
Unifying Equivalene-Based De�nitions of Protool Seurity?Anupam Datta1, Ralf K�usters1, John C. Mithell1, Ajith Ramanathan1, and Vitaly Shmatikov21 Stanford University2 SRI InternationalAbstrat. Several related researh e�orts have led to three di�erent ways of speifying protool se-urity properties by simulation or equivalene. Abstrating the spei�ation onditions away from theomputational frameworks in whih they have been previously applied, we show that when asynhronousommuniation is used, universal omposability, blak-box simulatability, and proess equivalene ex-press the same properties of a protool. Further, the equivalene between these onditions holds for anyomputational framework, suh as proess alulus, that satis�es ertain strutural properties. Similarbut slightly weaker results are ahieved for synhronous ommuniation.1 IntrodutionOne appealing and relatively natural way to speify seurity properties is through simulation or equivalene.Fousing on protools and equivalene, we an say what protool P should ahieve by giving an idealfuntionality Q and saying that P be equivalent to Q in the fae of attak. For example, P may be a keyexhange protool that operates over a publi network, and Q an idealized protool that uses some assumedform of private hannel to generate and distribute shared keys. If no adversary an make P behave di�erentlyfrom Q, then sine Q is impervious to attak by onstrution, we are assured that P annot be suessfullyattaked. While this intuitive approah may seem lear enough, more preise formulations involve a numberof details. For example, we may want to use one form of \ideal key exhange" with few messages to studyseveral ompeting protools. This ideal key exhange protool is distinguishable from key exhange protoolsthat use di�erent numbers of messages, but we an onstrut a simulator that uses the ideal key exhangeprimitive to produe additional messages. Thus a natural variation is not to expet P to be equivalent toQ, but ask that P be equivalent to some extension of Q that simulates P and retains the funtionality ofQ. Another issue is that we want users of the protool to have the same positive outome under all usesenarios.The main advantage of spei�ation by simulation or equivalene is omposability: if protool P is indis-tinguishable from ideal behavior Q, and protool R is similarly indistinguishable from S, then P omposedwith R is indistinguishable from Q omposed with S. Sine many forms of seurity do not ompose, theimportane of omposability should not be underestimated. Another advantage is generality: simulation andequivalene are meaningful when the protool and the adversary operate in probabilisti polynomial time,and meaningful with nondeterministi omputation and idealized ryptography.We examine three similar spei�ation approahes, and ompare the methods over any omputationalframework satisfying familiar properties of proess alulus. In this setting, we prove a very general or-respondene: universal omposability, blak-box simulatability, and proess equivalene express the sameproperties of a protool, assuming asynhronous ommuniation. Sine our proofs hold for any proess al-ulus that satis�es ertain equational priniples, our results are robust and not dependent on speializedproperties of any spei� omputational setting. However, our results do not immediately apply to Turingmahine models [7{11℄ or IO Automata models [18, 4℄ unless the assumed strutural properties an be es-tablished for these models. If synhronous ommuniation is available, one part of the equivalene beomesweaker beause synhronous ommuniation allows proesses to detet an intermediate proess ating as abu�er.? This work was partially supported by NSF CCR-0121403, Computational Logi Tools for Researh and Eduation,the OSD/ONR CIP/SW URI \Software Quality and Infrastruture Protetion for Di�use Computing," under ONRGrant N00014-01-1-0795, and the \Deutshe Forshungsgemeinshaft (DFG)".



