
Journal of Computer Security 11 (2003) 677–721 677
IOS Press

A compositional logic for proving security properties of
protocols ∗

Nancy Durgina, John Mitchellb and Dusko Pavlovicc
a Sandia National Labs, P.O. Box 969, Livermore, CA 94551, USA
Tel.: +1 925 294 4909; Fax: +1 925 294 3271; E-mail: nadurgi@sandia.gov
b Computer Science Department, Stanford University, Stanford, CA 94305, USA
E-mail: jcm@cs.stanford.edu
c Kestrel Institute, Palo Alto, CA 94304, USA
E-mail: dusko@kestrel.edu

We present a logic for proving security properties of protocols that use nonces (randomly generated
numbers that uniquely identify a protocol session) and public-key cryptography. The logic, designed
around a process calculus with actions for each possible protocol step, consists of axioms about protocol
actions and inference rules that yield assertions about protocols composed of multiple steps. Although
assertions are written using only steps of the protocol, the logic is sound in a stronger sense: each prov-
able assertion about an action or sequence of actions holds in any run of the protocol that contains the
given actions and arbitrary additional actions by a malicious attacker. This approach lets us prove security
properties of protocols under attack while reasoning only about the sequence of actions taken by honest
parties to the protocol. The main security-specific parts of the proof system are rules for reasoning about
the set of messages that could reveal secret data and an invariant rule called the “honesty rule”.

1. Introduction

There has been considerable research on formal analysis of security protocols,
ranging from BAN logic and related approaches [3,10,27] to finite-state analysis
[21,25] and proof methods based on higher-order logic [23]. Most approaches in
current use are based on enumeration or reasoning about a set of protocol traces,
each trace obtained by combining protocol actions with actions of a malicious in-
truder. Automated trace-based tools can be used to find protocol errors after a few
days of human effort, but it remains significantly more time-consuming to prove
protocols correct using logics that reason about traces. While it is difficult to give
specific numbers, since efforts depend on the complexity of the protocol and the ex-
perience of those involved, it seems that most formal proofs require months of effort,
even with assistance from powerful automated tools. We have therefore developed
a formal logic capable of relatively abstract reasoning about protocol traces. In this

* Partially supported by the Kestrel Institute, ONR MURI “Semantic Consistency in Information
Exchange”, N00014-97-1-0505, and ONR Grant “Games and Security in Systems of Autonomous
Agents”, N0014-00-C-0495.

0926-227X/03/$8.00 2003 – IOS Press. All rights reserved

678 N. Durgin et al. / A compositional logic for proving security properties of protocols

logic, we are able to prove properties of common authentication and secrecy proto-
cols by derivations of twenty to sixty lines of proof. The reason for this succinctness
is that the proof rules of the logic state general properties of protocol traces that can
be reused for many different protocols.

The logic presented in this paper includes modal operators naming sequences of
actions from a process calculus. This logic provides a method for attaching assertions
to protocol actions, in a manner resembling dynamic logic for sequential imperative
programs – applying Floyd–Hoare style annotations [9,11] so that the composition
of the assertions associated with each action can provide the basis for a protocol cor-
rectness proof. The underlying logic is different from previous “belief” logics such
as BAN and its descendants [3,10,27] and from explicit reasoning about protocol
and intruder as in Paulson’s inductive method [23]. The central idea is that asser-
tions associated with an action will hold in any protocol execution that contains this
action. This gives us the power to reason about all possible runs of a protocol, with-
out explicitly reasoning about steps that might be carried out by an attacker. At the
same time, the semantics of our logic is based on sets of traces of protocol execution
(possibly including an attacker), not the kind of abstract idealization found in some
previous logics.

Our logic uses five predicates:Sent, Decrypts, Knows, Source, andHonest.
The first two make relatively simple statements about what has happened. For exam-
ple,Sent(X ,m) holds at some state in the execution of a protocol if principalX has
sent the messagem. The interpretation ofKnows is also very mechanical, and much
more elementary than in logics of knowledge. Specifically, a principal “knows” a da-
tum if the principal either generated this datum or received it in a message in a form
that is not encrypted under a key that is not known to the principal. The last two
predicates are more novel. The central predicate for reasoning about secrecy, and
authentication based on secrecy, isSource. Intuitively, Source is used to identify
the “source” of some datum, i.e., the way that a principal might come to know the
contents of some message. The predicateHonest is used primarily to assume that
one party follows the prescribed steps of the protocol correctly. For example, if Alice
initiates a transaction with Bob, and wishes to conclude that only Bob knows the data
she sends, she must explicitly assume that Bob is honest. If Bob is not honest, mean-
ing that Bob does not follow the protocol (or, equivalently, Bob’s key is known to
the attacker), then any data Alice sends to Bob could be read by the attacker and the
attacker could forge all of the messages Alice receives from Bob. Therefore, many
correctness assertions involve an assumption that one or more principals are honest.

Most of the axioms and inference rules of our logic are ways of attaching asser-
tions to actions, and rules for combining these assertions when actions are combined
in a role of a protocol. The main inference rule that is not of this form is a rule we
refer to as the “honesty rule”. This is a form of invariance rule, used to reason about
all possible actions of honest principals. Suppose that in some protocol, whenever a
principal receives a message of the form {|a, b|} K , meaning the encryption of a pair
(a, b) under keyK, the principal then responds with {|b|} K . Assume further that this

N. Durgin et al. / A compositional logic for proving security properties of protocols 679

is the only situation in which the protocol specifies that a message consisting of a
single encrypted datum is sent. Using the honesty rule, it is possible to prove that
if a principalA is honest, andA sends a message of the form {|b|} K , thenA must
have previously received a message of the form {|a, b|} K . For certain authentication
protocols, this form of reasoning allows us to prove that if one protocol participant
completes the prescribed sequence of actions, and another principal named in one of
the messages is honest, then some secret is shared between the two principals.

Section 2 describes the process calculus and Section 3 shows how we use the
process calculus to express steps of a protocol. Section 4 describes the formulas and
semantics of our logic. The proof system is presented in Section 5. A sample proof
is given in Section 6, with discussion of related work appearing in Section 7 and
concluding remarks in Section 8.

The example derivation given in Section 6 shows how to prove a significant prop-
erty of Lowe’s variant [14] of the Needham–Schroeder public key protocol [22]. A
brief discussion in that section also shows how an attempt to prove the same property
for the original Needham–Schroeder protocol fails in an insightful way. Specifically,
since the main axioms and inference rules of our logic are each tied to a specific
action, the outline of any possible proof is determined by the steps of the protocol.
Therefore, we can reduce the problem of proving a protocol property to the problem
of finding instances of axioms and rules that match in specific ways. For the well-
studied Needham–Schroeder protocol, under the model of attacker capabilities used
in this paper, proof of an authentication property fails precisely because initiator Al-
ice cannot correctly establish the identity of the responder from the data she receives.
In effect, the protocol logic presented in this paper leads directly to rediscovery of
Lowe’s observation [14].

The process calculus and logic presented in this paper support only public key
encryption and cannot be used to reason about the source of an encrypted nonce if the
principal who generated it sends more than one message containing the nonce. While
we believe that the approach can be extended fairly easily to handle symmetric-key
encryption and more general patterns of messages containing encrypted nonces, the
more restricted form of logic used in this paper is simpler and easier to understand.
We hope to explore extensions of the system in future work.

2. Communicating cords

Cords are the formalism we use to represent protocols and their parts. They form
an action calculus [16,17,24], based onπ-calculus [20], and related tospi-calculus
[1]. The cords formalism is also similar to the approach of the Chemical Abstract
Machine formalism [2], in that the communication actions can be viewed as reac-
tions between “molecules”. Other work that relates process calculus to strands and
security protocol analysis is [5,6]. The basic idea ofπ-calculus is to represent com-
munication by term reduction, so that the communication links can be created dy-
namically [19]. The idea ofspi is to add toπ the suitable constructors for encryption

680 N. Durgin et al. / A compositional logic for proving security properties of protocols

and decryption, and analyze secure communication using process equivalence; some
similar ideas also appear in [12]. We treat the encryption in a manner similar to spi-
calculus, but decryption is reduced to term reduction. The idea of cord calculus is
not so much to capture security within the meta-theory of processes, but rather to
serve as a simple “protocol programming language”, intuitive enough to support our
Floyd–Hoare style logical annotations, and verifications in an axiomatic semantics.
The formalism is designed to support protocol composition and synthesis, in addi-
tion to reasoning about protocol correctness. Although we do not explore protocol
composition in this paper, the static interfaces and associated composition operators
in 2.4 suggest certain forms of protocol composition that preserve logical reasoning
about sequences of actions.

In fact, cords are first of all based on the informal language of arrows and mes-
sages, widely used in the security community. For instance, an arrows-and-messages
picture of Lowe’s variant [14] of the Needham–Schroeder public key protocol [22],
which we will refer to as NSL, might look something like Fig. 1.

Strand spaces [8] have been developed in an effort towards formalizing this lan-
guage. The messages are captured in a term calculus, and decorated by+ and−,
respectively denoting the send and the receive actions. The roles are then presented
as sequences of such actions, calledstrands. Viewed as a strand space, the above
protocol run is shown in Fig. 2.

The fact that an agent only sees his or her own actions,viz sending and receiving
messages, is reflected in the strand formalism. However, communication, the fact that
by receiving a message, an agent may learn something new, is not reflected. E.g., in
the above example, the strandB already contains the term {|A,m|} B, and appears to

Fig. 1. NSL as arrows and messages.

Fig. 2. NSL as a strand space.

N. Durgin et al. / A compositional logic for proving security properties of protocols 681

know the exact form of the message that he is about to receive, includingA’s fresh
nonce, before the communication is ever initiated. Indeed, the formalism is set up so
that the particles+{|A,m|} B and−{|A,m|} B can react only when the terms involved
exactly coincide.

In strand spaces, which provide the basis for a series of interesting results and
applications, roles are treated as families of strands, parameterized by all the possible
values that can be received. However, we found this approach not only somewhat
artificial, but also technically insufficient for our form of reasoning about secure
communication. For instance, it is difficult to identify the data “known” to a strand
when an agent in a protocol is parameterized by values unknown to them. Such
parameters come about, e.g., when a role is sent a term encrypted by someone else’s
key, which it should forward, rather than attempt to decrypt. More generally, a formal
occurrence of a subterm in a strand is unrelated to the knowledge of the agent to
whom that strand belongs.

Cord spaces are a result of our effort to overcome such shortcomings. In com-
parison with strands, we add variables to the term calculus. Of course, just like a
parameter, a variable is just a placeholder for a family of values; but variables come
with a formal binding and substitution mechanism. The action of receiving a value
into a variablex is expressed by the operator (x), which binds the occurrences ofx
to the right of it. The action of sending a termt is now written〈t〉, rather than+t.
When the termt is closed, i.e., reducible to a value, the particles (x) and〈t〉 canre-
act: they are eliminated, andt is substituted for all occurrences ofx that were bound
to (x). The value propagation resulting from the communication is modelled by the
substitution.

The cord space, corresponding to the above protocol is shown in Fig. 3. Here
we introduce the notation (νm) which is a binding operation denoting the gener-
ation of a new nonce,m. A generatesm and sends the term {|A,m|} B which B
now receives into the variablex, and substitutes for it on the right. In particular,
the pattern-matching operator (x/{|Y , z|} B), which represents asymmetric or public
key encryption, is now instantiated to ({|A,m|} B/{|Y , z|} B). The matching succeeds,
and the valuesA andm get substituted forY andz. The term {|z,B,n|}Y is thus
instantiated to {|m,B,n|} A, which contains no variables any more, and can be sent.
NowA receives this term into the variableu, and substitutes it into (u/{|m,B,v|} A).

Fig. 3. NSL as a cord space.

682 N. Durgin et al. / A compositional logic for proving security properties of protocols

The encryption is matched against the expected encryption, the first two encrypted
components against the noncem and the nameB, whereas the third component, the
noncen is substituted for the variablev. The term {|v|} B now becomes a value, which
is sent, received intow and pattern matched,viz decrypted, and tested to be equal to
the noncen.

A formal definition of cords requires several syntactical steps.

2.1. Terms and actions

The termst are built starting from the variablesx and the constantsc. Moreover,
the set of basic terms also contains the namesN , which can be variablesX , Y , Z,
or constantsA, B, C, and keysK which can be variablesy and constantsk.

Upon these basic sets, the term language is then generated by some given con-
structorsp, which always include tupling, and the public key encryption {|t|} K , of the
termt by the keyK.

The language of actions is then built upon the terms by further constructors. They
include sending a term〈t〉, receiving into a variable (x), matching a term against
a pattern (t/q(x)), and creating a new value (νx). The extensions may allow other
actions, such as reading time, or point-to-point communication. The language of
terms and actions is summarized in Table 1.

A pattern is a term with variables, into which we substitute other terms. The
syntax of patterns is summarized in Table 2. Just as a termt may be a tuple of
terms, a variablex may be a tuple of variables. This allows us to writex instead
of �x for x1, . . . ,xn. We write p(x1, . . . ,xn) if the list x1, . . . ,xn contains all the
variables inp. If p(x1, . . . ,xn) is a pattern andt = t1, . . . , tn is a term, then
p(t) = [t1, . . . , tn/x1, . . . ,xn]p is the term obtained by substitutingt1, . . . , tn for
x1, . . . ,xn in p.

Some examples of patterns are:

p1(x1,x2) = x1,x2

p2(x1,x2) = x1,A,x2

q1(x1,x2) = {|p1(x1,x2)|} K

= {|x1,x2|} K

q2(x1,x2) = {|p2(x1,x2)|} K

= {|x1,A,x2|} K

Here, the patternsp1 andp2 are basic tuple patterns, each taking two arguments, with
p2 containing the constantA. The patternsq1 andq2 are decryption patterns, again
taking two arguments and containing the valueK as the key.

