumptions. For the setup assumptions used for
protocols in this book chapter, this means:

pk (Princ.pname) = Princ.klist.1 : asym_enc_key
dk (Princ.pname) = Princ.klist.2 : conf_asym_dec_key
sk (Princ.pname) = Princ.klist.3 : conf_sgn_key
vk (Princ.pname) = Princ.klist.4 : ver_key
AKeyPair(pk (Princ.pname) , dk (Princ.pname))
SKeyPair(sk (Princ.pname) , vk (Princ.pname))

• All threads differ in their thread_ids:
∀Ti, T j ∈Sth: (Ti , T j)⇒ Ti.tid , T j.tid

• Every parameterized role of any thread (instantiated with the respective role param-
eters) is in protocol P:
∀T∈Sth : ∃prm_role∈P : (prm_role(T.rpars)).rname = T.rname

• The set of principal_names in Sprinc is exactly the set of principals of threads in
Sth:
R.pnames = {Pname | ∃T∈Sth : T.pname = Pname}
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Table 10. Feasibility of runs conditions (inductive case)

act newassgns conditions

`oc := receive {〈〈tid, `oc〉, msg〉} msg was sent out previously:
∃tid′ : 〈tid′, send msg〉 ∈ eventlist

send msg { } msg ∈ GenMsgR(tid)
`oc := newnonce {〈〈tid, `oc〉, N〉} N :nonce does not occur in R.
`oc := enc msg, K {

〈
〈tid, `oc〉, {|msg|}aK

〉
} K : asym_enc_key ∈ GenMsgR(tid)
msg ∈ GenMsgR(tid)

`oc := dec {|msg|}aK′ , K {〈〈tid, `oc〉, msg〉} K : asym_dec_key ∈ GenMsgR(tid)
((K′,K) is an asymmetric encr.-decr. keypair)
{|msg|}aK′ ∈ GenMsgR(tid)

`oc := se msg, N {
〈
〈tid, `oc〉, {|msg|}sN

〉
} N : nonce ∈ GenMsgR(tid)
msg ∈ GenMsgR(tid)

`oc := se msg, K {
〈
〈tid, `oc〉, {|msg|}sK

〉
} K : sym_key ∈ GenMsgR(tid)
msg ∈ GenMsgR(tid)

`oc := sd {|msg|}sN , N {〈〈tid, `oc〉, msg〉} N : nonce ∈ GenMsgR(tid)
{|msg|}sN ∈ GenMsgR(tid)

`oc := sd {|msg|}sK , K {〈〈tid, `oc〉, msg〉} K : sym_key ∈ GenMsgR(tid)
{|msg|}sK ∈ GenMsgR(tid)

`oc := sign msg, K {
〈
〈tid, `oc〉, JmsgKK

〉
} K : sgn_key ∈ GenMsgR(tid)
msg ∈ GenMsgR(tid)

`oc := unsign JmsgKK {〈〈tid, `oc〉, msg〉} JmsgKK ∈ GenMsgR(tid)
verify JmsgKK′ , K { } K : ver_key ∈ GenMsgR(tid)

((K′,K) is a sig.-verif. keypair)
JmsgKK′ ∈ GenMsgR(tid)

`oc :=msg {〈〈tid, `oc〉, msg〉} msg ∈ GenMsgR(tid)
assert: msg1 =msg2 { } msg1 ∈ GenMsgR(tid) ∧ msg2 ∈ GenMsgR(tid)

msg1 � msg2.

Inductive case. IfRprev =
〈
Sprinc, Sth, eventlist, store

〉
is a feasible run for protocolP, then

R =
〈
Sprinc, Sth, eventlist :〈tid, act〉, store ∪ newassgns

〉
is a feasible run for P, where

the symbol : indicates list concatenation, tid ∈ R.tids, and tid, act, and newassgns
satisfy the conditions shown in Table 10.

Finally, a quick note on how the attacker is modeled: the attacker is a principal who
executes a thread but does not necessarily follow the action sequence required by the
notion of honesty (to be defined below in Section 4.3).

4.3. Truth of statements

In this section, we present an inductive definition of the semantic relation P : R |= ϕ

stating that the formula ϕ holds on a feasible run R of protocol P.

Truth of statements involving nonmodal formulas is defined as follows:

• P : R |= Send(T, msg): (1) T is a thread of R. (2) T executed a send msg′ action such
that R[msg] � msg′.

• P : R |= Receive(T, msg): (1) T is a thread of R. (2) T executed a `oc := receive action
such that R[msg] � R.st(T.tid, `oc).
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• P : R |= NewNonce(T, msg): (1) T is a thread of R. (2) T executed a `oc := newnonce
action such that R[msg] � R.st(T.tid, `oc).

• P : R |= Enc(T, msg, K): (1) T is a thread of R. (2) T executed a `oc := enc msg′, K′ action
such that R[msg] � msg′ and R[K] � K′.

• P : R |= Dec(T, msgencr, K): (1) T is a thread of R. (2) T executed a `oc := dec msg′encr, K
′

action such that R[msgencr] � msg′encr and R[K] � K′.
• P : R |= Se(T, msg, N): (1) T is a thread of R. (2) T executed a `oc := se msg′, N′ action

such that R[msg] � msg′ and R[N] � N′.
• P : R |= Se(T, msg, K): (1) T is a thread of R. (2) T executed a `oc := se msg′, K′ action

such that R[msg] � msg′ and R[K] � K′.
• P : R |= Sd(T, msgencr, N): (1) T is a thread of R. (2) T executed a `oc := sd msg′encr, N

′

action such that R[msgencr] � msg′encr and R[N] � N′.
• P : R |= Sd(T, msgencr, K): (1) T is a thread of R. (2) T executed a `oc := sd msg′encr, K

′

action such that R[msgencr] � msg′encr and R[K] � K′ and R[K] � K′.
• P : R |= Sign(T, msg, K): (1) T is a thread of R. (2) T executed a `oc := sign msg′, K′
action such that R[msg] � msg′ and R[K] � K′.

• P : R |= Unsign(T, msgsigned): (1) T is a thread ofR. (2) T executed a `oc := unsign msg′signed

action such that R[msgsigned] � msg′signed.
• P : R |= Verify(T, msgsigned, K): (1) T is a thread of R. (2) T executed a verify msg′signed, K

′

action such that R[msgsigned] � msg′signed and R[K] � K′.
• P : R |= Assign(T, msg): (1) T is a thread of R. (2) T executed a `oc :=msg′ action such

that R[msg] � msg′.
• P : R |= Assert(T, msg1, msg2): (1) T is a thread of R. (2) T executed an assert: msg′1 =

msg′2 action such that R[msg1] � msg′1 as well as R[msg2] � msg′2.
• P : R |= af1C af2: (1) P : R |= af1 and P : R |= af2 are both true. (2) Both af1 and af2 are
action_formulas (Send, Receive, NewNonce, . . . ), not necessarily of the same type. (3)
There exist (send, receive, newnonce, . . . ) actions, labeled act1 and act2, in (possibly
distinct) threads tid1 and tid2 corresponding to af1 and af2, respectively (with “cor-
respondence” as naturally defined in accordance with the truth conditions of the respec-
tive (Send, Receive, NewNonce, . . . ) action_formulas above), such that 〈tid1, act1〉

occurs before 〈tid2, act2〉 within R.elist.
• P : R |= Fresh(T, msg): (1) T is a thread of R. (2) P : R |= NewNonce(T, msg) is true. (3)
∀msg′: (P : R |= Send(T, msg′))⇒ R[msg] > R[msg′].