Although our results may be most useful to researhers onerned with one of the three methods, somehigh-level points may be understood more broadly. First, rather than �nding tehnial di�erenes betweenompeting approahes, we �nd that three approahes based on essentially similar intuition are in fat tehni-ally equivalent. Someone beginning to study this literature an therefore start with any of the approahes.Seond, results proved about one form of spei�ation may be transferred to other forms, simplifying thelikely future development of this topi. Third, we believe that the equivalene of three di�erent tehnialde�nitions, and the fat that this equivalene holds for a broad range of omputational models, stronglysuggests that there is a robust, fundamental notion underlying the three de�nitions.Universal omposability [7{9, 11, 10℄ involves a protool to be evaluated, an ideal funtionality, two adver-saries, and an environment. The protool has the ideal funtionality if, for every attak on the protool, thereexists an attak on the ideal funtionality, suh that the observable behavior of the protool under attakis the same as the observable behavior of the idealized funtionality under attak. Eah set of observationsis performed by the same environment. Blak-box simulatability [18, 12, 4℄ is a formally stronger notion inwhih the two attaks must be related in a uniform way. Blak-box simulatability involves a protool to beevaluated, an ideal funtionality, a simulator, one adversary, and an environment. The protool has the idealfuntionality if there exists a simulator suh that the protool and simulation are indistinguishable by anyuser environment in the fae of any network adversary. The di�erene between universal omposability andblak-box simulatability is that in the �rst ase, for every attak on the protool, there must be an attakon the ideal funtionality. In the seond ase, the same is true, but the seond attak must be the same asthe �rst attak, interating with the the ideal funtionality through a �xed simulator. An essential di�erenebetween the adversary and the environment is that the adversary only has aess to network ommuniation,while the environment interats with the system through input/output onnetions that are not aessibleto the adversary.While the �rst two methods were developed using sets of ommuniating Turing mahines and probabilis-ti I/O automata, the third method was developed using proess alulus. In the third method, assoiatedwith spi-alulus [2, 3℄, applied �-alulus [1℄, and a probabilisti polynomial-time proess alulus [16, 14,17, 19℄, a protool P satis�es spei�ation Q if P is observationally equivalent to Q. The spei�ation Qmay be the result of ombining some ideal proess and a simulator. Observational equivalene is a standardnotion from the study of programming languages and onurreny theory [15℄. Proess P is observationallyequivalent to Q, written P �= Q if, for every ontext C[ ℄ onsisting of a proess with a plae to insert Por Q, the observable behavior of C[P ℄ is the same as C[Q℄. The reason observational equivalene is relevantto seurity is that we an think of the ontext as an attak. Then P �= Q means that any attak on Pmust sueed equally well on Q, and onversely. In [16, 14, 17, 19℄, an asymptoti form of proess equivaleneis used, making observational equivalene the same as asymptoti indistinguishability under probabilistipolynomial-time attak.Our main results are that with synhronous ommuniation, proess equivalene implies blak box sim-ulatability, and blak box simulatability is equivalent to universal omposability. With asynhronous om-muniation, all three notions are equivalent. These results are demonstrated using formal proofs based onstandard proess alulus properties suh as assoiativity of parallel omposition, ommutativity, renamingof private hannels, sope extrusion, and ongruene, together with a few fats about proesses that bu�eror forward messages from one hannel to another. Sine our proofs are based on relatively simple axioms, theproofs arry over to any proess alulus that satis�es these reasonable and well-aepted equational prini-ples. Although the likely equivalene between universal omposability and blak-box simulatability has beenmentioned in other work [7℄, we believe this is the �rst general proof of a preise relationship; an independentproof of the equivalene of blak-box simulatability and universal omposability is presented for a spei�model (I/O automata) in [5℄, whih appeared between the time we submitted this paper for publiation andthe time it appeared. Previous work on universal omposability and blak-box simulatability is not situatedin proess alulus, making the kind of general result we present here, and omparison with proess equiv-alene methods, diÆult. In future work, we hope to extend our analysis to inlude ommuniating Turingmahines (as in [7℄ and other work on universal omposability) and I/O automata (as in [18, 4℄ and relatedwork).The rest of the paper is organized as follows. Setion 2 desribes proess alulus syntax, the equationalpriniples used in the rest of the paper, and the di�erenes between synhronous and asynhronous ommu-