We introduce decryption patterns in order to characterize asymmetric decryption.
The decryption keyK is required to decrypt a message {|m|} K , where the notation

N. Durgin et al. / A compositional logic for proving security properties of protocols 683

Table 1

Terms and actions

(names) N ::= X variable name

A constant name

(basic keys) K0 ::= y variable key

k constant key

N name

(keys) K ::= K0 basic key

K0 inverse key

(terms) t ::= x variable term

c constant term

N name

K key

t, t tuple of terms

{|t|}K term encrypted with keyK

(actions) a ::= ε the null action

〈t〉 send a termt

(x) receive term into variablex

(νx) generate new termx

(t/q(x1, . . . ,xn)) match termt to patternq(x1, . . . ,xn)

Table 2

Patterns

(basic terms) b ::= x | c | N | K basic terms allowed in patterns

(basic patterns) p ::= b, . . . , b tuple pattern

(patterns) q ::= p basic pattern

{|p|}K decryption pattern

{|_|} _ represents asymmetric encryption (with the encryption key different from the
decryption key). As we shall see in Section 2.3, the action of matching a pattern
({|x|} A/{|z|} A) bindsx to z in the strand to the right, thus decrypting the message
{|x|} A to reveal the plaintextx.

Strands, defined by the following grammar, are lists of actions.

(strands) S ::= aS | a

Strands include operations that are not efficiently computable. For example, the
strand (x)(y)(x/{|z|} y)〈z〉 receives a messagex and encryption keyy, then decrypts
x with thedecryption keyy associated withy. There is no known way to computey
efficiently fromy. However, since we wish to give principalA access to a key pair
KA andKA, which we writeA andA for notational convenience, it is useful to have
syntax for inverse keys. In section Section 3, additional restrictions will be imposed

684 N. Durgin et al. / A compositional logic for proving security properties of protocols

on strands that represent roles in a protocol (or attacks against a protocol) so that all
actions performed in a protocol run are efficiently computable.

2.2. Strand order and cords

Although a strand lists actions in a specific order, one order may not be distin-
guishable from another. This occurs when a variable bound in one action does not
occur free in another. For example, consider the strand

(x)(y)〈x,y〉

which receives two inputs and then sends a pair comprised of the two inputs. Since
we choose not to assume that network communication preserves message order, this
strand is equivalent to

(y)(x)〈x,y〉

To see that these are equivalent, imagine running each in parallel with a strand that
outputs numbers 2 and 3. Since the outputs 2 and 3 can be received in either order
by the first strand, the first strand could output〈2, 3〉 or 〈3, 2〉, which is clearly the
set of possible outputs of the second strand.

In general, the strandsS andT will be considered independent if no values can be
passed between them. Formally, we capture this by defining an equivalence relation
≈ that includes the relation∼ defined by

ST ∼ TS ⇐⇒
{
FV (S) ∩BV (T) = ∅
FV (T) ∩BV (S) = ∅

where the operatorsFV andBV , giving the sets of the free and the bound variables
(respectively), are inductively defined as follows:

FV (〈t〉S) = FV (t) ∪ FV (S)

FV ((x)S) = FV (S) \ {x}

FV ((t/q(x))S) = FV (t) ∪ (FV (S) \ {x})

FV ((νx)S) = FV (S) \ {x}

BV (〈t〉S) = BV (S)

BV ((x)S) = BV (S) ∪ {x}

BV ((t/q(x))S) = BV (S) ∪ {x}

BV ((νx)S) = BV (S) ∪ {x}

N. Durgin et al. / A compositional logic for proving security properties of protocols 685

The setFV (t) of the free variables occurring in a termt is defined as usual: whenever
a variablex is used in the formation of a termt, it is added toFV (t).

The actions “receive” (x), “match” (or “test”) (t/q(x)) and “new” (νx) thus bind
the variablex. The scope is always to the right, and name clashes are avoided by
renaming bound variables. A value is propagated through a strand by substituting it
for x everywhere within the scope of a binding operator. In this way, the condition
FV (S) ∩BV (T) = ∅ indeed ensures thatS cannot depend onT .

The relation≈ is the least congruence containing the transitive, reflexive closure
of ∼, and closed underα-conversion (renaming the bound variables). The strandsS
andT will thus be≈-equivalent if and only if one can be obtained from the other
by renaming the bound variables, and permuting the actionswithin the scopes of the
bound variables, i.e., in such a way that no free variable becomes bound, orvice
versa. Note that≈ preserves the free variables of a strand.

Using calligraphicS for the set of all possible strands, we letcords be equivalence
classes of strands, modulo the relation≈,

C = S/≈

To indicate a specific cord, we enclose the strand in brackets [], which serves to in-
dicate both the scope of binding and that the cord encompasses all equivalent strands
modulo≈. That is

[S]≈ = {S′ | S′ ≈ S}

We omit the relation≈ in the rest of the paper.
The relation≈ allows renaming of bound variables and reordering of non-

conflicting actions. For example,≈ identifies strands like (x)〈c〉 and 〈c〉(x), with
the independent actions permuted. In contrast, the actions (x) and〈{|x|} A〉 are not
independent, because a value must be received intox before it can be sent out in a
message. Sending a pair〈a, b〉 preserves the order of termsa andb, while sending
the two values one at a time,〈a〉〈b〉, does not.

2.3. Cord spaces and runs

A cord space is a multiset of cords that may interact via communication. We use⊗
for multiset union and [] for the empty multiset. In the terminology associated with
the Chemical Abstract Machine [2], a cord space is a “soup” in which the particles
(cords) may react. We use a cord space consisting of a set of protocol roles (each
represented by a cord) to represent a state and set of remaining actions of a protocol.
For instance, one possible run of the NSL protocol, with Alice initiating a conversa-
tion with Bob and no other protocol roles (or intruder cords) involved, arises from
the cord space

A ⊗ B = [(νx)〈{|A,x|} B〉 . . .] ⊗ [(x)(x/{|Y , z|} B) . . .]

686 N. Durgin et al. / A compositional logic for proving security properties of protocols

Table 3

Basic reaction steps

[S(x)S′] ⊗ [T 〈t〉T ′] ⊗ C �� [SS′(t/x)] ⊗ [TT ′] ⊗ C (2)

[S(p(t)/p(x))S′] ⊗ C �� [SS′(t/x)] ⊗ C (3)

[S({|p(t)|} y/{|p(x)|}y)S′] ⊗ C �� [SS′(t/x)] ⊗ C (4)

[S(νx)S′] ⊗ C �� [SS′(m/x)] ⊗ C (5)

Where the following conditions must be satisfied:

(2)FV (t) = ∅
(3)FV (t) = ∅
(4)FV (t) = ∅ andy bound

(5) x �∈ FV (S) andm �∈ FV (C) ∪ FV (S) ∪ FV (S′)

Mathematically speaking, cord spaces form a free commutative monoid generated
by cords, with⊗ as the binary operation and [] as the unit. We sometimes write
ellipses “. . .” inside a cord to indicate the presence of arbitrary additional actions.

Reactions
The basic reactions within a cord space are shown in Table 3, with the required side

conditions for each reaction shown below them. The substitution (t/x) is assumed
to act on the strand left of it,viz S′. As usual, it is assumed that no free variable
becomes bound after substitution, which can always be achieved by renaming of the
bound variables.

Reaction (2) is a send and receive interaction, showing the simultaneous sending
of termt by the first cord, with the receiving oft into variablex by the second cord.
We call this anexternal action because it involves an interaction between two cords.

The other reactions all take place within a single cord. We call theseinternal ac-
tions. Reaction (3) is a basic pattern match action, where the cord matches the pattern
p(t) with the expected patternp(x), and substitutest for x. Note that as mentioned
in Section 2.1, the placeholderx in the patternp(x) can be a tuple of variables,
x1, . . . ,xn, in which case the term must also be a tuplet1, . . . , tn.

Reaction (4) is a decryption pattern match action, where the cord matches the
pattern {|p(t)|} y with the decryption pattern {|p(x)|} y and substitutest for x.

Finally, reaction (5) shows the binding action where the cord creates a new value
that doesn’t appear elsewhere in the cordspace, and substitutes that value forx in the
cord to the right.

The intuitive motive for the conditionFV (t) = ∅ should be clear: a term cannot be
sent, or tested, until all of its free variables are instantiated. In addition in a decryp-
tion action, the keyy used in the pattern must be bound. In other words, our variables
are not public names, or references that could be passed around, but strictly private
stores. This security-specific feature distinguishes cord calculus from the closely re-
lated, but general-purpose process and action calculi, to which it otherwise owes the
basic ideas and notations.

N. Durgin et al. / A compositional logic for proving security properties of protocols 687

Table 4

NSL example reaction

A ⊗ B = [(νx)〈{|A,x|}B〉(u) . . .] ⊗ [(x)(x/{|Y ,z|}B) . . .] (a)

�� [〈{|A,m|}B〉(u) . . .] ⊗ [(x)(x/{|Y , z|}B)(νy)〈{|z,B, y|}Y 〉 . . .] (b)

�� [(u) . . .] ⊗ [({|A,m|}B/{|Y ,z|}B)(νy)〈{|z,B,y|}Y 〉 . . .] (c)

�� [(u)(u/{|m,B, v|}A) . . .] ⊗ [(νy)〈{|m,B, y|}A〉(w) . . .] (d)

�� [(u)(u/{|m,B, v|}A) . . .] ⊗ [〈{|m,B,n|}A〉(w) . . .] (e)

�� [({|m,B,n|}A/{|m,B,v|}A)〈{|v|}B〉] ⊗ [(w) . . .] (f)

�� [〈{|n|}B〉] ⊗ [(w)(w/{|n|}B)] (g)

�� [] ⊗ [({|n|}B/{|n|}B)] (h)

�� []

Runs
Theruns of a protocol arise as reaction sequences of cord spaces. The run of the

NSL protocol displayed in Figs 1–3 can now be completely formalized as a sequence
of syntactic reaction steps, which are shown in Table 4.

Steps (a) and (d) in Table 4 use rule (5), steps (b), (e) and (g) are based on rule (2),
and steps (c), (f) and (h) on rule (4). In a sense, these eight reduction steps correspond
to the five arrows in Figs 1 and 2, plus the explicit actions to create a new value and
the final test ofn thatB performs, which were omitted in the diagrams. On the other
hand, the three arrows that appear in Fig. 3 correspond to the applications of rule (2).
The actions based on rules (4) and (5) were represented in Fig. 3 not by arrows, but
by displaying the corresponding actions.

2.4. Static binding and cord category

Many protocols of interest consist of a set of roles. For example, the Needham–
Schroeder public-key protocol, mentioned earlier, has an initiator role and a respon-
der role. An initiator starts an exchange by sending a message to a responder. In a
local area network, for example, with principals (users or machines) named Alice,
Bob, Charley, and Dolores, the protocol could be used simultaneously or in suc-
cession by several principals for several purposes. Alice may initiate an exchange
with Bob and, before completing the three messages associated with this exchange,
respond to an exchange initiated by Charlie. Concurrently, Charlie may initiate an
exchange with Bob, and respond to a request from Dolores. We consider the set of
messages exchanged by these four parties, together with any actions performed by
an attacker, a possible run of the protocol.

Since a run may consist of several instances of the protocol roles, executed con-
currently, it is useful to have a notation for a role that has not been assigned to any
specific principal. In this section, we summarize the basic idea. However, since the
mechanisms described here do not play a central role in this paper, the presentation
is informal, proceeding by example rather than focussing on the general definitions.

688 N. Durgin et al. / A compositional logic for proving security properties of protocols

The main concepts that are needed in the remainder of the paper are that roles con-
tain variables indicating principals, these variables are bound in the static interface
of the role, and the variables are replaced by specific principals in constructing a run
of the protocol.

Two cords of the NSL protocol, given in Fig. 3, are:

A = [(νx)〈{|A,x|} B〉(u)(u/{|x,B,v|} A)〈{|v|} B〉]
B = [(x)(x/{|Y , z|} B)(νy)〈{|z,B,y|} Y 〉(w)(w/{|y|} B)]

These are the initiator and responder roles of the NSL protocol, assigned to principals
A andB, respectively. Replacing the namesA andB with variablesX andY , and
listing the “instantiable” variables outside the square brackets of the cord, we have:

Init = (X Y)[(νx)〈{|X ,x|} Y 〉(u)(u/{|x,Y ,v|} X)〈{|v|} Y 〉]〈〉
Resp = (X)[(x)(x/{|Y , z|} X)(νy)〈{|z,X ,y|}Y 〉(w)(w/{|y|} X)]〈〉

We consider the lists (X Y) and (X) binding operators, so that principal variablesX
andY are bound in these cords. The list are called the static interfaces of the cords,
since we model replacingX andY with Alice andBob as a static operation that
occurs before the dynamic execution of a run of the protocol.

In the cordsInit and Resp above, empty angle brackets,〈〉 appear at the end
of each cord. Generally, angle brackets may contain an export list which is used
to compose cords. Composition, written using “;”, is achieved by substitution. For
example,

(X Y)[(νx)〈x〉]〈X〉; (Z)[(y)〈{|y|} Z〉]〈〉 = (X Y)[(νx)〈x〉(y)〈{|y|} X〉]〈〉

Note that in performing the composition, the exportedX from the first cord is sub-
stituted for importedZ in the second. Since composition provides substitution, we
introduce an abbreviation

Init(A B) = ()[]〈A B〉 ; Init

to indicate the cord with its static interface instantiated to the valuesA andB. This
gives usA = Init(A B) andB = Resp(B).