• P : R |= Has(T, msg): (1) T is a thread of R. (2) R[msg] ∈ DolevYao(GenMsgR(T.tid)),
where Princ is the principal executing thread tid.

• P : R |= FirstSend(T, msg1, msg2): (1) T is a thread of R. (2) R[msg1] b R[msg2] ∧
(P : R |= Send(T, msg2)). (3) For all messages msg3 such that R[msg1] b msg3 and〈
T.tid, send msg3

〉
∈ R.elist, there must be an earlier event

〈
T.tid, send msg′2

〉
with

R[msg2] � msg′2. In words, while T need not be the first thread to send out a message
containing msg1, the first send by T containing msg1 must be a send of msg2.

• P : R |= Atomic(msg): R[msg] is �-congruent to an atomic message. An atomic message
is one in which neither of tupling, projection, encryption, decryption, signing, or unsigning
occurs; i.e., the canonical form of R[msg] is atomic.

• P : R |= msg1b msg2: R[msg1] b R[msg2].
• P : R |= msg1 = msg2: R[msg1] � R[msg2].
• P : R |= T1 = T2: T1 and T2 are identical.
• P : R |= Start(T): (1) T is a thread of R. (2) thread T did not execute any actions:
@act: 〈T.tid, act〉 ∈ R.elist.

• P : R |= Honest(Pname): (1) Pname is a principal_name of R: Pname ∈ R.pnames. (2)
For any thread T of Pname, let role be the unique role with role.rname = T.rname.
There must be some k ≥ 0 such that [basicseq1; basicseq2; . . . ; basicseqk] is an ini-
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tial sequence of role.bseqs and R.elist|T matches (basicseq1 : basicseq2 : . . . :
basicseqk), the concatenation of these basic sequences of the role. In other words, each
thread of principal has executed precisely some number of basic sequences of its des-
ignated role. In particular, no thread can deviate from or stop in the middle of a basic se-
quence. (3) The canonical forms of all messages that Pname sent out may only have keys
of type conf_key in positions that require type key. In other words, conf_keys are only
used for encryption or signing messages, not as the “payload”. (This is guaranteed by the
syntactic condition on conf_key in roles.)

• P : R |= ¬ϕ: P : R |= ϕ is not true.
• P : R |= ϕ ∧ ψ: P : R |= ϕ and P : R |= ψ are both true.
• P : R |= ∀typev : fml: For all ground instances a of v : type we have P : R |= [ a

v ]fml, where
[ a

v ]fml is the formula obtained by substituting all occurrences of v in fml by a.

Truth of statements involving modal formulas is defined as follows:

• P : R |= ϕ [actseq]T ψ: For all divisions (R1 : R2 : R3) of run R, the following holds: If
P : R1 |= ϕ is true, and ((R2.elist)|T \ (R1.elist)|T) matches actseq, then P : R2 |= ψ
is true.1

As usual, we employ “. . . ∨ . . .”, “. . . ⇒ . . .”, and “∃ . . .” as syntactic shortcuts for
“¬(¬ . . . ∧ ¬ . . .)”, “¬ . . . ∨ . . .”, and “¬∀¬ . . .”, respectively.

5. Proof system

This section describes some of the axioms and inference rules of PCL. The portion of the
PCL proof system that is presented here is sufficient to prove authentication properties
of the sample protocols considered in Sections 2 and 6. While we do not present secrecy
axioms and proofs in this chapter, sample secrecy axioms and proofs are developed in
other papers on PCL (e.g., [38,39]).

The PCL axioms and proof roles formalize reasoning about protocols, using PCL
assertions. Like Hoare logic, the axioms are generally formulas about a given action,
and many inference rules let us prove something about a sequence of actions from as-
sertions about a shorter sequence of actions. If we want to use a formula ϕ [actseq]T ψ
with postcondition ψ to prove a similar formula ϕ [actseq]T ψ′ with postcondition ψ′, it
suffices to prove that ψ ⇒ ψ′. We do not give formal proof rules for deducing implica-
tions between preconditions or postconditions. In this sense, PCL could be considered a
semi-formalized logic for proving properties of protocols. However, two points should be
considered. First of all, the formulas used in preconditions and postconditions are logi-
cally simpler than modal formulas. As a result, PCL reduces formal reasoning about pro-
tocols to reasoning about the precondition-postcondition logic. Second, the presentation
of PCL given in this chapter shows how PCL may be presented in a logical framework
(or meta-logic). When PCL is embedded in a meta-logic, the axioms and proof rules
given here essentially reduce proofs about protocols to proofs about preconditions and
postconditions in the meta-logic. Therefore, PCL provides an approach (not fully devel-
oped in this chapter) for fully formal proofs of security properties of protocols, using a
metalogic supporting the formal syntax and symbolic semantics development presented
in this chapter.

1It is intentional that R3 does not appear in this definition.
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For brevity in some of the proof rules, we will write Sto(T,`oc) as `oc[T]. In case
there is some possible confusion, here is a summary of different forms associated with
locations and their values:

• In protocol actions, !`oc is the content of location `oc in the current thread.
• In formulas, Sto(T,`oc) is the content of location `oc in the local store of thread
T, with `oc[T] being an abbreviation for Sto(T,`oc).

• In the semantics of formulas, the symbolic meaning R[msg] of a message depends
on the store of the run, with R[Sto(T, `oc)] = R.st(tid, `oc) as one base case.

For convenience, we then extend Sto(T, ·) to messages, with Sto(T,msg) being the
message obtained by replacing any subexpression !`oc depending on the store with
Sto(T,`oc).

The soundness theorem for the proof system is proved by induction on the length of
proof: all instances of the axioms are valid formulas and all proof rules preserve validity.
We state the soundness theorem upfront and give proof sketches for a few representative
axiom and rule schemas while presenting them.

We write Γ ` γ if γ is provable from the formulas in Γ and any axiom or rule schema
of the proof system except the honesty rule HON. We write Γ `P γ if γ is provable
from the formulas in Γ, the basic axioms and inference rules of the proof system and the
honesty rule just for protocol P. We write Γ |=P γ if for any feasible run R of protocol P
the following holds: If P : R |= Γ, then P : R |= γ. We write Γ |= γ if for any protocol P,
we have Γ |=P γ. Here, Γ is a non-modal formula (typically, a formula proved using the
honesty rule) and γ is either a modal formula or a non-modal formula.

Theorem 5.1 If Γ `P γ, then Γ |=P γ. Furthermore, if Γ ` γ, then Γ |= γ.

Because of the undecidability of protocol properties expressible in PCL (see [15,16])
and the fact that invalid formulas can be enumerated by enumerating finite runs, it is
not possible for the PCL proof system to be semantically complete. Therefore, we have
developed PCL by adding new PCL predicates, axioms, and rules as needed to handle
different classes of protocols and properties.