For the reader familiar with action calculus, we observe that cords, taken as par-
ticles, generate an action category [18,24]. This is the source of the equivalence
relation≈. The idea is that a cord spaceC, displayed in the form

γ = (x0 . . . xi−1)C〈t0 . . . tj−1〉

can be viewed as an arrowγ : i → j, where aritiesi,j are the objects of the category.
The variablesx•, assumed mutually different, form the input interface: the operator

N. Durgin et al. / A compositional logic for proving security properties of protocols 689

(x0, . . . ,xi) binds their occurrences to the right. The termst• in the output interface
may not be mutually different, nor different fromx•. Of course, all expressions are
up to variable renaming (α-conversion).

Given a morphismδ : j → k, in the form

δ = (u0 . . . uj−1)D〈v0 . . . vk−1〉

the compositeγ ; δ : i → k will be the cord morphism

γ ; δ = (x0 . . . xi−1)CD(�t/�u)〈v0 . . . vk−1〉

where it is assumed that the names in the interfaces ofγ andδ have been chosen so
that no clashes occur when�t is substituted for�u.

The idea is that the dynamic binding by (x) and (νx) captures value propagation
by communication. Thestatic binding of the input interface is now used to com-
pose agents at design time. The static interfaces are thusnot used for passing any
actual messages, but for propagating the public keys, connecting the various roles
of the same principal, and for static links in general, independent of and prior to the
execution. The cordInit above can be designed as the compositeInit = I0 ; I1,
where

I0 = (X Y)[(νx)〈{|X ,x|} Y 〉]〈X Y x〉
I1 = (X̃ Ỹ z)[(u)(u/{|z, Ỹ ,v|} X̃

)〈{|v|} Ỹ 〉]〈〉

The constant values ofA andB can be passed to it, at design time, by precomposing
it with the morphism ()[]〈A B〉, i.e.,A = ()[]〈A B〉; Init.

Cord morphisms representprocesses:

(processes) r ::= (x . . . x)C〈x . . . x〉

In a cord space, the interfaces of processes combine in the natural way, that is

(�x)C〈�t 〉 ⊗ (�u)D〈�v 〉 = (�x�u)C ⊗D〈�t�v 〉

where�x is disjoint from�u and the variables in�t are disjoint from the variables in
�v, to avoid naming conflicts. Since these disjointness conditions may be satisfied by
suitable renaming, it is always possible to move the static interfaces to the outside of
the cord space, and carry out all reactions within their scope.

Returning to the example NSL cords, if we define a substitution processσ =
()[]〈ABB〉, then

A ⊗ B = σ ; (Init ⊗ Resp).

Static binding plays a limited role in the present paper. We will display the inter-
face only when it is relevant, and in other cases assume that all variables are bound.

690 N. Durgin et al. / A compositional logic for proving security properties of protocols

3. Protocols

3.1. Protocol roles

A protocol is defined by a finite set of roles, such as initiator, responder and server,
each carried out by one or more participants in any protocol execution. We identify
the principal who is carrying out the role by writing the name of the principal as a
subscript on the square brackets. The name of the principal is used to make sure that
important cryptographics restrictions are handled properly. Formally, we distinguish
roles from cords by calling a cord with identified principal, subject to the key condi-
tion given below, arole. Using variables from their static interface, the initiator and
responder roles are now written precisely as

Init = (X Y)[(νx)〈{|X ,x|} Y 〉(u)(u/{|x,Y ,v|} X)〈{|v|} Y 〉]X
Resp = (X)[(x)(x/{|Y , z|} X)(νy)〈{|z,X ,y|}Y 〉(w)(w/{|y|} X)]X

with the static output interfaces omitted since they are empty.
Formally, we define NSL protocol to be the set whose members are precisely these

two roles,

NSL = { Init, Resp} (1)

Roles are composed using substitution, in exactly the same way that cords are com-
posed, with substitution performed on the subscript indicating the acting principal if
it is a variable from the static interface.

The technical reason for identifying the principal carrying out a role is to specify
the correct use of private keys. Aprivate key is a key of formX, which represents
the decryption key in a public key cryptosystem. In a protocol role, the only place
X is allowed to occur is in the decryption position of a decryption pattern of a role
belonging to principalX . For example, the following cord

(X Y)[(x)(x/{|y|} Y)]X

is not a well-formed role, because this role allows the principalX to decrypt a mes-
sage usingY ’s private key. The syntactic key restriction on roles prevents a role
from “computing” the value of a private key from the public key. The following
cord, which applies() to a key it receives,

(X)[(x)(y)(x/{|z|} y)]X

is not a well-formed protocol role because the private keyy used in the role is not
the private key of the acting principal.

N. Durgin et al. / A compositional logic for proving security properties of protocols 691

Since private keys can only occur in the decryption key position of a decryption
pattern match, the key restriction prevents private keys from being sent in a message.
While some useful protocols might send private keys, we prevent roles from sending
their private keys (in this paper) since this allows us to take secrecy of private keys
as an axiom, shortening proofs of protocol properties. (Otherwise, we would have
to prove that in any protocol of interest, each role maintains the secrecy of its pri-
vate key.) The key restriction does not prevent a decryption key from being received
dynamically and used in a decryption action. For example, the following cord

(X)[(x)(y)(y/{|z|} x)]X

does not violate the syntactic key restriction. We expect to consider roles that may
generate key pairs and send decryption keys in later versions of the protocol logic.

3.2. Intruder role

The protocol intruder is capable of taking any of several possible actions, includ-
ing receiving a message, decomposing it into parts, decrypting the parts if the key is
known, remembering parts of messages, and generating and sending new messages.
This is the standard “Dolev-Yao model”, which appears to have developed from po-
sitions taken by Needham and Schroeder [22] and a model presented by Dolev and
Yao [7]; see also [4]. Although we use cords to represent the actions of a protocol
intruder, the intruder may have several private keys available to it – by referring to
“the” intruder, we do not mean to suggest that an attack must be carried out by a
single principal.

In each run of a protocol, the intruder will be represented by a cord with an arbi-
trary collection of cord calculus actions from Section 2.1, subject only to a restriction
on decryption keys defined in this section. We specify the set of decryption actions
available to the intruder using a subsidiary definition of the set of decryption keys
used in a cord. IfC is a cord, thenDKeys(C) is the set of names that appear as private
keys in the cord, that is:

DKeys(C) = {X | X appears inC}

Formally, anintruder role with keys K1, . . . ,Kn is a multisetI of cords such that
Dkeys(I) contains onlyK1, . . . ,Kn and the private key function() only occurs in
the decryption position of a decryption pattern match action. This restriction will
prevent an intruder from using any key that has not been corrupted, and prevents the
intruder from computing the private key from a public key.

3.3. Protocol configurations and runs

A run of a protocol is a sequence of reaction steps from aninitial configuration.
An initial configuration is determined by a set of principals, a subset of which are

692 N. Durgin et al. / A compositional logic for proving security properties of protocols

designated as honest, a cord space constructed by assigning one or more roles to each
honest principal, and an intruder cord that may use only the secret keys of dishonest
principals. We give an example without an intruder cord and a more complicated
example with an intruder cord. Although we could assign protocol roles to corrupted
keys, there is no need to do so. The reason is simply that when a key is available to
the intruder, the intruder can simulate any number of protocol roles using that key.

Here is an example initial configuration allowingA to initiate a conversation with
B, C a conversation withA, and allowing bothA andB to respond using the re-
sponder role:

Init(A B) ⊗ Init(C A) ⊗ Resp(A) ⊗ Resp(B) =

[(νx)〈{|A,x|} B〉 . . .]A ⊗ [(νx)〈{|C,x|} A〉 . . .]C⊗

[(x)(x/{|Y , z|} A) . . .]A ⊗ [(x)(x/{|Y , z|} B) . . .]B

Using a substitution cord,σ = ()[]〈A B C A A B〉, the initial configuration can
also be written as a composition of cords

σ ; (Init ⊗ Init ⊗ Resp ⊗ Resp).

More generally, any initial configuration can be expressed using a selection of
protocol roles, an intruder role, and a substitution cord morphism that connects the
interfaces of all the roles. Each initial configuration has only one intruder role, but
this role may be selected arbitrarily from all possible intruder roles.

For example, letPC = {U1,U2, . . . ,U�} be a set of principals, and let subset
HONEST(C) = {U1, . . . ,Uk} be a set of honest principals. LetIC be any intruder
role with decryption keys amongUk+1, . . . ,U�. To define an initial configuration
with n Init roles,m Resp roles, and intruderIC, we define the substitution

σC = ()[]〈X1 Z1 X2 Z2 . . . Xn Zn Y1 Y2 . . . Ym U1 U2 . . . Ul〉.

Then an initial configuration of theNSL protocol is given by the cord space

C = Init(X1 Z1) ⊗ Init(X2 Z2) ⊗ . . .⊗ Init(Xn Zn) ⊗

Resp(Y1) ⊗ Resp(Y2) ⊗ . . .⊗ Resp(Ym) ⊗

IC(U1 U2 . . . Ul)

whereX1,X2, . . .Xn,Y1,Y2, . . . ,Yn are honest keys inPC . The intruder role may
use any encryption keys amongU1 U2 . . . U�, but only the decryption keys that are
not in HONEST(C).

N. Durgin et al. / A compositional logic for proving security properties of protocols 693

Table 5

Initial configuration of Needham–Schroeder protocol

PC = {A,B,E,I}

HONEST(C) = {A,B}

IC = (X Y Z)[(x)(x/{|X,z|}Z)〈{|X, z|}Y 〉(w)(w/{|x|}Z)〈{|x|}Y 〉]I
σC = ()[]〈A E B A B E〉
C = σC; (InitNS ⊗ RespNS ⊗ IC)

= InitNS(A E) ⊗ RespNS(B) ⊗ IC(A B E)

= [(νx)〈{|A,x|}E〉(u)(u/{|x,v|}A)〈{|v|}E〉]A⊗
[(x)(x/{|Y ,z|}B)(νy)〈{|z,y|}Y 〉(w)(w/{|y|}B)]B⊗
[(x)(x/{|A,z|}E)〈{|A,z|}B〉(w)(w/{|x|}E)〈{|x|}B〉]I

Example: Lowe’s run of the original Needham–Schroeder protocol. As an exam-
ple, consider Lowe’s anomaly in the original Needham–Schroeder protocol [13]. The
original Needham–Schroeder protocol is represented by the following cords

InitNS = (X Y)[(νx)〈{|X ,x|} Y 〉(u)(u/{|x,v|} X)〈{|v|} Y 〉]X
RespNS = (X)[(x)(x/{|Y , z|} X)(νy)〈{|z,y|}Y 〉(w)(w/{|y|} X)]X

It differs from NSL only in the second message, where the identity of the responder
is omitted.

An initial configuration which will exhibit Lowe’s anomaly is shown in Table 5.
It has four principals:A andB who are honest,E whose private key is known to
the intruder, andI who is the intruder. It is also possible forI andE to be the
same principal, but we choose different entities to emphasize that the intruder can be
unknown to the honest participants, but able to masquerade as any dishonest prin-
cipal, in particular one whomA mistakenly believes to be honest. The cord space
contains one initiator cord, in whichA chooses to talk toE, and a responder cord
belonging toB. The intruder cord,IC, contains the actions necessary to intercept the
messages fromA and make it look like they were intended forB. Note that in this
configuration,IC(A B E) is a legal intruder cord, because it does not contain any
decryption actions that require the private keys of the honest principalsA andB, i.e.,
DKeys(IC(A B E)) = {E}.

3.4. Events and traces

A particular initial configuration may give rise to many possible runs. One possible
run of the Needham–Schroeder configuration in Table 5 is shown in Table 6. In
this run, all the actions shown in each cord take place. Another possible run of this
configuration is one whereA’s first message is sent toB instead ofI, and sinceB
can’t decrypt it, no further reactions are possible. In a more complex configuration,
there would be many more possible runs.

694 N. Durgin et al. / A compositional logic for proving security properties of protocols

Table 6

Run showing Lowe’s anomaly in Needham–Schroeder

C = InitNS(A E) ⊗ RespNS(B) ⊗ IC(A B E)

= [(νx)〈{|A,x|}E〉(u) . . .]A ⊗ [. . .]B ⊗ [(x)(x/{|A, z|}E) . . .]I
�� [〈{|A,m|}E〉(u) . . .]A ⊗ [. . .]B ⊗ [(x)(x/{|A,z|}E) . . .]I
�� [(u) . . .]A ⊗ [. . .]B ⊗ [({|A,m|}E/{|A,z|}E)〈{|A,z|}B〉 . . .]I
�� [. . .]A ⊗ [(x)(x/{|Y ,z|}B) . . .]B ⊗ [〈{|A,m|}B〉(w) . . .]I
�� [. . .]A ⊗ [({|A,m|}B/{|Y ,z|}B)(νn)〈{|z,n|}Y 〉 . . .]B ⊗ [(w) . . .]I
�� [(u)(u/{|m, v|}A) . . .]A ⊗ [(νy)〈{|m, y|}A〉(w) . . .]B ⊗ [. . .]I
�� [(u)(u/{|m, v|}A) . . .]A ⊗ [〈{|m,n|}A〉(w) . . .]B ⊗ [. . .]I
�� [({|m,n|}A/{|m,v|}A)〈{|v|}E〉]A ⊗ [(w) . . .]B ⊗ [. . .]I
�� [〈{|n|}E〉]A ⊗ [. . .]B ⊗ [(w)(w/{|x|}E) . . .]I
�� []A ⊗ [. . .]B ⊗ [({|n|}E/{|x|}E)〈{|x|}B〉]I
�� []A ⊗ [(w)(w/{|n|}B)]B ⊗ [〈{|n|}B〉]I
�� []A ⊗ [({|n|}B/{|n|}B)]B ⊗ []I
�� []A ⊗ []B ⊗ []I

Since the protocol logic we introduce in Section 4 reasons about protocol runs, we
need to introduce some additional notation for them.

An event is a ground substitution instance of an action, i.e., an action in which
all variables have been replaced by terms containing only constants. An event repre-
sents the result of a reaction step, viewed from the perspective of a single cord that
participated in it. For example, ifA sends messagem to B, then the event〈m〉 is
a send event ofA and (m) is a receive event ofB. The initial cord ofA may have
contained the send action〈m〉, or may have contained a send event〈x〉, with some
action before the send replacingx bym. The initial cord ofB must have contained
a receive action (y), with the reaction step replacingy by m. Since receive actions
contain variables, (m) is not a well-formed action, but we consider this expression
an event.

A trace is a list of the events by some principal that occur in a run. We use events
as a bookkeeping mechanism and as the syntax for writing out traces.

LetR|X denote the events that occurred for principalX in runR. For example, if
R is the run shown in Table 6, then we can writeR|X as a trace (forX = A,B, I)
showing the actions taken byX in runR, as follows

R|A = [(νm)〈{|A,m|} E〉({|m,n|} A)({|m,n|} A/{|m,v|} A)〈{|n|} E〉]

R|B = [({|A,m|} B)({|A,m|} B/{|Y , z|} B)(νn)〈{|m,n|} A〉({|n|} B)({|n|} B/{|n|} B)]

R|I = [({|A,m|} E)({|A,m|} E/{|A, z|} E)〈{|A,m|} B〉({|n|} E)({|n|} E/{|x|} E)〈{|n|} B〉]

Note that in this simple example, the list of actions performed by each principal
corresponds exactly to the three traces from the run. In a more complex example

N. Durgin et al. / A compositional logic for proving security properties of protocols 695

where a principal acted in more than one role, actions from multiple roles could
occur in the same run, and might be interleaved in an arbitrary fashion.

For actionsP , protocolQ, runR and principalX , we say “P matchesR|X for Q”
precisely ifR|X is the interleaving of a set of initial segments of traces of roles of
Q carried out byX , and one of the segments of one of the roles ends in exactlyσP ,
whereσ is a substitution of values for variables. IfP matchesR|X using substitu-
tion σ, thenσ is called thematching substitution.

Lemma 3.1. For any configuration C of protocol Q, and any run R, if principal
X ∈ HONEST(C), then R|X is an interleaving of traces of roles of Q executed
by X .

Proof. This follows from the definition of an initial configuration, which is con-
structed by assigning one or more roles fromQ to each honest principal.�

A succinct notation for talking about specific events occurring in a run is

EVENT(R,X ,P ,�n,�x) ≡

(([SPS′]X ⊗ C . . [SS′(�n/�x)]X ⊗ C′) ∈ R)

In words, EVENT(R,X ,P ,�n,�x) means that in runR, principalX executes ac-
tionsP , receiving data�n into variables�x, where�n and�x are the same length. The
predicate can be true for non-empty vectors�n and�x only if P is a receive or pattern
match action. In the above example,

EVENT(R,A, 〈{|A,m|} E〉,∅,∅),

EVENT(R,A, 〈{|n|} E〉,∅,∅),

EVENT(R,B, ({|A,m|} B/{|Y , z|} B), {A,m}, { Y , z}), and

EVENT(R,A, (νx),m,x)

are all examples of true facts about runR.

3.5. Protocol properties

In this section, we collect some properties of the class of protocols we will reason
about in the rest of the paper.

No Telepathy. It is straightforward to check that if a role sends a message, then
all the subterms of the message must be values that were either created by the role,
received by the role, or that were known to the role from its static parameters.

696 N. Durgin et al. / A compositional logic for proving security properties of protocols

Lemma 3.2 (No Telepathy). Let Q be a protocol, R be an arbitrary run, X be a
principal, and R|X consist of initial segments of traces ρ1,ρ2, . . . ,ρk, where each ρi

is a role of Q. Let m be any message sent by X as part of role ρi. Then every symbol
in the term m is either generated in ρi, received in ρi, or was in the static interface
of ρi.

Proof. This follows from the definition of the cords we use to represent roles. Each
role is a closed cord, so all values must be bound. Symbols can be bound by the static
interface, or by theν, receive and pattern match actions.�

Asynchronous communication. Cord reactions, as we have defined them, require
synchronous communication. That is, a message send action cannot happen in one
cord unless a message receive action occurs simultaneously in another cord. Real
network communication is asynchronous, though – the network itself effectively pro-
vides a buffer in which messages can be stored until somebody is ready to receive
them. In order to model this with cords, we pad the intruder cord with an arbitrary
number of “(x)〈x〉” actions, which we callforwarding actions. We call this abuffer-
ing intruder cord. These forwarding actions model a message being received, and
then eventually sent. Because these forwarding actions are independent from (share
no variables with) the other actions in the cord, they can occur in any order, which
effectively models the asynchronous nature of the network.

We define anadequate buffering intruder cord with respect to a configurationC as
a buffering intruder cord that has enough forwarding actions to guarantee that every
send action in the configuration can be taken immediately. For any configurationC,
we can construct an adequate buffering intruder cord by counting all the send actions
occurring in the configuration, and including at least that many forwarding actions
in the intruder cord.

Lemma 3.3 (Asynchronous Communication). In a configuration with an adequate
buffering intruder cord, any role that wishes to send a message can always send it.

Proof. Since the buffered intruder cord provides a corresponding receive action for
each send in the configuration, this action is always available for reaction with a send
action. �

This lemma allows us to schedule reactions runs so that the only place where
protocol roles are required to pause is at a receive action. All intermediate actions
between receives (i.e., new, pattern match and send actions) can be assumed to all
occur in the run.

Standard form traces. One useful way of reasoning about protocols, as well as
other kinds of computational systems, is by establishing invariance properties. The
simplest form of invariance is a property that holds at every possible state of proto-
col execution. However, some useful properties might only hold at certain states. For

N. Durgin et al. / A compositional logic for proving security properties of protocols 697

example, a property that says that whenever a message of one form is received, an-
other one is sent, depends on the ability of a protocol agent to progress. The property
is true if we look at certain “good” states, but may fail at intermediate states where
a protocol agent is in the process of responding to a message. For the purpose of
strengthening the invariance rule in Section 4, we define a set of preferred states and
a standard form for traces that progress from one preferred state to another.

We say a protocol role ishung if it is unable to complete its next internal action.
The only internal action that can hang is a pattern match action. For example, a role
such as

[(x)(x/{|y,B|} A) . . .]A

can become hung if the data received in the (x) action is {|B,n|} A, which doesn’t
match the pattern {|y,B|} A.

We say a protocol configuration (a cord space resulting from an initial configura-
tion by a sequence of reaction steps) is agood state if no internal actions are pending,
and no protocol role is hung. Recall that the reaction steps are divided into commu-
nication steps and internal actions. An internal action is pending in a state if there is
some role that is able to execute an internal reaction.

A standard trace is one where all internal actions occur as early as possible. Start-
ing from an initial configuration, each role takes all available internal actions, bring-
ing the configuration to a state where it is ready to perform an external action.

If we consider traces to be equivalent if they have the same external actions in the
same order, then every trace is equivalent to a standard trace. A trace that contains
a hung protocol role is equivalent to a trace in which the last message received by
the hung role was received by the intruder instead. We can therefore consider only
standard traces in our analysis. In keeping with this, whenever we write a protocol
role, we may write it in the standard order, with all internal actions listed as early as
possible. For example, theResp role may be written

Resp = (X)[(νy)(x)(x/{|Y , z|} X)〈{|z,X ,y|}Y 〉(w)(w/{|y|} X)]X

with the (νy) action moved all the way to the left.

Secrecy Restrictions. For simplicity, our model places a secrecy restriction on runs.
By design, it is impossible for any message encrypted with the public key of an hon-
est principal to be decrypted by anybody other than that principal. This follows be-
cause (1) we do not allow the intruder cord to contain any static actions that decrypt
using an honest principal’s key (nor do we model any way for an intruder to “guess”
a secret key), and (2) we reason only about protocols where the private keys can only
appear in the decrypt pattern match action, meaning the roles can not send out their
private keys in any message.

698 N. Durgin et al. / A compositional logic for proving security properties of protocols

This leads to the following Lemma:

Lemma 3.4 (Secrecy). For any configuration C of protocol Q, and any run R,

EVENT(R,X , ({|t|} Y /{|x|} Y), t,x) ∧ Y ∈ HONEST(C) ⊃ X = Y.

Proof. Letρ be the role where the event occured in runR. LetσC be the substitution
used in configurationC. First, supposeY ∈ FV (ρ).

If ρ is the intruder role, thenρ cannot contain this action, because (DKeys(σC ; ρ)∩
HONEST(C)) = ∅.

If ρ is a protocol role, thenDkeys(σC ; ρ) = {X}, from the restriction on de-
cryption keys in well-formed protocol roles, soY can’t be inDKeys(σC ; ρ) unless
X = Y .

SupposeY �∈ FV (ρ). Then somehowY (the decryption key) must have been
received in a message byρ. But since the restriction on private keys appearing only
in decryption actions means that a well formed protocol role cannot contain any
actions that send private keys in a message, this is not possible.�

A direct consequence of this is AxiomSEC in Table 8, which basically says that
“if X is honest and anyoneY decrypts a message with the private key ofX , then in
factX = Y ”.

While this lemma holds for the system presented in this paper, we believe it is
possible to relax the secrecy assumptions and add explicit rules to the logic that allow
us to prove this property for appropriate protocols. For example, if the restriction on
the use of private keys was removed, then it would still be possible to prove for a
certain protocol that private keys were never sent in any message. So, AxiomSEC
could still be proven to hold for a specific protocol.

4. A protocol logic

The protocol logic lets us reason about properties that are guaranteed to hold after
a principal has performed a certain sequence of actions.

4.1. Syntax

The formulas of the logic are given by the following grammar, whereρ may be
any role, written using the notation of the cord calculus (Section 3.3):

(predicate formulas)φ ::= Sent(N , t)
Knows(N , t)
Source(t,N , t,N)
Decrypts(N , t)
Honest(N)
φ ∧ φ
¬φ
∀x.φ

(modal forms) Ψ ::= ρ φ

N. Durgin et al. / A compositional logic for proving security properties of protocols 699

Here,t andN are terms and names, as defined in Section 2.1. We useφ andψ to
indicate predicate formulas, andm to indicate a generic term we call a “message”.
Quantification∀x.φ meansφ is true for all messagesx, which includes all names
and keys.

Most protocol proofs use formulas of the form [P]Xφ, which means that afterX
executes actionsP , formulaφ is true about the resulting state ofX . Here are the
informal interpretations of the predicates, with precise semantics given in the next
section:

The formulaKnows(X ,x) means that principalX knows informationx. This is
“knows” in the limited sense of having either generated the data or received it in the
clear or received it under encryption where the decryption key is known. IfX knows
{|m|} K and does not knowK, thenX doesnot knowm from this message.

The formulaSent(X ,m) means that principalX sent messagem. This implies
thatX knows the messagem.

The formulaDecrypts(X , t) means that principalX received a messaget in a role
that expected the message and was able to decrypt it. Note thatDecrypts(X , t) can
only be true ift is of form {|m|} K . This implies thatX knows the message {|m|} K ,
and the decrypted text,m.

The formulaHonest(X) means that the actions of principalX in the current run
are precisely an interleaving of initial segments of traces of a set of roles of the
protocol. In other words,X assumes some set of roles and does exactly the actions
prescribed by them. A principal may be considered honest in a run if either its key
is not corrupted, or the key is corrupted but the intruder only behaves (with this key)
according to the roles of the protocol.

TheSource predicate is used to reason about the source of a piece of information,
such as a nonce. Intuitively, the formula

Source(n,X , t,K)

means that the only way for a principalY different from X to know n is if
Y learnedn from the message {|t|} K , possibly by some indirect path. Note that
Source(n,X , t,K) can only be true ifn is a term generated by a (νx) action, and if
n is never sent out unencrypted byX .

4.2. Semantics

A formula may be true or false at a run of a protocol. More precisely, the main
semantic relation,Q,R |= φ, may be read, “formulaφ holds for runR of proto-
col Q”. In this relation,R may be a complete run, with all roles that are started in
the run completed, or an incomplete run with some principals waiting for additional
messages to complete one or more roles.

As preliminaries to the inductive definition ofQ,R |= φ, we make a few defi-
nitions regarding runs and the intruder. IfQ is a protocol, then let̄Q be the set of

700 N. Durgin et al. / A compositional logic for proving security properties of protocols

all initial configurations of protocolQ, each including a possible intruder cord. Let
Runs(Q̄) be the set of all runs of protocolQ with intruder, as described in Sec-
tion 3.3, each a sequence of reaction steps within a cord space.

We usem ⊆ m′ to indicate thatm is a subterm ofm′.
We define satisfactionQ,R |= φ, for φ without free variables, by induction onφ

as follows:

• Q,R |= Sent(A,m) if EVENT(R,A, 〈m〉,∅,∅).
• Q,R |= Knows(A,m) if there exists ani such thatKnowi(A,m) whereKnowj

is defined by induction onj as follows:

(Know0(A,m) if ((m ∈ FV (R|A))

∨EVENT(R,A, (νx),m,x)

∨EVENT(R,A, (x),m,x)

andKnowi+1(A,m) if (Knowi(A,m′)

∧((m′ = {|p(t)|} K ∧m ⊆ t

∧EVENT(R,A, (m′/{|p(y)|} K), t,y))

∨(m′ = p(t) ∧m ⊆ t

∧EVENT(R,A, (m′/p(y)), t,y))))

or (Knowi(A,m′) ∧ Knowi(A,m′′)

∧((m = m′,m′′) ∨ (m = m′′,m′)))

or (Knowi(A,m′) ∧ Knowi(A,K)

∧m = {|m′|} K)

Intuitively, Know0 holds for terms that are known directly, either as a free vari-
able of the role, or as the direct result of receiving or generating the term.
Knowi+1 holds for terms that are known by applyingi operations (decomposing
via pattern matching, or composing via encryption or tupling) to terms known
directly.