5.1. Axiom Schemas

The axiom schemas presented below can be divided up into the following categories:
AA0–AA4 state properties that hold in a state as a result of executing (or not execut-
ing) certain actions; AN1–AN4 capture properties of nonces; KEY states which thread
possesses what key, in effect, axiomatizing protocol setup assumptions, while HAS ax-
iomatizes the Dolev-Yao deduction rules; SEC captures the hardness of breaking public
key encryption while VER states that signatures are unforgeable; IN (and NIN) provide
reasoning principles for when one message is contained in (and not contained in) an-
other; P1 and P2 state that the truth of certain predicates is preserved under specific fur-
ther actions; and FS1 and FS2 support reasoning about the temporal ordering of actions
performed by different threads based on the fresh nonces they use.

Axiom schemas AA0. These are axiom schemas which infer term structure from term
construction actions (k refers to the unique encr./sig. key for decr./verif. key k):
• true [actseq; `oc := enc msg, K; actseq′]T Sto(T, `oc) = {|Sto(T, msg)|}aSto(T,K)



A. Datta et al. / Protocol Composition Logic 25

• true [actseq; `oc := dec msg, K; actseq′]T Sto(T, msg) = {|Sto(T, `oc)|}a
Sto(T,K)

• true [actseq; `oc := se msg, N; actseq′]T Sto(T, `oc) = {|Sto(T, msg)|}sSto(T,N)
• true [actseq; `oc := se msg, K; actseq′]T Sto(T, `oc) = {|Sto(T, msg)|}sSto(T,K)
• true [actseq; `oc := sd msg, N; actseq′]T Sto(T, msg) = {|Sto(T, `oc)|}sSto(T,N)
• true [actseq; `oc := sd msg, K; actseq′]T Sto(T, msg) = {|Sto(T, `oc)|}sSto(T,K)
• true [actseq; `oc := sign msg, K; actseq′]T Sto(T, `oc) = JSto(T, msg)KSto(T,K)
• true [actseq; `oc := unsign msg; actseq′]T Sto(T, `oc) = JSto(T, msg)K−

• true [actseq; verify msgsigned, K; actseq′]T Sto(T, msgsigned) = JJSto(T, msgsigned)K−KSto(T,K)
• true [actseq; `oc :=msg; actseq′]T Sto(T, `oc) = Sto(T, msg)
• true [actseq; assert: msg1 =msg2; actseq′]T Sto(T, msg1) = Sto(T, msg2)

Axiom schemas AA1. These are axiom schemas which state that after an action has
occurred, the predicate asserting that the action has taken place is true:
• true [actseq; send msg; actseq′]T Send(T, Sto(T, msg))
• true [actseq; `oc := receive; actseq′]T Receive(T, Sto(T, `oc))
• true [actseq; `oc := newnonce; actseq′]T NewNonce(T, Sto(T, `oc))
• true [actseq; `oc := enc msg, K; actseq′]T Enc(T, Sto(T, msg), Sto(T, K))
• true [actseq; `oc := dec msg, K; actseq′]T Dec(T, Sto(T, msg), Sto(T, K))
• true [actseq; `oc := se msg, N; actseq′]T Se(T, Sto(T, msg), Sto(T, N))
• true [actseq; `oc := se msg, K; actseq′]T Se(T, Sto(T, msg), Sto(T, K))
• true [actseq; `oc := sd msg, N; actseq′]T Sd(T, Sto(T, msg), Sto(T, N))
• true [actseq; `oc := sd msg, K; actseq′]T Sd(T, Sto(T, msg), Sto(T, K))
• true [actseq; `oc := sign msg, K; actseq′]T Sign(T, Sto(T, msg), Sto(T, K))
• true [actseq; `oc := unsign msg; actseq′]T Unsign(T, Sto(T, msg))
• true [actseq; verify msgsigned, K; actseq′]T Verify(T, Sto(T, msgsigned), Sto(T, K))
• true [actseq; `oc :=msg; actseq′]T Assign(T, Sto(T, msg))
• true [actseq; assert: msg1 =msg2; actseq′]T Assert(T, Sto(T, msg1), Sto(T, msg2))

Proof: The soundness of axiom schemas AA1 follows from the semantics of the relevant
actions and action_formulas. For example, the semantics of the action_formula
Receive specifies that the relevant thread must have executed a corresponding receive
action, which is given by the way the axiom schema is stated. Furthermore, there is a
single-assignment condition on locations which ensures that the value of Sto(T, `oc)
(namely the contents of the store for location `oc in thread T) is really what was received;
that is, the contents of `oc could not have been overwritten by another message.

Axiom schemas AA2. These are axiom schemas which state that if a thread has not
performed any action so far then a predicate asserting any action has taken place is false:

•Start(T) [ ]T ¬Send(T, msg)
•Start(T) [ ]T ¬Receive(T, msg)
•Start(T) [ ]T ¬NewNonce(T, msg)
•Start(T) [ ]T ¬Enc(T, msg, K)
•Start(T) [ ]T ¬Dec(T, msg, K)
•Start(T) [ ]T ¬Se(T, msg, N)
•Start(T) [ ]T ¬Se(T, msg, K)

•Start(T) [ ]T ¬Sd(T, msg, N)
•Start(T) [ ]T ¬Sd(T, msg, K)
•Start(T) [ ]T ¬Sign(T, msg, K)
•Start(T) [ ]T ¬Unsign(T, msg)
•Start(T) [ ]T ¬Verify(T, msg, K)
•Start(T) [ ]T ¬Assign(T, msg)
•Start(T) [ ]T ¬Assert(T, msg1, msg2)
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Axiom schemas AA3. These axiom schemas allow us to prove that certain mes-
sages are not sent. In the first axiom schema here, and in some other cases below,
“∀actseq . . . :> ϕ [actseq]T ψ” means that every instance of ϕ [actseq]T ψ in which
actseq satisfies the given condition is an instance of the axiom schema.

• ∀actseq that do not contain a send action :> ¬Send(T, msg) [actseq]T ¬Send(T, msg)
• ¬Send(T, msg) [send msg′]T Sto(T, msg′) , msg⇒ ¬Send(T, msg)
• ∀actseq that do not contain a sign action :> ¬Sign(T, msg, K) [actseq]T ¬Sign(T, msg, K)
• ¬Sign(T, msg, K) [loc := sign msg′, K′]T (Sto(T, msg′) , msg ∨ Sto(T, K′) , K

⇒ ¬Sign(T, msg, K))

Axiom schemas AA4 These axiom schemas state that if one action occurs after another,
they are related in the same temporal order:

• true [send msga; actseq; send msgb]T Send(T, Sto(T, msga)) C Send(T, Sto(T, msgb))
• true [send msga; actseq; `ocb := receive]T Send(T, Sto(T, msga))CReceive(T, Sto(T, `ocb))
• true [send msga; actseq; `ocb := newnonce]T Send(T, Sto(T, msga))CNewNonce(T, Sto(T, `ocb))
• true [`oca := receive; actseq; send msgb]T Receive(T, Sto(T, `oca))CSend(T, Sto(T, msgb))
• true [`oca := receive; actseq; `ocb := receive]T Receive(T, Sto(T, `oca))CReceive(T, Sto(T, `ocb))
• true [`oca := receive; actseq; `ocb := newnonce]T Receive(T, Sto(T, `oca))CNewNonce(T, Sto(T, `ocb))
• true [`oca := newnonce; actseq; send msgb]T NewNonce(T, Sto(T, `oca))CSend(T, Sto(T, msgb))
• true [`oca := newnonce; actseq; `ocb := receive]T NewNonce(T, Sto(T, `oca))CReceive(T, Sto(T, `ocb))
• true [`oca := newnonce; actseq; `ocb := newnonce]T NewNonce(T, Sto(T, `oca))CNewNonce(T, Sto(T, `ocb))
• similarly for other action_formulas

Proof: The semantics of C-nonmodal_formulas is defined by the temporal order be-
tween the indicated newnonce, send, or receive (or other) actions. However, the re-
quired order is guaranteed by any explicit action sequence that lists the actions explicitly
in this order.