• Q,R |= Decrypts(A, {|m|} K) if Q,R |= Knows(A, {|m|} K)

∧EVENT(R,A, ({|m|} K/{|x|} K),m,x)

Note:Decrypts(A,n) is false if n �= {|m|} K for somem andK.
• Q,R |= Source(m,A, t,K) if

EVENT(R,A, (νx),m,x)∧
Q,R |= ∀Z.((Z �= A ∧ Knows(Z,m)) ⊃ Decrypts(Z, {|t|} K)∨

N. Durgin et al. / A compositional logic for proving security properties of protocols 701

(∃Y.Decrypts(Y , {|t|} K) ∧ Sent(Y , t′)))

wherem ⊆ t′

• Q,R |= Honest(A) if A ∈ HONEST(C) in initial configurationC for R.
• Q,R |= (φ1 ∧ φ2) if Q,R |= φ1 andQ,R |= φ2

• Q,R |= ¬φ if Q,R �|= φ
• Q,R |= ∀x.φ if for every messagem generated from the names and keys by

term operations,Q,R |= [m/x]φ.
• Q,R |= [P]Aφ if eitherP does not matchR|A orP matchesR|A andQ,R |=
σφ, whereσ is the substitution matchingP toR|A.

If φ has free variables, thenQ,R |= φ if we haveQ,R |= σφ for all substitutionsσ
that eliminate all the free variables inφ. We writeQ |= φ if Q,R |= φ for all
R ∈ Runs(Q̄).

Note that theSource predicate only mentions a single message that contains a
nonce created by principalX . We have investigated extensions which support rea-
soning about the situation where principalX may have sent more than one message
containing a nonce he created, but we do not present the semantics here.

5. Proof system

5.1. Axioms and rules about protocol actions

The axioms and inference rules about protocol actions are listed in Table 7. For the
most part, these are relatively simple “translations” of actions into atomic formulas
of the logic.

Intuitively, Axiom AN1 says that ifX generatesm, then the only principal that
knowsm is X . Axiom AN2 says that if principalX generates a new valuem and
does no further actions in this role, thenX knowsm, while Axiom AN3 is a some-
what vacuous statement (needed to provide a base case for AxiomS1), which states

Table 7

Axioms and rules for protocol actions

AN1 [(νm)]X Knows(Y ,m) ⊃ (Y = X)

AN2 [(νm)]X Knows(X,m)

AN3 [(νm)]X ∀t.∀K.Source(m,X, t,K)

AS1 [〈m〉]X Sent(X,m)

AR1 [(m)]X ∃Y.Sent(Y ,m)

AR2 [(m)]X Knows(X,m)

AD1 [({|m|}K/{|x|}K)]X Decrypts(X, {|m|}K)

AM1 (x1 . . . xn)[]X Knows(X,x1) ∧ . . . ∧ Knows(X,xn)

S1 [P]XSource(m,X,t,K)
[P 〈{|t|} K〉]X Source(m,X,t,K) m ⊆ t

702 N. Durgin et al. / A compositional logic for proving security properties of protocols

that if principalX generates a new valuem and does no further actions in this role,
then any encrypted message could be a possible source for another principal to have
learnedm.

Axioms AR1 and AR2 are about receiving messages. After X receives a mes-
sagem, he knows that somebody must have sent it, and he also knows the mes-
sagem.

Axiom AD1 says that after a principal performs a pattern match action containing
a decryption pattern, then the principal has decrypted the message.

Axiom AM1 is about the binding of static variables of a protocol role. In this case
thexi in (x1 . . . xn)[]X , is a value determined when the roles for each participant
were assigned. Typically this will be the identity of the participant, and possibly the
identity of other participants an initiator will try to talk to, along with shared keys,
etc.

Perhaps the most subtle is the inference ruleS1, which says that ifX sends a
message containing a noncem, then that message becomes the possible source from
which another principal might learnm.

Here is a sample soundness proof, for AxiomAN1. An important part of the
soundness argument is that if [(νm)]X matches some run, then (νm) is thelast action
in some role carried out byX . In more detail,

Q,R |= [(νm)]X Knows(Y ,m) ⊃ (Y = X)

if Q,R |= σKnows(Y ,m) ⊃ (Y = X) whenever (νm) matchesR|X , whereσ is a
matching substitution. By definition ofmatches, (νm) matchesR|X with σ(x) = m
only if (νx) is the last action of one of the roles ofX in R. But since this is the
last action from that role inR, X cannot have sentm to any other principal, and
from the side conditions for theν reaction in Table 3 we know thatm does not
occur elsewhere in the cord space. Since no events of formEVENT(R,X , 〈m′〉,∅,∅),
wherem ⊆ m′, have occurred, we know from Lemma B.1 that there can be no events
EVENT(R,Y , (x),m′,x). So from the semantics ofKnows, Knows(Y ,m) can’t be
true for any principal besidesX . Therefore, from the semantics ofKnows, onlyX
knowsm. This shows that axiom AN1 is sound.

5.2. Axioms relating atomic predicates

Table 8 lists axioms relating various propsitional properties, most of which follow
naturally from the semantics of propositional formulas. For example, ifX decrypts
{|m|} K , thenX knowsm because that is the result of the decryption, and if a principal
knows a tuplex,y then he also knowsx andy.

The SRC axiom is important for reasoning about the source of secret values. If
a valuem was created byX and has only been sent in the message {|t|} K , then
if somebody else has learnedm, then somebody must have decrypted the message
{|t|} K .

N. Durgin et al. / A compositional logic for proving security properties of protocols 703

Table 8

Relationships between properties

DEC1 Decrypts(X, {|m|}K) ⊃ Knows(X, {|m|}K)

DEC2 Decrypts(X, {|m|}K) ⊃ Knows(X,m)

K1 Knows(X, (x,y)) ⊃ Knows(X,x) ∧ Knows(X, y)

SRC Source(m,X, t,K) ∧ Knows(Z,m) ∧ Z �= X ⊃
∃Y.Decrypts(Y , {|t|}K)

SEC Honest(X) ∧ Decrypts(Y , {|m|}X) ⊃ (Y = X)

CSent(X, {|m|}K) ≡ Knows(X,m) ∧ Knows(X,K) ∧ Sent(X, {|m|}K)

Table 9

Inference rules

Generic Rules:

[P]Aφ [P]Aψ
[P]Aφ∧ψ

G1 [P]Aφ φ⊃ψ
[P]Aψ

G2 φ
[P]Aφ

G3

Preservation Rules: (ForPersist ∈ { Knows, Sent, Decrypts})

[P]APersist(X,t)
[P 〈m〉]APersist(X,t) P1 [P]APersist(X,t)

[P (x)]APersist(X,t) P2

[P]APersist(X,t)
[P (νx)]APersist(X,t) P3 [P]APersist(X,t)

[P (u/q(x))]APersist(X,t) P4

[P]ASource(m,Y ,t,K)
[P 〈〈t′〉]ASource(m,Y ,t,K) (m �⊆ t′) P5 [P]ASource(m,Y ,t,K)

[P (x)]ASource(m,Y ,t,K) P6

[P]ASource(m,Y ,t,K)
[P (νx)]ASource(m,Y ,t,K) P7 [P]ASource(m,Y ,t,K)

[P (u/q(x))]ASource(m,Y ,t,K) P8

Axiom SEC follows immediately from Lemma 3.4. This axiom says that the de-
cryption keys of honest principals are secret.

Note thatCSent is an abbreviation which will be useful in our proofs. It can be
thought of as meaning “created and sent”.

5.3. Preservation rules

Most predicates are preserved by additional actions. For example, ifX knowsm
before an action, thenX will also knowm after the action, regardless of what the
action is. The reason is that we define the knowledge ofX to include all data avail-
able toX at any step of the protocol execution. Inference rules showing preservation
of properties are shown in Table 9.

The exception to preservation isSource. SinceSource(m,X , t,K) means the
only way for a principal other thanX to knowm is from the message {|t|} K , this
atomic formula may become false ifX sends another message containingm. We see
this reflected in the side condition for preservation ruleP5 – theSource predicate is
only preserved form after a send operation if the messaget′ that was sent does not
containm as a subterm.

704 N. Durgin et al. / A compositional logic for proving security properties of protocols

In all of these formulas, the “principal” referred to is a single principal who may
be participating in multiple roles. A consequence of our formulation of protocols
is that, while a principal Alice may participate in many instances of many roles at
the same time, there will be no communication (other than via message sends and
receives) between the various instances if Alice is honest. This is the “No Telepathy
Lemma”, Lemma 3.2.

5.4. The honesty rule

Intuitively, the honesty rule is used to combine facts about one role with inferred
actions of other roles. For example, suppose Alice receives a response from a mes-
sage sent to Bob. Alice may wish to use properties of Bob’s role to reason about how
Bob generated his reply, for example. In order to do so, Alice may assume that Bob
is honest and derive consequences from this assumption. Perhaps an analogy will
help. In the game of bridge, one player may call out a series of bids. The player’s
partner may then draw conclusions about the cards in the player’s hand. If we were to
formalize the partner’s reasoning, we might use implications such as, “if the player
is following the Blackwood bidding convention, then she has three aces”. The intu-
ition is that a bid provides a signal to the other player, and the exact meaning of the
signal is determined by the bidding conventions that the partners have established. In
the same way, a message may imply something specific if the principal sending the
message is following the protocol. But if the principal has revealed his private key
to the attacker, for example, then receipt of that message does not provide the same
information about the principal.

The honesty rule is essentially an invariance rule for proving properties of all roles
of a protocol. Since honesty, by definition in our framework, means “following one
or more roles of the protocol”, honest principals must satisfy every property that is a
provable invariant of the protocol roles.

Our notion of “honesty” is a generalization of the notion of “faithfulness” in [26].
There, a participant isfaithful if they only proceed when they receive the message
they are expecting to receive, and if they always start the protocol at the beginning
of their role (i.e., a faithful participant will not respond to message 3 of a protocol
unless they have already received and responded to messages 1 and 2).

Recall that a protocolQ is a set of roles,Q = {ρ1,ρ2, . . . ,ρk}. If ρ ∈ Q is a role
of protocolQ, we writeP ⊆ ρ if P is an initial segment of the actions of roleρ such
that the next action ofρ afterP is a receive, orP is a complete execution of the role.
The reason for only considering initial segments up to reads is that we know from the
Asynchronous Communication Lemma (Lemma 3.3), that if a role contains a send,
the send may be done asynchronously without waiting for another role to receive.
Therefore, we can assume without loss of generality that the only “pausing” states of
a principal are those where the role is waiting for input. If a role calls for a message
to be sent, then we dictate that the principal following this role must complete the
send before pausing.

N. Durgin et al. / A compositional logic for proving security properties of protocols 705

Table 10

Honesty rule forNSL

NSL � (X Y)[(νx)〈{|X,x|}Y 〉]X φ(X)

NSL � (X Y)[(νx)〈{|X,x|}Y 〉(u)(u/{|x,Y ,y|}X)〈{|y|}Y 〉]X φ(X)

NSL � (X)[(νy)]X φ(X)

NSL � (X)[(νy)(u)(u/{|Y ,x|}X)〈{|x,X, y|}Y 〉]X φ(X)

NSL � (X)[(νy)(u)(u/{|Y ,x|}X)〈{|x,X, y|}Y 〉(w)(w/{|y|}X)]X φ(X)

NSL � Honest(X) ⊃ φ(X)
HON

Since the honesty rule depends on the protocol, we writeQ � [P]φ if [P]φ is
provable using the honesty rule forQ and the other axioms and proof rules. If the
honesty rule is not needed to prove [P]φ, then we can also writeQ � [P]φ, since
Q � [P]φ for any protocolQ.

Using the notation just introduced, the honesty rule may be written

∀ρ ∈ Q.∀P ⊆ ρ.Q � (�Z)[P]X φ

Q � Honest(X) ⊃ φ
HON

no free variable inφ
exceptX bound in
(�Z)[P]X

Where (�Z)[P]X is the initial stepsP of roleρ with static variables (�Z), and no free
variable inφ other thanX is bound by (�Z)[P]X . In words, if every role ofQ, run
either to completion or to a receiving state, satisfiesφ, then every honest principal
executing protocolQ must satisfyφ. The side condition prevents free variables in
the conclusionHonest(X) ⊃ φ from becoming bound in any hypothesis.

More concretely, the honesty rule for theNSL protocol defined in equation (1)
is shown in Table 10. Here, the antecedents of the rule enumerate the intermediate
“waiting for input” states and final completed states of each of the roles of the proto-
col. If some formulaφ expressible in our logic holds in these five local traces, then
φ will hold for any honest principal executing this protocol.

The honesty rule is used in the proof of correctness ofNSL that is given in full
in Section 6. One place the honesty rule is used is to prove that ifB completes the
responder role, and the principalA sending the final message toB is honest, then
A also sent the initial message toB. The key part of this deduction is to prove the
formula

φ(A) = ∀m,n,B.Decrypts(A, {|m,B,n|} A) ⊃
(CSent(A, {|A,m|} B) ∧ CSent(A, {|n|} B))

holds for honest participantA. This formula is proved using the honesty rule in
line 10 ofB’s deduction in Table 13.