Axiom schema AN1. The thread generating a given nonce is unique:
• NewNonce(T1, msg) ∧ NewNonce(T2, msg)⇒ T1 = T2

Axiom schema AN2. Only the generating thread has the nonce just after generation:
• true [actseq; `oc := newnonce]T Has(T′, Sto(T, `oc))⇒ T = T′

Axiom schema AN3. A nonce is fresh just after generation:
• true [actseq; `oc := newnonce]T Fresh(T, Sto(T, `oc))

Proof: The semantic conditions on Fresh(T, Sto(T, `oc)) require that thread T exe-
cuted a corresponding newnonce action and never sent out any message containing
the new nonce. The former holds because `oc := newnonce is listed as an action executed
by thread T in the modal formula; and the latter holds because this action is listed as the
only action executed by thread T.

Axiom schema AN4. A thread has a fresh nonce only if it generated it:
• Fresh(T, msg)⇒ NewNonce(T, msg)

Axiom schemas KEY. The axiom schemas for possession and secrecy of keys dis-
tributed according to the protocol setup assumptions depend on the setup assump-
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tions. For any key function xk, if the setup assumptions include the specification
∀(T, Pname) : T.pname = Pname ⇒ Setup(T, xk(Pname)), stating that xk(Pname)
is known to threads of that principal, then we take all instances of the schema
Has(T, xk(T.pname)) as axioms. Similarly, if the setup assumptions include the specifi-
cation ∀(T, Pname) : Setup(T, xk(Pname)), stating that xk(Pname) is known to threads of
all principals, then we take all instances of the schema Has(T, xk(Pname)) as axioms. We
also take secrecy formulas as axiom schemas for each key that is known to the principal
that owns it but not known to others. For the setup assumptions used for protocols in this
chapter (given in Section 3.1), we therefore have the following axiom schemas about key
possession and secrecy:
• Has(T, pk (Pname))
• Has(T, dk (T.pname))
• Has(T, sk (T.pname))
• Has(T, vk (Pname))
• Has(T, dk (Pname)) ∧ Honest(Pname)⇒ T.pname = Pname
• Has(T, sk (Pname)) ∧ Honest(Pname)⇒ T.pname = Pname

Axiom schema HAS. The axiom schemas for the Has predicate are partly based on
Dolev-Yao deduction rules:
• ∀msg that are strings: ‘’, ‘a’, ‘ca’, ‘hello’, . . . :> Has(T, msg)
• Has(T, Pname)
• NewNonce(T, N)⇒ Has(T, N)
• Receive(T, msg)⇒ Has(T, msg)
• Has(T, 〈 〉)
• ∀k ∈ N :> Has(T, msg1)∧Has(T, msg2)∧ . . .∧Has(T, msgk)⇒ Has(T,

〈
msg1, msg2, . . . , msgk

〉
)

• ∀k ∈ N :> Has(T,
〈
msg1, msg2, . . . , msgk

〉
)⇒ Has(T, msg1)∧Has(T, msg2)∧ . . .∧Has(T, msgk)

• ∀K :asym_enc_key :> Has(T, msg) ∧ Has(T, K)⇒ Has(T, {|msg|}aK)
• ∀(K, K′) such that (K, K′) is an asymmetric encryption-decryption key pair :>

Has(T, {|msg|}aK) ∧ Has(T, K′)⇒ Has(T, msg)
• ∀N :nonce :> Has(T, msg) ∧ Has(T, N)⇒ Has(T, {|msg|}sN)
• ∀K :sym_key :> Has(T, msg) ∧ Has(T, K)⇒ Has(T, {|msg|}sK)
• Has(T, {|msg|}sN) ∧ Has(T, N)⇒ Has(T, msg)
• Has(T, {|msg|}sK) ∧ Has(T, K)⇒ Has(T, msg)
• ∀K :sgn_key :> Has(T, msg) ∧ Has(T, K)⇒ Has(T, JmsgKK)
• Has(T, JmsgKK)⇒ Has(T, msg)

Axiom schema SEC. For protocols with confidential private keys, i.e., dk (A) declared
in the setup assumptions, the only principal which can decrypt with its own private key
is the principal itself, provided it is honest:
• Honest(B) ∧ Dec(T, {|msg|}apk(B) , dk (B))⇒ T.pname = B

Axiom schema VER. For protocols with confidential signing keys, i.e., sk (A) declared
in the setup assumptions, the only principal which can sign with its own signing key is
the principal itself, provided it is honest:
•Honest(A)∧Verify(T, JmsgKsk(A), vk (A))⇒ ∃T′ : T′.pname = A∧Sign(T′, msg, sk (A))
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Proof: Let R be any run. If R |= Verify(T, JmsgKsk(A), vk (A)), then by definition T exe-
cuted a verify msg′signed, K

′ action such that R[JmsgKsk(A)] � msg′signed and R[vk (A)] �
K′. By the verify-clause in the definition of feasibility of runs, we know that msg′signed
must have been of the form Jmsg1KK′1 with Jmsg1KK′1 ∈ GenMsgR(T.tid). Because of
Jmsg1KK′1 = msg′signed � R[JmsgKsk(A)], it follows that msg1 � msg and K′1 � sk (A).

Let R1 be the minimum-length run such that R = R1 : R2 and Jmsg1KK′1 b msgC ∈

GenMsgR1
(T2.tid) for some thread T2 and containing message msgC . By the way Gen-

Msg is defined, there has to be such a first time. By analyzing the set of possible last
actions in R1, it follows that the last action in R1 is some `oc2 := sign msg2, K2 action
such that Jmsg1KK′1 � R.st(T2.tid, `oc2) = Jmsg2KK2 (stored messages clause, GenMsg
definition; sign-clause, feasibility of runs). That the first time can’t have been immedi-
ately after something else (projection, receive, . . . ) can be shown rigorously through an
inductive argument; for instance it couldn’t have been a receive action for a message
containing Jmsg1KK′1 because then there must have been an earlier corresponding send
action, contradicting minimality of R1.

The `oc2 := sign msg2, K2 action could only have been executed by thread T2

if at that time it was the case that K2 ∈ GenMsgR(T2.tid). We also know that
msg2 � msg and K2 � sk (A) (because of msg1 � msg and K′1 � sk (A) (both estab-
lished above) and Jmsg2KK2 � Jmsg1KK′1 ). Thus, from the action execution we first get
R |= Sign(T2, msg2, K2), which leads us to R |= Sign(T2, msg, sk (A)) (transitivity of con-
gruence relations and truth conditions of the Sign predicate).