To give some feel for how the honesty rule works in this case, we give an infor-
mal, intuitive explanation of how the rule yieldsφ. Referring to the rule as instanti-
ated forNSL, we can see that the antecedentDecrypts(A, {|m,B,n|} A) is never true

706 N. Durgin et al. / A compositional logic for proving security properties of protocols

Table 11

R(Init) – Deductions fromInit role

AM1 (X Y)[]X Knows(X,X) ∧ Knows(X,Y) (1)

AN2 [(νm)]X Knows(X,m) (2)

AS1 [〈{|X,m|} 〈Y 〉]X Sent(X, {|X,m|}Y) (3)

AD1 [({|m,Y ,n|}X/{|m,Y ,x|}X)]X Decrypts(X, {|m,Y ,n|}X) (4)

AS1 [〈{|n|}Y 〉]XSent(X, {|n|}Y) (5)

1, 2,P3 (X Y)[(νm)]XKnows(X,X) ∧ Knows(X,Y) ∧ Knows(X,m) (6)

3, 6,P1 (X Y)[(νm)〈{|X,m|}Y 〉]XKnows(X,X) ∧ Knows(X,Y)∧
Knows(X,m) ∧ Sent(X, {|X,m|}Y) (7)

7,P2 (X Y)[(νm)〈{|X,m|}Y 〉({|m,Y ,n|}X)]XCSent(X, {|X,m|}Y) (8)

4, 8,P4 (X Y)[(νm)〈{|X,m|}Y 〉({|m,Y ,n|}X)({|m,Y ,n|}X/{|m,Y ,x|}X)]X
CSent(X, {|X,m|}Y) ∧ Decrypts(X, {|m,Y ,n|}X) (9)

9,DEC2 (X Y)[(νm)〈{|X,m|}Y 〉({|m,Y ,n|}X)({|m,Y ,n|}X/{|m,Y ,x|}X)]X
CSent(X, {|X,m|}Y) ∧ Decrypts(X, {|m,Y ,n|}X)∧
Knows(X,n) (10)

5, 10,P1 (X Y)[(νm)〈{|X,m|}Y 〉({|m,Y ,n|}X)

({|m,Y ,n|}X/{|m,Y ,x|}X)〈{|n|}Y 〉]X
CSent(X, {|X,m|}Y) ∧ Decrypts(X, {|m,Y ,n|}X)∧
Knows(X,n) ∧ Sent(X, {|n|}Y) (11)

11 (X Y)[(νm)〈{|X,m|}Y 〉({|m,Y ,n|}X)

({|m,Y ,n|}X/{|m,Y ,x|}X)〈{|n|}Y 〉]X
CSent(X, {|X,m|}Y) ∧ Decrypts(X, {|m,Y ,n|}X)∧
CSent(X, {|n|}Y) (12)

for A in the responder role, soφ trivially holds in those cases. To proveφ for the
initiator role, we have two cases. For the case where the initiator never receives a
reply to his message,Decrypts(A, {|m,B,n|} A) is never true, soφ holds. For the
case where the initiator receives a reply, we look at theR(Init) deduction shown
in Table 11, which shows thatDecrypts(A, {|m,B,n|} A), CSent(A, {|a,m|} B), and
CSent(A, {|n|} B) are all true, soφ holds. Sinceφ holds for any valid sequence of
steps that an honest participantA would make, thenHonest(A) ⊃ φ(A).

5.5. Soundness

Theorem 5.1 (Soundness). If Q � φ then Q |= φ.

The proof is an induction on the structure of proofs. Several cases are sketched in
Section 5.1. The details are included in Appendix B.

N. Durgin et al. / A compositional logic for proving security properties of protocols 707

6. Sample proof

We have constructed proofs for a few different protocols, including public-key and
symmetric key protocols (with appropriate modification of the decryption action). In
addition, our attempt to prove an important property that holds for the Needham–
Schroeder–Lowe protocol, fails for the original Needham–Schroeder protocol in an
insightful way, due to an inability of the responder to identify the principal who
decrypted the second message with the principal who sent the first and third.

Tables 11 through 13 contain a formal proof of the propertyφ for theNSL protocol.
In an informal sense, Table 11 shows the initiator’s understanding of what has

happened at the end of a successful run of the protocol. The final formula of Table 11
is a formula [P]X ψ whereP is the trace of actions of the initiator’s role in the
protocol, andψ is a formula collecting together a set of the initiator’s observations.

In the same informal sense, Table 12 shows what the responder can observe by the
end of a run of the responder’s role of the protocol.

Informally, Table 13 shows how for a specific run where Bob thinks he has talked
to Alice, Bob can combine reasoning about the protocol roles with his own observa-
tions to conclude that if Alice is honest (i.e., the decryption keyA is not known to
the attacker, and Alice has followed her role underNSL) then he has communicated
with Alice.

The propertyφ is an important correspondence property, but it does not prove the
full correctness ofNSL. The goal here is to demonstrate a simple proof of a property
that is provable under our system forNSL but is not provable forNS.

Table 12

R(Resp) – deductions fromResp role

AR1 [({|Y ,m|}X)]X ∃Z.Sent(Z, {|Y ,m|}X) (1)

AN3 [(νn)]X Source(n,X, (m,X,n),Y) (2)

AR1 [({|n|}X)]X∃Z.Sent(Z, {|n|}X) (3)

1, 2,P6 (X)[(νn)({|Y ,m|}X)]X
Source(n,X, (m,X,n),Y) ∧ ∃Z.Sent(Z, {|Y ,m|}X) (4)

4,P4, P8 (X)[(νn)({|Y ,m|}X)({|Y ,m|}X/{|Y ′,x|}X)]X
Source(n,X, (m,X,n),Y) ∧ ∃Z.Sent(Z, {|Y ,m|}X) (5)

5,P1, S1 (X)[(νn)({|Y ,m|}X)({|Y ,m|}X/{|Y ′,x|}X)〈{|m,X,n|}Y 〉]X
Source(n,X, (m,X,n),Y) ∧ ∃Z.Sent(Z, {|Y ,m|}X) (6)

3, 6,P2, P6 (X)[(νn)({|Y ,m|}X)({|Y ,m|}X/{|Y ′,x|}X)〈{|m,X,n|}Y 〉({|n|}X)]X
Source(n,X, (m,X,n),Y) ∧ ∃Z.Sent(Z, {|Y ,m|}X)∧
∃Z′.Sent(Z′, {|n|}X) (7)

7,P4, P8 (X)[(νn)({|Y ,m|}X)({|Y ,m|}X/{|Y ′,x|}X)

〈{|m,X,n|}Y 〉({|n|}X)({|n|}X/{|n|}X)]X
Source(n,X, (m,X,n),Y) ∧ ∃Z.Sent(Z, {|Y ,m|}X)∧
∃Z′.Sent(Z′, {|n|}X) (8)

708 N. Durgin et al. / A compositional logic for proving security properties of protocols

Table 13

B’s completed deduction with honesty rule

R(Resp), G2 (B)[(νn)({|A,m|}B)({|A,m|}B/{|Y ,x|}B)

〈{|m,B,n|}A〉({|n|}B)({|n|}B/{|n|}B)]B
Source(n,B, (m,B,n),A)∧
∃X.(Sent(X, {|n|}B) (1)

R(Resp) (B)[(νn)({|A,m|}B) . . .]B
Honest(B) ⊃ ¬Sent(B, {|n|}B) (2)

1, 2,G1 (B)[(νn)({|A,m|}B) . . .]B Source(n,B, (m,B,n),A)∧
∃X.(Sent(X, {|n|}B) ∧ (X �= B)) (3)

R(Init), HON Honest(X) ⊃ (Sent(X, {|n|}B) ⊃
Knows(X,n) ∧ Knows(X,B)) (4)

3, 4 (B)[(νn)({|A,m|}B) . . .]B Source(n,B, (m,B,n),A)∧
∃X.Honest(X) ⊃
(Sent(X, {|n|}B) ∧ (X �= B) ∧ Knows(X,n)) (5)

SRC Source(n,B, (m,B,n),A) ∧ ∃X.(X �= B)∧
Knows(X,n) ⊃ ∃Y.Decrypts(Y , {|m,B,n|}A) (6)

SEC Honest(A) ∧ Decrypts(Y , {|m,B,n|}A) ⊃ (Y = A) (7)

6, 7 Honest(A) ∧ Source(n,B, (m,B,n),A)∧
∃X.(X �= B) ∧ Knows(X,n) ⊃
Decrypts(A, {|m,B,n|}A) (8)

5, 8,G1 − 3 (B)[(νn)({|A,m|}B) . . .]B
Honest(A) ⊃ Decrypts(A, {|m,B,n|}A) (9)

R(Init), HON Honest(A) ⊃ (Decrypts(A, {|m,B,n|}A) ⊃
CSent(A, {|A,m|}B) ∧ CSent(A, {|n|}B)) (10)

9, 10,G2 (B)[(nun)({|A,m|}B) . . .]B Honest(A) ⊃
(CSent(A, {|A,m|}B) ∧ CSent(A, {|n|}B)) (11)

6.1. Failure of the original Needham–Schroeder protocol

Note that this proof fails for the original Needham–Schroeder protocol, which
omitted the principal name from the second message.

For the originalNS, we need to prove

φ′(A) = ∀m,n,B.Decrypts(A, {|m,n|} A) ⊃
(CSent(A, {|A,m|} B) ∧ CSent(A, {|n|} B))

But when we try to apply the trying the honesty rule onφ′, in the case where
Decrypts(A, {|m,n|} A) is true you can come up with a counterexample, for example:
(CSent(A, {|A,m|} E) ∧ CSent(A, {|n|} E)).

It is possible to prove

φ′′(A) = ∀m,n.∃X.Decrypts(A, {|m,n|} A) ⊃

N. Durgin et al. / A compositional logic for proving security properties of protocols 709

(CSent(A, {|A,m|} X) ∧ CSent(A, {|n|} X))

(i.e. thatA’s messages were sent to somebody, but not necessarily toB). This is
exactly Lowe’s observation aboutNS (whereE is a principal whose private key is
known to the intruder) [13].B thinks he was talking toA, whileA thinks she was
talking toE.

7. Related work

The cord notation and proof system presented here is strongly related to the Floyd–
Hoare style logic used for making before-after assertions about imperative programs
[9,11]. As in Floyd–Hoare logic, we have axioms that correspond to each action in
the calculus, though we use only post-conditions, not pre-conditions.

As explained in Section 2, our process calculus developed from an effort to refine
the strand space formalism [8] by variables and substitution. Strand spaces seemed
attractive as a variant of the natural language of “arrows and messages”; unfortu-
nately, they did not support the logical annotations that we wanted to add to proto-
cols. In concrete analyses, each strand would actually represent a family of strands,
parameterized by the possible values of all the data that occurred in it. Communicat-
ing a value from one agent to another was then modelled as spontaneous instantiation
of the two parameters in the two corresponding strands to the same value. We started
by replacing the parameter in the receiving strand by a variable, and modelling com-
munication as substitution of the sent value for that variable. This allowed us to
capture syntactically the data known to an agent.1 Of course, this brought us to the
well ploughed ground of process calculi.

Representing communication as reaction of a send-action and a receive-action,
with the substitution as the effect of their reaction, is clearly very much in the spirit
of π-calculus [20] and chemical abstract machines [2]. There has been a substantial
amount of work on developing process calculi of this kind for specific applications
in security. In particular, the Spi-calculus [1] was developed as an extension of the
π-calculus specifically designed for analyzing security by coinductive methods of
process calculus, i.e., in terms of bisimilarity of processes.

Our idea was, however, to proceed in a different direction: towards logical se-
mantics of protocols. We needed a process calculus as a rudimentary programming
language, to support logical annotations, rather than to directly analyze protocols
as processes. The result is the cord calculus. Its core, presented here, is simplified
wherever possible: we dropped channels, reducing all communication to broadcast-
ing; pattern-matching was elevated to a generic destructor operator, capturing both

1The parameter mechanism of strand spaces does not allow a formal distinction between two values in
message sent to Bob, one visible to him, and another contained in a token encrypted by Alice’s key, that
he should forward to her.

710 N. Durgin et al. / A compositional logic for proving security properties of protocols

value comparison, and decryption. The main purpose of such reductions are the re-
sulting simplifications, that more clearly display the essential logical issues. More or
less straightforward extensions of the cord calculus allow representing point-to-point
communication, as well as the various cryptographic concepts not considered here.

There are a large number of “belief” type logics such as BAN and its descendants
[3,10,27]. Our approach differs from these logics in the following essential ways:
(1) There is no “idealization” step – the protocol actions are included directly in the
modal operators; (2) There is a close association between the actions and the logical
statements we make to reason about them; and (3) The honesty rule is used to prove
invariants of the protocol.

Several of the concepts presented here have appeared in other work on security
protocols. Our use of theν operator to represent new data is borrowed from process
calculus, but is also reminiscent of the use of the existential quantifier used for the
same purpose in Multiset Rewriting [4]. Events are a common idea from process
calculus and Hoare logic. In protocol analysis, they have also been used in the NRL
Protocol Analyzer [15], though our notion of event here is more basic and corre-
sponds exactly to the actions in the cord calculus. TheSource predicate is used to
capture the notion of data origination and casuality. This is similar to the notions of
originating and uniquely originating data in strands [28].

In [26], a faithfulness assumption and causality criterion are given for protocols,
and it was shown that protocols failing to satisfy them were flawed. The “honesty
rule” is a generalization and formalization of the faithfulness assumption. By com-
bining the honesty rule with our proof system, we can reason about a protocol based
on assumptions about the honesty of its participants.

8. Conclusion

We propose a specialized protocol logic that is built around a process language for
communicating cords describing the actions of a protocol. The logic contains axioms
and inference rules for each of the main protocol actions and proofs are protocol-
directed, meaning that the outline of a proof of correctness follows the sequence of
actions in the protocol.

A central idea is that assertions associated with an action will hold in any protocol
execution that contains this action. This gives us the power to reason about all possi-
ble runs of a protocol, without explicitly reasoning about steps that might be carried
out by an attacker. At the same time, the semantics of our logic is based on sets of
traces of protocol execution (possibly including an attacker), not the kind of abstract
idealization found in some previous logics. This approach lets us prove properties
of protocols that hold in all runs, without any explicit reasoning about the potential
actions of an intruder.

N. Durgin et al. / A compositional logic for proving security properties of protocols 711

Acknowledgements

Thanks to the anonymous referees for their many helpful comments.

Appendix A. Summary of syntax

For convenience, we present a summary in Table 14 of the BNF syntax for cords
and the protocol logic, as presented throughout the paper.

Appendix B. Soundness of axioms and proof rules

Here we prove Theorem 5.1, the soundness of the axioms and proof rules. Sec-
tion B.1 proves the soundness of the axioms, Section B.2 proves the soundness of
the relationships between the predicates, and Section B.3 proves the soundness of
the proof rules.

First we prove some lemmas that will be useful for the proofs that follow. In the
following lemmas,R indicates a run of any protocol.

Lemma B.1. EVENT(R,X , 〈m〉,∅,∅) ⊃ ∃Y.EVENT(R,Y , (x),m,x) and
EVENT(R,X , (x),m,x) ⊃ ∃Y.EVENT(R,Y , 〈m〉,∅,∅)

Proof. This follows from the definitions of the basic cord calculus reactions.
Given a procotolQ with runR, whereS andS′ are arbitrary actions, recall that

EVENT(R,X , 〈m〉,∅,∅) means that the reduction

([S〈m〉S′]X ⊗ C) . . ([SS′]X ⊗ C′)

occurs in runR. Refering to the list of basic reaction steps in Table 3, we see that
this is a reaction of type (2). Plugging in that rule, we get

([S〈m〉S′]X ⊗ [T (x)T ′]Y ⊗D) . . ([SS′]X ⊗ [TT ′(m/x)]Y ⊗D)

with side conditionFV (m) = ∅. Note that these are the same reduction, ifC =
[T (x)T ′]Y ⊗D andC′ = [TT ′(m/x)]Y ⊗D. But by takingE = ([S〈m〉S′]X ⊗D
andE′ = [SS′]X ⊗D, this reduction can also be written as

([T (x)T ′]Y ⊗ E) . . ([TT ′(m/x)]Y ⊗ E′)

which from the definition ofEVENT meansEVENT(R,Y , (x),m,x).
Similarly for the other direction. �

712 N. Durgin et al. / A compositional logic for proving security properties of protocols

Table 14

Summary of syntax

(names) N ::= X variable name

A constant name

(basic keys) K0 ::= k constant key

y variable key

N name

(keys) K ::= K0 basic key

inv(K0) inverse key

(terms) t ::= x variable term

c constant term

N name

K key

t, t tuple of terms

{|t|}K term encrypted with keyK

(actions) a ::= ε the null action

〈t〉 send a termt

(x) receive term into variablex

(νx) generate new termx

(t/q(x1, . . . ,xn)) match termt to patternq

(basic terms) b ::= x | c | N | K basic terms allowed in patterns

(basic patterns) p ::= b, . . . , b tuple pattern

(patterns) q ::= p basic pattern

{|p|}K decryption pattern

(strands) S ::= aS | a
(processes) r ::= (x . . . x)C〈x . . . x〉
(formulas) φ ::= Sent(N , t)

Knows(N , t)

Source(t,N , t,N)

Decrypts(N , t)

Honest(N)

φ ∧ φ
¬φ
∀x.φ

(modal forms) Ψ ::= ρ φ

Lemma B.2. If EVENT(R,X ,σ〈{|x|} Y 〉,∅,∅) for some protocol Q, where σx = m
and σY = K , then Q,R |= Knows(X ,K) ∧ Knows(X ,m).

Proof. This also follows from the definitions of the cord calculus – no term contain-
ing a free variable can be sent.

Let R′ be the run containing all the events of runR up to, but not including, the
〈{|m|} K〉 event.

N. Durgin et al. / A compositional logic for proving security properties of protocols 713

Given a procotolQ with runR, whereS andS′ are arbitrary actions, recall that
EVENT(R,X , 〈{|m|} K〉,∅,∅) means that the reduction

([S〈{|m|} K〉S′]X ⊗ C) . . ([SS′]X ⊗ C′)

occurs in runR. Refering to the list of basic reaction steps in Table 3, we see that
this is a reaction of type (2). Plugging in that rule, we get

([S〈{|m|} K〉S′]X ⊗ [T (x)T ′]Y ⊗D) . . ([SS′]X ⊗ [TT ′({|m|} K/x)]Y ⊗D)

with side conditionFV ({|m|} K) = ∅. In order for this reaction to occur, we have the
condition that {|m|} K can not contain free variables at the time of the reaction. That
means one of the following must be true in the runR′ for K

1. (K) ∈ R′|X , i.e.,EVENT(R′,X , (x),K,x)
2. (νK) ∈ R′|X , i.e.,EVENT(R′,X , (νx),K,x)
3. K ∈ FV (R′|X) (i.e.,K appears in the static interface to the role)
4. (p(t)/p(x)) ∈ R|X , forK ⊆ t i.e.,EVENT(R,X , (p(t)/p(x)), t,x)
5. ({|p(t)|} K′/{|p(x)|} K′) ∈ R|X for K ⊆ t,

i.e.,EVENT(R,X , ({|p(t)|} K′/{|p(x)|} K′), t,x)

In the first three cases, the semantics ofKnows gives usKnow0(X ,K), so
Knows(X ,K). In the fourth case,K occurred in some pattern match action inR′,
which meansKnowi(X ,p(K)), so Knowi+1(X ,K) and thereforeKnows(X ,K).
In the last case,K occurred in some decryption action inR′, which means
Knowi(X , {|p(t)|} K′), so Knowi+1(X ,K) and thereforeKnows(X ,K). If m is
atomic (contains no subterms), then the same argument holds form.

If m is not atomic, thenm must be built by some constructors in the cord calculus.
The possibilities are as follows

1. m = m′,m′′

2. m = {|m′|} m′′

In both of the above cases,m′ andm′′ can contain no free variables, so ifm′ andm′′

are atomic, we haveKnowi(X ,m′) andKnowi(X ,m′′) from the argument above.
If m′ orm′′ is not atomic, then they must have been constructed and again they can
contain no free variables, so we repeat the argument for each component until all
components are atomic.

Therefore,Knows(X ,m) andKnows(X ,K), so the lemma is proved.�

B.1. Axioms

In the following subsections we prove the soundness of the axioms from Table 7.
Each section starts with an informal statement of the axiom, and then proves its
soundness.

714 N. Durgin et al. / A compositional logic for proving security properties of protocols

B.1.1. AN1 [(νm)]X Knows(Y ,m) ⊃ (Y = X)
Informally, Axiom AN1 says that if a principalX generates a new valuem and

takes no further actions, then the only principal who knowsm isX .
By definition,

Q,R |= [(νm)]X Knows(Y ,m) ⊃ (Y = X)

if Q,R |= σ(Knows(Y ,m) ⊃ (Y = X)) whenever (νm) matchesR|X , whereσ is a
matching substitution. By definition ofmatches, (νm) matchesR|X with σ(x) = m
only if (νx) is the last action of one of the roles ofX in R. But since this is the
last action from that role inR, X cannot have sentm to any other principal, and
from the side conditions for theν reaction in Table 3 we know thatm does not
occur elsewhere in the cordspace. Since no events of formEVENT(R,X , 〈m′〉,∅,∅),
wherem ⊆ m′, have occurred, we know from Lemma B.1 that there can be no events
EVENT(R,Y , (x),m′,x). So from the semantics ofKnows, Knows(Y ,m) can’t be
true for any principal besidesX . Therefore, from the semantics ofKnows, onlyX
knowsm. This shows that axiom AN1 is sound.

B.1.2. AN2 [(νm)]X Knows(X ,m)
Informally, Axiom AN2 says that if a principalX generates a new valuem and

takes no further actions, then after that action the principalX knowsm.
By definition,

Q,R |= [(νm)]X Knows(X ,m)

if Q,R |= σ(Knows(X ,m)) whenever (νm) matchesR|X , whereσ is a matching
substitution. By definition ofmatches, (νm) matchesR|X with σ(x) = m only if
(νx) is the last action of one of the roles ofX in R.

In this case, we haveEVENT(R,X , (νx),m,x), which from the semantics for
Knows, meansKnow0(X ,m).

B.1.3. AN3 [(νm)]X ∀t.∀K.Source(m,X , t,K)
Informally, Axiom AN3 says that if a principalX generates a new valuem and

takes no further actions, then after that action any encrypted message could be the
source from which a principal other thanX could have learnedm. This is a vacuous
statement, since AxiomAN1 tells us that onlyX could knowm at this point anyway.

By definition,

Q,R |= [(νm)]X ∀t.∀K.Source(m,X , t,K)

if Q,R |= σ(∀t.∀K.Source(m,X , t,K)) whenever (νm) matchesR|X , whereσ is a
matching substitution. By definition ofmatches, (νm) matchesR|X with σ(x) = m
only if (νx) is the last action of one of the roles ofX in R.

In this case we haveEVENT(R,X , (νx),m,x), and we know from AxiomAN1
that Knows(Y ,m) ⊃ X = B, so from the semantics ofSource we have a false
antecedent, so we can proveSource(m,X , t,K) for any termt and keyK.

N. Durgin et al. / A compositional logic for proving security properties of protocols 715

B.1.4. AS1 [〈m〉]X Sent(X ,m)
Informally, Axiom AS1 says that if a principalX sends a messagem, then the

principal has sentm.
By definition,

Q,R |= [〈m〉]X Sent(X ,m)

if Q,R |= σ(Sent(X ,m)) whenever〈m〉 matchesR|X , whereσ is a matching sub-
stitution. By definition ofmatches, 〈m〉 matchesR|X only if 〈x〉 with σ(x) = m is
the last action of one of the roles ofX in R.

In that case we haveEVENT(R,X ,σ〈x〉,∅,∅) = EVENT(R,X , 〈m〉,∅,∅). So,
from the semantics ofSent, this meansSent(X ,m).

B.1.5. AR1 [(m)]X ∃Y.Sent(Y ,m)
Informally, AxiomAR1 says that if a principalX receives a messagem, then that

message was sent by some principalY .
By definition,

Q,R |= [(m)]X ∃Y.Sent(Y ,m)

if Q,R |= σ(∃Y.Sent(Y ,m)) whenever (m) matchesR|X , whereσ is a matching
substitution. By definition ofmatches, (m) matchesR|X only if (x) with σ(x) = m
is the last action of one of the roles ofX in R.

In this case, we haveEVENT(R,X , (x),m,x). From Lemma B.1, we know that
EVENT(R,X , (x),m,x) ⊃ ∃Y.EVENT(R,Y , 〈m〉,∅,∅). From the semantics of
Sent, this means∃Y.Sent(Y ,m).

B.1.6. AR2 [(m)]X Knows(X ,m)
Informally, Axiom AR2 says that if a principalX receives a messagem, then the

principalX knowsm.
By definition,

Q,R |= [(m)]X Knows(X ,m)

if Q,R |= σ(Knows(X ,m)) whenever (m) matchesR|X , whereσ is a matching
substitution. By definition ofmatches, (m) matchesR|X only if (x) with σ(x) = m
is the last action of one of the roles ofX in R.

In this case, we haveEVENT(R,X , (x),m,x), which from the semantics for
Knows, meansKnow0(X ,m).

B.1.7. AM1 (x1 . . . xn)[]X Knows(X ,x1) ∧ . . . ∧ Knows(X ,xn)
Informally, Axiom AM1 says a principalX always knows its own static parame-

ters.

716 N. Durgin et al. / A compositional logic for proving security properties of protocols

By definition,

Q,R |= (x1 . . . xn)[]X Knows(X ,x1) ∧ . . . ∧ Knows(X ,xn)

if Q,R |= σ(Knows(X ,xi)) wheneverxi ∈ FV (R|X), whereσ is a matching
substitution. Since thexi are static parameters of the cord, the substitution forxi is
the substitution cordσC of the initial configuration of the run. That is, ifσC(xi) = A,
thenKnows(A,m).

From the semantics ofKnows, this meansKnow0(X ,xi).

B.1.8. AD1 [({|m|} K/{|y|} K)]X Decrypts(X , {|m|} K)
Informally, AxiomAD1 says that a principalX has decrypted the message {|m|} K ,

if it knows a message {|m|} K and successfully pattern matched it against {|y|} K .
By definition,

Q,R |= [({|m|} K/{|y|} K)]XDecrypts(X , {|m|} K)

if Q,R |= σ(Decrypts(X , {|m|} K)) whenever ({|m|} K/{|y|} K) matchesR|X , where
σ is a matching substitution.

By definition ofmatches, ({|m|} K/{|y|} K) matchesR|X only if ({|x|} K/{|y|} K) with
σ(x) = m is the last action of one of the roles ofX in R.

In that case we haveEVENT(R,X , ({|m|} K/{|y|} K),m,y), and in order for the pat-
tern match action to take place,FV ({|m|} K) = ∅, which meansKnows(X , {|m|} K).
From the semantics ofDecrypts, this meansDecrypts(X , {|m|} K).