From (1) sk (A) � K2 ∈ GenMsgR(T2.tid), (2) Honest(A) (here, finally honesty
comes into play), and (3) sk (A) : conf_sgn_key (from our setup assumptions), it fol-
lows that T2.pname = A. Existential abstraction leads to the consequent of part of the
axiom schema whose proof we are hereby concluding.

Axiom schema IN. This axiom schema provides reasoning principles for when one mes-
sage is contained in another:
• msg b msg
• msg b {|msg|}aK ∧ K b {|msg|}

a
K

• msg b {|msg|}sK ∧ K b {|msg|}
s
K

• msg b 〈. . . , msg, . . .〉
• msg b {|msg|}sN ∧ N b {|msg|}

s
N

• msg b JmsgKK ∧ K b JmsgKK

Axiom schema NIN. This axiom schema provides reasoning principles for when one
message is not contained in another:
• msg is atomic :> msg′ � msg⇒ msg′ > msg
• msg > msg1 ∧ msg > msg2 ∧ . . . ∧ msg > msgn ∧ msg �

〈
msg1, msg2, . . . , msgn

〉
⇒ msg >

〈
msg1, msg2, . . . , msgn

〉
• msg′ > msg ∧ msg′ > K ∧ msg′ � {|msg|}aK ⇒ msg

′ > {|msg|}aK
• msg′ > msg ∧ msg′ > N ∧ msg′ � {|msg|}sN ⇒ msg

′ > {|msg|}sN
• msg′ > msg ∧ msg′ > K ∧ msg′ � {|msg|}sK ⇒ msg

′ > {|msg|}sK
• msg′ > msg ∧ msg′ > K ∧ msg′ � JmsgKK ⇒ msg′ > JmsgKK

Axiom schema P1. The predicates Has, Sign, NewNonce, and FirstSend are preserved
across actions:
• ∀ϕ that are of type Has, Sign, NewNonce, or FirstSend :> ϕ [actseq]T ϕ
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Axiom schema P2.1. The freshness of a message is preserved across non-send actions:
• ∀actseq that do not contain a send action :> Fresh(T, msg) [actseq]T Fresh(T, msg)

Axiom schema P2.2. The freshness of a message is preserved across a send action that
does not send something containing the message:
• Fresh(T, msg) [send msg′]T msg > Sto(T, msg′)⇒ Fresh(T, msg)

Axiom schema FS1. A nonce is “sent first” when it is fresh and the first send action with
a message containing the nonce occurs:
• Fresh(T, msg1) [send msg2]T (msg1b Sto(T, msg2)

⇒ NewNonce(T, msg1)∧FirstSend(T, msg1, Sto(T, msg2)))

Proof: For the action_formula FirstSend to hold, two conditions must be fulfilled:
(1) msg1 b Sto(T, msg2). (2) There is an instance of thread T sending out Sto(T, msg2)
such that this is the first instance of any message being sent out such that msg1 is a part
of it. Condition (1) holds by the way the axiom schema is stated. Condition (2) holds
because before the send action, msg1 was fresh.

Axiom schema FS2. If a thread first sent a nonce msg1 as part of msg2 and another thread
received a msg3 containing msg1, then the receive action occurred after the send action:
• ((NewNonce(T1, msg1) ∧ FirstSend(T1, msg1, msg2))
∧(T1 , T2 ∧ msg1b msg3 ∧ Receive(T2, msg3))

⇒ Send(T1, msg2) C Receive(T2, msg3)

Proof: T1 is the thread in which msg1 originates and msg2 is the first term sent to the
adversary that contains msg1. Therefore no message containing msg1 is in the Dolev-Yao
closure of the adversary before the send event Send(T1, msg2). Since T2 is different from
T1, msg1 cannot have been originated in it. Therefore, since T2 knows the message msg3
which contains msg1, it must have received a message msg from the adversary contain-
ing msg1. As observed before, this is only possible after T1 sent out msg2. Therefore
Send(T1, msg2) C Receive(T2, msg3) is true in this R.

5.2. Rule Schemas

The rule schemas include generic rules G1–G4 for reasoning about program pre-
conditions and postconditions, a sequencing rule SEQ, and a novel honesty rule HON
for establishing protocol invariants in the presence of adversaries.

Rule schema G1. Conjunction of post-conditions:
ϕ [actseq]T ψ1 ϕ [actseq]T ψ2

ϕ [actseq]T ψ1 ∧ ψ2

Rule schema G2. Disjunction of pre-conditions:
ϕ1 [actseq]T ψ ϕ2 [actseq]T ψ

ϕ1 ∨ ϕ2 [actseq]T ψ

Rule schema G3. Strengthening pre-conditions and weakening post-conditions:
ϕ′ ⇒ ϕ ϕ [actseq]T ψ ψ⇒ ψ′

ϕ′ [actseq]T ψ′
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Rule schema G4. True non-modal formulas spawn modal formulas as their post-
condition:

ψ

ϕ [actseq]T ψ

Rule schema SEQ. Stringing together two action sequences if post-condition of the for-
mer and pre-condition of the latter agree:

ϕ1 [actseq]T ϕ2 ϕ2 [actseq′]T ϕ3

ϕ1 [actseq : actseq′]T ϕ3

Proof: Assume that the premises are valid and that for a given division (R1 : R2 : R3)
of run R, the following hold:

1. P : R1 |= ϕ1
2. (R2.elist|T \ R1.elist|T) matches actseq : actseq′

Then, it is possible to find a division (R1 : R′2 : R′′2 ) of run R2 such that:
1. (R′2.elist|T \ R1.elist|T) matches actseq.
2. (R′′2 .elist|T \ (R1 : R′2).elist|T) matches actseq′.

Then by the first premise we get P : R′2 |= ϕ2, and therefore by the second premise we
get P : R′′2 |= ϕ3. That is, P : R2 |= ϕ3.

Rule schema HON. The honesty rule is an invariance rule for proving properties about
the actions of principals that execute roles of a protocol, similar in spirit to the basic in-
variance rule of LTL [27] and invariance rules in other logics of programs. The honesty
rule is often used to combine facts about one role with inferred actions of other roles. For
example, suppose Alice receives a signed response from a message sent to Bob. Alice
may use facts about Bob’s role to infer that Bob must have performed certain actions
before sending his reply. This form of reasoning may be sound if Bob is honest, since
honest, by definition in our framework, means “follows one or more roles of the proto-
col”. The assumption that Bob is honest is essential because the intruder may perform
action sequences that do not conform to the protocol roles.

To a first approximation, the honesty rule says that if a property holds before each
role starts, and the property is preserved by any sequence of actions that an honest prin-
cipal may perform, then the property holds for every honest principal. An example prop-
erty that can be proved by this method is that if a principal sends a signed message of
a certain form, the principal must have received a request for this response. The proof
of such a property depends on the protocol. For this reason, the antecedent of the hon-
esty rule includes a set of formulas constructed from the set of roles of the protocol in a
systematic way.