B.2. Relationships between predicates

B.2.1. DEC1 Decrypts(X , {|m|} K) ⊃ Knows(X , {|m|} K)
Informally, DEC1 says that if a principalX decrypts a message {|m|} K , thenX

knows the message {|m|} K .
From the semantics ofDecrypts, we haveEVENT(R,X , ({|m|} K/{|x|} K),m,x)

andKnows(X , {|m|} K), so this follows trivially.

B.2.2. DEC2 Decrypts(X , {|m|} K) ⊃ Knows(X ,m)
Informally, DEC2 says that if a principalX decrypts a message {|m|} K , thenX

knows the messagem.
From the semantics ofDecrypts, we haveEVENT(R,X , ({|m|} K/{|x|} K),m,x)

andKnows(X , {|m|} K). From the decryption pattern match case of the semantics of
Knows, with p(m) = m, that meansKnows(X ,m).

B.2.3. SEC Honest(X) ∧ Decrypts(Y , {{|m|} X }) ⊃ (Y = X)
Informally, SEC says that if a principalX is honest, and some principalY has

decrypted a message {|m|} X (i.e., a message encrypted withX ’s public key), thenY
must beX . In other words, ifX is honest, then nobody butX knowsX (X ’s private
key).

N. Durgin et al. / A compositional logic for proving security properties of protocols 717

This axiom follows from Lemma 3.4, which says for any configurationC of pro-
tocolQ, and any runR,

EVENT(R,X , ({|t|} Y /{|x|} Y), t,x) ∧X ∈ HONEST(C) ⊃ X = Y.

SinceHonest(X) meansX ∈ HONEST(C), andEVENT(R,X , ({|t|} Y /{|x|} Y),
t,x) meansDecrypts(X , {|t|} Y), this follows directly.

B.2.4. SRC Source(m,X , t,K)∧ Knows(Z,m) ∧ Z �= X ⊃
∃Y.Decrypts(Y , {|t|} K)

Informally, SRC says that if the only source of messagem is the message {|t|} K ,
then if anybody (besides principalX who createdm) knowsm, then somebody must
have decrypted the message {|t|} K .

From the semantics ofSource(m,X , t,K) we have

∀Z.(Z �= X ∧ Knows(Z,m)) ⊃
Decrypts(Z, {|t|} K) ∨ (∃Y.Decrypts(Y , {|t|} K) ∧ Sent(Y , t′))

And sinceKnows(Z,m) ∧ Z �= X , that means the antecedent is statisfied, so
∃Y.Decrypts(Y , {|t|} K).

B.2.5. K1 Knows(X ,x,y) ⊃ Knows(X ,y) ∧ Knows(X ,x)
Informally, K1 says that if a principalX knows the tuplex,y, then the principal

knowsx andy.
This follows from the semantics ofKnows. If Knows(X ,x,y), thenKnowi(X ,

x,y) for somei, and thereforeKnowi+1(X ,x) andKnowi+1(X ,y).

B.3. Proof rules

B.3.1. S1 – The Source rule

S1
[P]XSource(m,X , t,K)

[P 〈{|t|} K〉]XSource(m,X , t,K)
m ⊆ t

Informally, Axiom S1 says that when principalX sends a message containingm,
that message becomes the possible source from which another principal might ob-
tainm.

Let R′ be the run in the premise, andR be the continuation ofR′ in the
conclusion. First note that the premise and the semantics ofSource give us
EVENT(R′,B, (νx),m,x) for P matchingR′|X , so we knowEVENT(R,B, (νx),
m,x) for P 〈{|t|} K〉 matchingR|X .

AssumeKnows(X ,m) ∧X �= B.
We know from the semantics ofKnows thatKnows(X ,m) can be true in a runR

in the following circumstances:

718 N. Durgin et al. / A compositional logic for proving security properties of protocols

1. (νm) ∈ R|X , i.e.,EVENT(R,X , (νx),m,x)
2. m ∈ FV (R|X) (i.e.,m appears in the static interface to the role)
3. (m) ∈ R|X , i.e.,EVENT(R,X , (x),m,x)
4. (p(t′)/p(x)) ∈ R|X , for m ⊆ t′ i.e.,EVENT(R,X , (p(t′)/p(x)), t′,x)
5. ({|p(t′)|} K′/{|p(x)|} K′) ∈ R|X for m ⊆ t′,

i.e.,EVENT(R,X , ({|p(t′)|} K′/{|p(x)|} K′), t′,x)

If we assumeX �= B, then the first possibility is ruled out, because we know
EVENT(R,B, (νx),m,x), which means from reaction rule (5) thatm couldn’t ap-
pear anywhere else in the cordspace at the time of the (νx) action. IfEVENT(R,B,
(νx),m,x) occured in runR first, thenEVENT(R,X , (νx),m,x) for X �= B could
not occur later, and vice versa.

Similarly, the second possibility is ruled out, because again we knowEVENT(R,
B, (νx),m,x), which means from reaction rule (5) thatm couldn’t appear anywhere
else in the cordspace, in particular not in the static interface of any of the roles.

For the last case, ift = t′ andK = K ′, thenDecrypts(X , {|t|} K), and we are
done.

Otherwise,X received eitherm directly, or in some pattern containingm. But
in order forEVENT(R,X , (x), t′,x) with m ⊆ t′, we know from Lemma B.1 that
∃Y.EVENT(R,Y , 〈t′〉,∅,∅), and we know from Lemma B.2 that all values in the
term t′, in particularm, must have been known. So in order forKnows(Y ,m), ei-
ther Decrypts(Y , {|t|} K) or EVENT(R,Y , (x), t′′,x) with m ⊆ t′′. We repeat this
argument until we find theY that actually decrypted {|t|} K .

Thus we have

EVENT(R,B, (νx),m,x)∧

((X �= B ∧ Knows(X ,m)) ⊃ Decrypts(X , {|t|} K)∨

(∃Y.Decrypts(Y , {|t|} K) ∧ Sent(Y , t′)))wherem ⊆ t′

which from the semantics ofSource meansSource(m,B,m′,K).

B.3.2. HON – the honesty rule
For protocolQ, the honesty rule is

∀ρ ∈ Q.∀P ⊆ ρ.Q � (�Z)[P]X φ

Q � Honest(X) ⊃ φ
HON

no free variable inφ
exceptX bound in
(�Z)[P]X

Where (�Z)[P]X is the initial stepsP of roleρ with static variables (�Z), and no free
variable inφ other thanX is bound by (�Z)[P]X . AssumeQ � (�Z)[P]X φ for all
P ⊆ ρ,ρ ∈ Q. By soundness for shorter proofs, we assumeQ,R |= (�Z)[P]X φ for
all runsR of protocolQ.

N. Durgin et al. / A compositional logic for proving security properties of protocols 719

We must show thatQ,R |= Honest(X) ⊃ φ, for any runR. Letσ be any substi-
tution such thatσ(Honest(X) ⊃ φ) has no free variables, and letA = σ(X). Then
we must show that ifQ,R |= Honest(A) thenQ,R |= σφ.

AssumeQ,R |= Honest(A). Then from the semantics ofHonest and Lemma 3.1,
R|A is an interleaving of traces of roles ofQ carried out byA. Consider any standard
trace inR|A. By definition of honesty, this trace is matched by some prefixP of a
roleρ in Q.

Let τ be the matching substitution. BecauseQ,R |= (�Z)[P]A σφ, andP matches
R|A by τ , we conclude thatQ,R |= τ (σφ). But since (�Z)[P]X does not bind any
variables inφ exceptX , τ (σφ) is justσφ, and thereforeQ,R |= σφ.

B.3.3. Generic rules
G1 follows from the semantics of “∧”, i.e.,

• Q,R |= (φ1 ∧ φ2) if Q,R |= φ1 andQ,R |= φ2

• Q,R |= [P]Xφ if P matchesR|X impliesQ,R |= φ.

Similarly, G2 follows from the meaning of the logical connectives.
G3 is valid because ifφ is true after any run, thenφ is true after a specific run that

contains actionsP .

B.3.4. Preservation rules
Since the semantics ofKnows, Sent, andDecrypts are all based on the existence

of a certain event in a run, adding additional events to the run cannot make these
predicates false, so they are always preserved.

Source(m,X , t,k) is not preserved if additional messages other than {|t|} K are
sent that contain the noncem, because it is now possible forKnows(Y ,m)∧X �= Y
to be true without the message {|t|} K ever being decrypted. SoSource can become
false if additional messages are sent that containm.

References

[1] M. Abadi and A. Gordon, A calculus for cryptographic protocols: the spi calculus,Information
and Computation 148(1) (1999), 1–70. Expanded version available as SRC Research Report 149
(January 1998).

[2] G. Berry and G. Boudol, The chemical abstract machine,Theoretical Computer Science 96 (1992),
217–248.

[3] M. Burrows, M. Abadi and R. Needham, A logic of authentication, in:Proceedings of the Royal
Society, Series A 426(1871) (1989), 233–271. Also appeared as SRC Research Report 39 and, in a
shortened form, inACM Transactions on Computer Systems 8(1) (1990), 18–36.

[4] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell and A. Scedrov, A meta-notation for protocol analy-
sis, in: 12-th IEEE Computer Security Foundations Workshop, P. Syverson, ed., IEEE Computer
Society Press, 1999.

[5] F. Crazzolara and G. Winskel, Events in security protocols, in:ACM Conference on Computer and
Communications Security, 2001, pp. 96–105.

720 N. Durgin et al. / A compositional logic for proving security properties of protocols

[6] F. Crazzolara and G. Winskel, Composing strand spaces, in:FST TCS 2002: Foundations of Software
Technology and Theoretical Computer Science, 22nd Conference Kanpur, India, M. Agrawal and
A. Seth, eds,Proceedings, Volume 2556 ofLecture Notes in Computer Science, Springer, 2002.

[7] D. Dolev and A. Yao, On the security of public-key protocols,IEEE Transactions on Information
Theory 2(29) (1983).

[8] F.J.T. Fábrega, J.C. Herzog and J.D. Guttman, Strand spaces: Why is a security protocol correct? in:
Proceedings of the 1998 IEEE Symposium on Security and Privacy, Oakland, CA, IEEE Computer
Society Press, 1998, pp. 160–171.

[9] R.W. Floyd, Assigning meaning to programs, in:Mathematical aspects of computer science: Proc.
American Mathematics Soc. Symposia, J.T. Schwartz, ed., Volume 19, Providence RI, American
Mathematical Society, 1967, pp. 19–31.

[10] L. Gong, R. Needham and R. Yahalom, Reasoning about belief in cryptographic protocols, in:Pro-
ceedings 1990 IEEE Symposium on Research in Security and Privacy, D. Cooper and T. Lunt, eds,
IEEE Computer Society, 1990, pp. 234–248.

[11] C.A.R. Hoare, An axiomatic basis for computer programming,Communications of the ACM 12(10)
(1969), 576–580.

[12] K.G. Larsen and R. Milner, A compositional protocol verification using relativized bisimulation,
Information and Computation 99 (1992).

[13] G. Lowe, An attack on the Needham–Schroeder public-key protocol,Info. Proc. Letters 56 (1995),
131–133.

[14] G. Lowe, Breaking and fixing the Needham–Schroeder public-key protocol using CSP and FDR, in:
2nd International Workshop on Tools and Algorithms for the Construction and Analysis of Systems,
Springer-Verlag, 1996.

[15] C. Meadows, The NRL protocol analyzer: an overview,J. Logic Programming 26(2) (1996), 113–
131.

[16] R. Milner, Action structures, LFCS report ECS-LFCS-92-249, Department of Computer Science,
University of Edinburgh, JCMB, The Kings Buildings, Mayfield Road, Edinburgh, December 1992.

[17] R. Milner, Action calculi and the pi-calculus, in:NATO Summer School on Logic and Computation,
Marktoberdorf, 1993.

[18] R. Milner, Action calculi, or syntactic action structures, in:Mathematical Foundations of Computer
Science 1993, 18th International Symposium, MFCS ’93, Springer, 1993, pp. 105–121.

[19] R. Milner,Communicating and Mobile Systems: The π-Calculus, Cambridge University Press, Cam-
bridge, UK, 1999.

[20] R. Milner, J. Parrow and D. Walker, A calculus of mobile processes, part i,Information and Compu-
tation 100(1) (1992), 1–40.

[21] J. Mitchell, M. Mitchell and U. Stern, Automated analysis of cryptographic protocols using Murϕ,
in: Proc. IEEE Symp. Security and Privacy, 1997, pp. 141–151.

[22] R. Needham and M. Schroeder, Using encryption for authentication in large networks of computers,
Communications of the ACM 21(12) (1978), 993–999.

[23] L. Paulson, Proving properties of security protocols by induction, in:10th IEEE Computer Security
Foundations Workshop, 1997, pp. 70–83.

[24] D. Pavlovic, Categorical logic of names and abstraction in action calculi,Math. Structures in Comp.
Sci. 7(6) (1997), 619–637.

[25] A.W. Roscoe, Modelling and verifying key-exchange protocols using CSP and FDR, in:8th IEEE
Computer Security Foundations Workshop, IEEE Computer Soc. Press, 1995, pp. 98–107.

[26] P. Syverson, Adding time to a logic of authentication, in:ACM Conference on Computer and Com-
munications Security, 1993, pp. 97–101.

N. Durgin et al. / A compositional logic for proving security properties of protocols 721

[27] P. Syverson and P. van Oorschot, On unifying some cryptographic protocol logics, in:Proc. 1994
IEEE Computer Security Foundations Workshop VII, 1994, pp. 14–29.

[28] J. Thayer, J. Herzog and J. Guttman, Strand spaces: Proving security protocols correct, 1999,Journal
of Computer Security 15 (1999).