One semantic assumption that is effectively built into the honesty rule is that every
thread that starts a basic sequence can complete it.2 Part of the justification for this as-
sumption is that while the attacker has control over the network, the attacker cannot in-
fluence local computing of agents that communicate over the network. We therefore for-
mulate the honesty rule to prove properties that hold at the end of every basic sequence
of every role.

2An honest principal “completes” each basic sequence it starts if it executes either until its end or until an
action stalls. Actions may stall because of failed projections (the structure of a received term was not what was
expected because a tuple didn’t have the required arity) or failure of the feasibility of runs conditions to be met
(for instance, an assertion could fail due to inequality or its arguments, or a decryption operation could fail due
to a mismatching keypair).
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The division of a role into basic sequences is part of the protocol specification – the
protocol designer has the choice of what sequence of actions are regarded as atomic, ex-
cept that no receive action can occur after the first action of a basic sequence. The reason
a receive action cannot occur after the first action of a basic sequence is that a thread can
receive a message only if the message is present on the network, and therefore a network
attacker can halt progress of a thread at receive events.

Note that all elements of a protocol P are of type List(principal_name) → role.
We now state the honesty rule:

Start(T) [ ]T ϕ ∀p∈P : ∀basicseq∈ (p(T.rpars)).bseqs :> ϕ [basicseq]T ϕ
Honest(T.pname)⇒ ϕ

(Here, we assume that the role parameters in T.rpars are all distinct symbols.) Note
that the universal quantifiers in this rule expand to a finite conjunction, and thus the rule
can be applied in a finite proof.

Proof: This soundness proof is similar in spirit to the proof of SEQ. Consider a run R
and a thread T, such that the premises hold. Since T belongs to an honest principal, T
must have performed a sequence of actions which is a (possibly empty) concatenation
of basic sequences of some instantiated role p(T.rpars). Let these basic sequences be
basicseq1, basicseq2, · · · , basicseqk (in the order executed). Then it is possible to
find a division (R0 : R1 : . . . : Rk) of run R, such that R0.elist|T is empty, and for
all i ∈ {1, 2, . . . , k}, the list of events (Ri.elist|T \ R(i−1).elist|T) matches the action
sequence basicseqi.

By the first premise we have P : R0 |= ϕ. By successively applying all parts of the
second premise, we first get P : R1 |= ϕ, then P : R2 |= ϕ, and finally P : Rk |= ϕ. The
latter is identical to P : R |= ϕ, quod erat demonstrandum.

6. Analysis of the Handshake Protocol

In this section, we present the PCL authentication proof for the handshake protocol in-
troduced in Section 2 and written out formally in Table 2. We also discuss how the proof
fails for the faulty version of the sample protocol.

6.1. Properties

Our formulation of authentication is based on the concept of matching conversations [3]
and is similar to the idea of proving authentication using correspondence assertions [45].
The same basic idea is also presented in [13] where it is referred to as matching records of
runs. Intuitively, this form of authentication requires that whenever Alice and Bob com-
plete their roles, their views of the run must match in the sense that both have the same
record of the actions that occurred and the temporal order between them. More specifi-
cally, each message that Alice sent was received by Bob and vice versa, each send event
happened before the corresponding receive event, and so on. In general, authentication
properties are formulated and proved for both the initiator and the responder. However,
in this chapter, we prove authentication from the responder’s point of view only because
of space constraints. The authentication property AuthResp is defined in Figure 4.
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The actions in the modal formula AuthResp are the actions of the responder role of
the protocol. In this example, the precondition is simply true. The postcondition assumes
that idA is honest, so that she faithfully executes portions of some role of the protocol
and does not, for example, send out her private keys. Under this assumption, the postcon-
dition means that after executing the actions in the initiator role purportedly with idA, B
is guaranteed that idA was involved in the protocol and messages were sent and received
in the expected order.

We also show here a secrecy property for this protocol, but omit proofs. A proof sys-
tem to analyze secrecy properties has been developed for an earlier syntax and semantics
of PCL [38,39] but is not covered in this chapter.

SecrecyInit : true[Init(A,B)]T (Honest(A) ∧ Honest(B) ∧ A , B
∧Has(T′, k)⇒ T′.pname = A ∨ T′.pname = B)

(An analogous property SecrecyResp can be defined easily.) The secrecy formula above
asserts that if A completes an initiator role, purportedly with B, then if B is honest, it
is guaranteed that the only threads which can have k belong to principals A or B only.
Similar secrecy properties can be formulated for nonce s as well.

6.2. Proof of AuthResp

The main idea of the proof is that the responder verifies a signature using the public
verification key of the initiator. If the initiator is assumed honest, then by a basic property
of signatures captured in one of the PCL axioms, the initiator must have signed the
verified message. Using the honesty rule to consider all possible action sequences that
allow an honest thread to sign a message, we show that if the initiator signed the verified
message, then the initiator must have done specific actions in a specific order that lets us
complete the proof.

The main steps of the formal proof are presented in Table 11, with uses of
rule schema G left implicit. The formal proof uses expressions such as T.pname
(=T.rpars.1) and T.rpars.2 for principals. For any thread T, the principal T.pname
is the principal who executes this thread. In addition, if T is executed by an honest prin-
cipal, then T.rpars.1 and T.rpars.2 are the principals supplied as first and second
parameters to the parameterized role associated with this thread. While for the formal
proof it is technically precise (and convenient) to use T.rpars.1 and T.rpars.2, note
that we often refer to these parameters as A (the initiator) and B (the intended responder).
Using this terminology, the proof can be divided into three parts.

• Lines (1)–(3): We show that certain actions were performed by B in the responder
role. Specifically, we show that B verified A’s signature siga. We then use the
signature verification axiom (VER) to prove that, if honest, A must have signed
this message.

• In lines (4)–(5), the honesty rule is used to prove that since A signs a message of
the indicated form, she first sent k as part of the first message of the protocol.

1. For the second basic sequence of Init and the first basic sequence of Resp
(which is the full role), there is no signing action, so we can (almost trivially)
prove (writing N&FS(. . .) for NewNonce(. . .) ∧ FirstSend(. . .)):

(AA3:) ¬Sign(. . .)[basicseq]¬Sign(. . .)
(P1:) Sign(. . .) ∧ N&FS(. . .)[basicseq]Sign(. . .) ∧ N&FS(. . .)
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We use G3 on both separately (by weakening the post-conditions), and then
we combine the results using G2:

Sign(. . .)⇒ N&FS(. . .)[basicseq]Sign(. . .)⇒ N&FS(. . .)
2. For the first basic sequence of Init, we prove the following:

(AA1, AN3, P2.1, FS1, IN, SEQ:) true[basicseq]Sign(. . .) ∧ N&FS(. . .)
(G3:) Sign(. . .)⇒ N&FS(. . .)[basicseq]Sign(. . .)⇒ N&FS(. . .)

• Finally, in lines (7)–(8), we again reason about actions executed by B in order
to deduce that the the first message was sent by A before it was received by B.
Combining the assertions, we show that the authentication property holds: If B
has completed the protocol as a responder, apparently with A, then A must have
sent the first message (intended for B), and then B sent the second message to A.

In many cases, attempting to prove incorrect security properties in PCL may suggest
ways that a protocol may be repaired to achieve the desired property. If we attempt to
carry out the proof shown in Table 11 for the flawed protocol discussed in section 2.1 (and
in other chapters of this book), the attempt fails. In the failed attempt, the closest formula
we can prove using the honesty rule fails to sufficiently link the Initiator and Responder.
Specifically, the provable version of (4) asserts that any honest message signer will first
send the signed message under a specific encryption key (written pk (Tall.rpars.2)):

Honest(Tall.pname) ∧ Sign(Tall,
〈
Tall.pname, k

[Tall]
〉
, sk (Tall.pname))

⇒ NewNonce(Tall, k
[Tall])

∧FirstSend
(
Tall, k

[Tall],
{∣∣∣∣J〈Tall.pname, k

[Tall]
〉
Ksk(Tall.pname)

∣∣∣∣}a

pk(Tall.rpars.2)

)
However, when we proceed with this formula, the analog of line (5) has an encryption
key in the message sent by the initiator that is not linked to T:

true [Resp(T.pname)]T Honest(idA[T])
⇒ ∃T′ : T′.pname = idA[T] ∧ NewNonce(T′, k[T])

∧FirstSend
(
T′, k[T],

{∣∣∣∣J〈idA[T], k[T]
〉
Ksk(idA[T])

∣∣∣∣}a

pk(T′.rpars.2)

)
Instead of proving that the honest principal idA[T] encrypted the message for thread T
(= T.rpars.1), we can only conclude that some thread T′ encrypted the signed message
for some unconstrained role parameter T′.rpars.2 of that thread that could be different
from the responder. In other words, because the initiator does not include the identity of
the intended responder in the signed message, the responder that receives this message
cannot deduce that the message was intended (encrypted) for him. This failure of the
proof also suggests the attack scenario in which an initiator executing role Init(A,C)
encrypts the signed message for C, who turns out to be dishonest. Dishonest C then
decrypts A’s message and re-encrypts it for B. When responder B receives this message,
the responder has no guarantee that A intended (encrypted) the message for B.

7. Protocol Composition

Principals may participate in multiple protocols in parallel (e.g. SSL and IPSec), pos-
sibly using the same keys. In this section, we define parallel composition of protocols
and present a sound method for modular reasoning about their security. Because most of
the reasoning principles used in PCL are simple local reasoning about the actions of a
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AA0 true [Resp(T.pname)]T siga[T] = J
〈
idA[T], T.rpars.1, k[T]

〉
Ksk(idA[T]) (1)

AA1, (1) true [Resp(T.pname)]T Verify
(
T, J

〈
idA[T], T.rpars.1, k[T]

〉
Ksk(idA[T]), vk

(
idA[T]

))
(2)

VER, (2) true [Resp(T.pname)]T Honest(idA[T])

⇒ ∃T′ : T′.pname = idA[T] ∧ Sign
(
T′,

〈
idA[T], T.rpars.1, k[T]

〉
, sk

(
idA[T]

))
(3)

AA2, AA1, AN3, Honest(Tall.pname) ∧ Sign(Tall,
〈
Tall.pname, Tall.rpars.2, k

[Tall]
〉
, sk (Tall.pname))

P2.1, FS1, IN, SEQ, ⇒ NewNonce(Tall, k
[Tall])

AA3, P1, HON ∧ FirstSend
(
Tall, k

[Tall],
{∣∣∣∣J〈Tall.pname, Tall.rpars.2, k

[Tall]
〉
Ksk(Tall.pname)

∣∣∣∣}a

pk(Tall.rpars.2)

)
(4)

(3), (4) true [Resp(T.pname)]T Honest(idA[T])

⇒ ∃T′ : T′.pname = idA[T] ∧ NewNonce(T′, k[T])

∧ FirstSend
(
T′, k[T],

{∣∣∣∣J〈idA[T], T.rpars.1, k[T]
〉
Ksk(idA[T])

∣∣∣∣}a

pk(T.rpars.1)

)
(5)

AA0, AA1, IN, (1) true [Resp(T.pname)]T k[T] b
{∣∣∣∣J〈idA[T], T.rpars.1, k[T]

〉
Ksk(idA[T])

∣∣∣∣}a

pk(T.rpars.1)

∧ Receive
(
T,

{∣∣∣∣J〈idA[T], T.rpars.1, k[T]
〉
Ksk(idA[T])

∣∣∣∣}a

pk(T.rpars.1)

)
(6)

FS2, AA0, true [Resp(T.pname)]T Honest(idA[T])⇒ ∃T′ : (T′.pname = idA[T] ∧ (T′ , T

(1), (5), (6) ⇒ Send(T′, enca[T]) C Receive(T, enca[T]))) (7)

AA4, (7) true [Resp(T.pname)]T Honest(idA[T]) ∧ idA[T] , T.pname⇒ ∃T′ : T′.pname = idA[T]

∧ Send(T′, enca[T]) C Receive(T, enca[T])

∧ Receive(T, enca[T]) C Send(T, encb[T]) (8)

Table 11. Formal proof of Authresp

thread executing a role of a protocol, such steps are independent of the protocol that uses
this role. As a result, some properties proved using PCL are preserved when additional
roles are added to the protocol, or if additional actions are added to the end of one or
more roles. The one exception to this characterization, and it is a big one, is the honesty
rule, which is used to prove properties of one thread based on properties of other honest
threads. Therefore, the composition principles of PCL revolve around properties of the
honesty rule and its use. For simplicity, we only consider parallel composition, which in-
volves adding new roles, and leave the details of sequential composition, which involves
extending individual roles with actions of another role, to other presentations.

Two protocols P1,P2 have compatible setup assumptions if the same setup condi-
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tions are given in both protocols for every key function that is common to both. For
example, P1 may assume public keys, and P2 may assume shared symmetric keys (of
different names). Alternately, both may use the same setup assumptions. However, two
protocols do not have compatible setup assumptions if one assumes a key is confidential
and the other allows the key to be sent by honest principals.

Lemma 7.1 If P1,P2 have compatible setup assumptions, then the PCL assertions prov-
able about Pi are unchanged if the setup assumptions of Pi are replaced by the union of
the setup assumptions of P1 and P2.

Definition (Parallel Composition) If P1,P2 have compatible setup assumptions, then
their parallel composition P1 | P2 is defined by the union of their roles and the union of
their setup assumptions.

For example, consider the protocol obtained by parallel composition of two versions
of a standard protocol, such as SSL 2.0 and SSL 3.0. By the definition above, a prin-
cipal running their parallel composition may simultaneously engage in sessions of both
protocols. Clearly, a property proved about either protocol individually might no longer
hold when the two are run in parallel, since an adversary might use information acquired
by executing one protocol to attack the other. Since all the axioms and inference rules
in Section 5 except the honesty rule hold for all protocols, the only formulas used in the
proof of one protocol that might no longer be sound for a composition involving that
protocol are formulas proved using the honesty rule, i.e., the protocol invariants. In order
to guarantee that the security properties of the individual protocols are preserved under
parallel composition, it is therefore sufficient to verify that each protocol respects the
invariants of the other. This observation suggests the following four-step methodology
for proving properties of the parallel composition of two protocols.

1. Prove separately the security properties of protocols P1 and P2.

`P1 Ψ1 and `P2 Ψ2

2. Identify the set of invariants used in the two proofs, Γ1 and Γ2. The formulas
included in these sets will typically be the formulas in the two proofs, which
were proved using the honesty rule. The proofs from the previous step can be
decomposed into two parts – the first part proves the protocol invariants using
the honesty rule for the protocol, while the second proves the protocol property
using the invariants as hypotheses, but without using the honesty rule. Formally:

`P1 Γ1 and Γ1 ` Ψ1 and `P2 Γ2 and Γ2 ` Ψ2

3. Notice that it is possible to weaken the hypotheses to Γ1 ∪ Γ2. The proof of the
protocol properties is clearly preserved under a larger set of assumptions.

Γ1 ∪ Γ2 ` Ψ1 and Γ1 ∪ Γ2 ` Ψ2

4. Prove that the invariants, Γ1 ∪ Γ2, hold for both the protocols. This step uses
the transitivity of entailment in the logic: if `P Γ and Γ ` γ, then `P γ. Since
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`P1 Γ1 was already proved in step 1, in this step it is sufficient to show that
`P1 Γ2 and similarly that `P2 Γ1. By Lemma 7.2 below, we therefore have `P1 |P2

Γ1∪Γ2. From this and the formulas from step 3, we can conclude that the security
properties of P1 and P2 are preserved under their parallel composition.

`P1 |P2 Ψ1 and `P1 |P2 Ψ2

Lemma 7.2 If `P1 Ψ and `P2 Ψ, then `P1 |P2 Ψ, where the last step in the proof of Ψ in
both P1 and P2 uses the honesty rule and no previous step uses the honesty rule.

Proof: Following the conclusion of the honesty rule, Ψ must be of the form
Honest(T.pname) ⇒ ϕ for some formula ϕ. Suppose that Ψ can be proved for both P1
and P2 using the honesty rule. By the definition of the honesty rule, for i = 1, 2 we have
`Pi Start(T) [ ]T ϕ, and for all p ∈ Pi and for all basicseq ∈ (p(T.rpars)).bseqs we
have `Pi ϕ [basicseq]T ϕ. Every basic sequence basicseq of a role in P1 | P2 is a basic
sequence of a role inPi for i = 1, 2. It follows that `P1 |P2 ϕ [basicseq]T ϕ and, therefore,
by the application of the honesty rule, `P1 |P2 Honest(T.pname)⇒ ϕ. ut

Theorem 7.3 If `P1 Γ and Γ ` Ψ and `P2 Γ, then `P1 |P2 Ψ.

8. Related Work

A variety of methods and tools have been developed for analyzing the security guarantees
provided by network protocols. The main lines of work include specialized logics [4,44,
20], process calculi [1,2,25,35] and tools [28,43], as well as theorem-proving [34,33] and
model-checking methods [26,31,36,41] using general purpose tools. (The cited papers
are representative but not exhaustive; see [29] for a more comprehensive survey.)

There are several differences among these approaches. While most model-checking
tools can only analyze a finite number of concurrent sessions of a protocol, some of the
logics, process calculi, and theorem-proving techniques yield protocol security proofs
without bounding the number of sessions. With the exception of the BAN family of log-
ics [4], most approaches involve explicit reasoning about possible attacker actions. Fi-
nally, while security properties are interpreted over individual traces in the majority of
these methods, in the process calculi-based techniques, security is defined by an equiva-
lence relation between a real protocol and an ideal protocol, which is secure by construc-
tion. Inspite of these differences, all of these approaches use the same symbolic model of
protocol execution and attack. This model seems to have developed from positions taken
by Needham-Schroeder [32], Dolev-Yao [14], and subsequent work by others.

PCL shares several features with BAN [4], a specialized protocol logic. It is de-
signed to be a logic for authentication, with relevant secrecy concepts. Both logics an-
notate programs with assertions and use formulas for concepts like “freshness”, “sees”,
“said”, and “shared secret”. Furthermore, neither logic requires explicit reasoning about
the actions of an attacker.

On the other hand, PCL differs from BAN on some aspects since it addresses known
problems with BAN. BAN had an abstraction step in going from the program for the
protocol to its representation as a logical formula. PCL avoids the abstraction phase
since formulas contain the program for the protocol. PCL uses a dynamic logic set-up:
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after a sequence of actions is executed, some property holds in the resulting state. It is
formulated using standard logical concepts: predicate logic and modal operators, with
more or less standard semantics for many predicates and modalities. Temporal operators
can be used to refer specifically to actions that have happened and the order in which
they occurred. Formulas are interpreted over traces and the proof system is sound with
respect to the standard symbolic model of protocol execution and attack. On the other
hand, BAN was initially presented without semantics. Although subsequently, model-
theoretic semantics was defined, the interpretation and use of concepts like “believes”
and “jurisdiction” remained unclear. Finally, PCL formulas refer to specific states in the
protocol. For example, x may be fresh at one step, but no longer fresh later. In contrast,
BAN statements are persistent, making it less expressive.

PCL also shares several common points with the Inductive Method [34]. Both meth-
ods use the same trace-based model of protocol execution and attack; proofs use induc-
tion and provable protocol properties hold for an unbounded number of sessions. One
difference is the level of abstraction. Paulson reasons explicitly about traces including
possible intruder actions whereas basic reasoning principles are codified in PCL as ax-
ioms and proof rules. Proofs in PCL are significantly shorter and do not require any ex-
plicit reasoning about an intruder. Finally, while Paulson’s proofs are mechanized using
Isabelle, most proofs in PCL are currently hand-proofs, although the steps needed to
automate PCL in a meta-logic are described in this chapter.

9. Conclusions

Protocol Composition Logic (PCL), summarized and illustrated by example in this chap-
ter, is a formal logic for stating and proving security properties of network protocols.
PCL uses “direct reasoning,” in the sense that our proof steps reason directly about the
effects of successive protocol steps. PCL proof steps also reason only about the actions
of explicit threads and honest protocol participants. Because of the way that PCL ax-
ioms and rules are proved sound for reasoning about a semantic model that includes an
attacker, there is no need to consider the attacker explicitly in the proof system.

A distinctive goal of PCL is to support compositional reasoning about security pro-
tocols. For example, PCL allows proofs of key-distribution protocols to be combined
with proofs for protocols that use these keys. While the logic was originally developed
for the symbolic “Dolev-Yao” model of protocol execution and attack used in this chap-
ter, a variant of the logic with similar reasoning principles has also been developed for
the computational model used by cryptographers.

Based on approximately ten years of experience with successive versions of the
logic, PCL appears to scale well to industrial protocols of five to twenty messages, in
part because PCL proofs appear to be relatively short (for formal proofs). The logic has
been successfully applied to a number of industry standards including SSL/TLS, IEEE
802.11i (marketed as WPA2) and Kerberos V5.

While PCL could be considered a semi-formalized logic for proving properties of
protocols, because we do not give formal proof rules for entailment between precon-
ditions or postconditions, PCL provides an approach for fully formal proofs of secu-
rity properties of protocols using any logic framework supporting the formal syntax and
symbolic semantics presented in this chapter.
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