niation. In Setion 3, we de�ne universal omposability, blak-box simulatability and proess equivaleneas relations on proess alulus. Setion 4 proves that universal omposability is equivalent to blak-boxsimulatability. Setion 5 shows that while proess equivalene and blak-box simulatability are equivalentwith asynhronous ommuniation, the impliation holds in one diretion only with synhronous ommuni-ation. The proofs presented in these setions rely just on the equational priniples set forth in Setion 2and hene hold for any alulus in that lass. Setion 6 shows that two onrete aluli (the probabilistipolytime proess alulus of [19, 20℄ and the spi-alulus [3℄) satisfy the assumed equational priniples andtherefore the theorems hold for them. Finally, in Setion 7, we summarize our onlusions and mention somediretions for future work.2 Proess CalulusProess alulus is a standard language for studying onurreny [15, 21℄ that has proved useful for reasoningabout seurity protools [3, 20℄. Two main organizing ideas in proess alulus are ations and hannels.Ations our on hannels and are used to model ommuniation ows.Channels provide an abstration of theommuniation medium. In pratie, hannels might represent the ommuniation network in a distributedsystem environment or the shared memory in a parallel proessor. In this setion, we desribe a family ofproess aluli by giving a sample syntax and a set of equational priniples. Two example aluli that satisfyour equational assumptions, spi-alulus [3℄ and the probabilisti polynomial-time proess alulus of [20℄,are disussed Setion 6.A proess alulus provides a syntax and an assoiated semantis. For onreteness, we will use the syntaxde�ned by the following grammar, although additions to the language or hanges in syntati presentationare not likely to a�et our results.P ::= 0 (termination)�(P) (private hannel)in [; x℄ :(P) (input)out [; T℄ :(P) (output)[T1 = T2℄:(P) (math)(P j P) (parallel omposition)!f(x):�P� (bounded repliation)Intuitively 0 is the empty proess taking no ation. An input operator in [; x℄ :P waits until it reeives a valueon the hannel  and then substitutes that value for the free variable x in P. Similarly, an output out [; T℄ :Pevaluates the term T, transmits that value on the hannel , and then proeeds with P. Channel names thatappear in an input or an output operation an be either publi or private, with a hannel being private ifit is bound by a �-operator and publi otherwise. For onveniene, we always �-rename hannel names sothat they are all distint. The math operator [T1 = T2℄ exeutes the proess following i� T1 have the T2value. The bounded repliation operator has bound determined by the funtion f aÆxed as a subsript. Theexpression !f(x):�P� is expanded to the f(x)-fold parallel omposition P j � � � j P before evaluation.Sine an output proess out [; T℄ :(P) only proeeds when another proess is ready to reeive its input, thisproess alulus has synhronous ommuniation. For maximal generality, we proeed using a synhronousalulus, onstruting asynhronous hannels when desired by inserting bu�er proesses. In an asynhronoussetting, inserting an additional bu�er on a hannel would presumably have no e�et, and our results wouldtherefore remain valid.2.1 Equational PriniplesA proess alulus syntax and semantis give rise to an equivalene relation �= alled observational equiva-lene. Informally, two proess alulus expressions are observationally equivalent if they produe the sameobservations, when exeuted in any ontext. Traditionally, observations are ations on publi hannels, withations on a hannel  bound by �() private and unobservable.We will assume the standard equational priniples olleted in Table 1. Rules TRN , SYM , and CONGstate that observational equivalene is a ongruene. Rule RENAME renames bound hannels and SCOPE



allows us to \extrude" the sope of a private hannel. Intuitively, with hannels alpha-renamed apart, we anenlarge the sope of a hannel binding without hanging the observable behavior of the proess. Rule ZEROsays that the zero proess produes no observable ativity. Rules COM and ASC reet the assoiativityand ommutativity of parallel omposition. P j Q �= Q j P (COM)(P j Q) j R �= P j (Q j R) (ASC)0 j P �= P (ZERO)�() = �(d)�(P) �= �d(P [d=℄) (RENAME) 62 Channels(C[0℄)�(C[P℄) �= C[�(P)℄ (SCOPE)P �= Q;Q �= RP �= R (TRN)P �= QQ �= P (SYM)P �= Q8C[ ℄ 2 Con : C[P℄ �= C[Q℄ (CONG)Table 1. Equivalene PriniplesFor reasons that will beome lear in later setions of the paper, we partition the set of publi hannelnames into two in�nite sets: the network hannels and the input-output hannels. We use the abbreviationnet to refer to network hannels and io for input-output hannels. The di�erene between these two sets isthat network hannels will arry ommuniation aessible to the adversary, while io hannels allow users(the environment) to provide inputs to and observe the outputs produed by the protool. We use �net toindiate binding �n1; : : : ; �nk of all network hannels in a proess, and similarly �io for binding all io hannels.Throughout the paper, we use P, F, A, and S (with supersripts if neessary) for proesses that representa real protool, an ideal funtionality, an adversary and a simulator. These may be arbitrary proesses, exeptthat we impose restritions on the names of publi hannels that eah may ontain. Spei�ally, all publihannel names in a protool P, an ideal funtionality F, and an adversaryA must be network or input-outputhannels, while all publi hannel names in a simulator S must be network hannels. For any given protoolP, the io hannels of an adversary A attaking P must be disjoint from the io hannels of P. The purposeof these restritions is to allow the adversary, for example, to onnet to the network hannels of a protoolor ideal funtionality, but not to its input-output hannels. Also, by making all network hannels privatewhen a protool P is ombined with an adversary A, we ensure that only the io hannels are aessible tothe environment.2.2 Bu�ers, dummy adversaries, and asynhronous ommuniationOne of the main di�erenes between proess equivalene and the two other relations is that proess equiva-lene only involves one form of ontext (surrounding proesses interating with the protool), as opposed toseparate adversary and environment ontexts in the other two relations. Therefore, while investigating theonnetion between proess equivalene and the other relations, we will replae the adversary in the otherde�nitions by a \dummy adversary" that does nothing but pass messages to the surrounding ontext. Also,sine the underlying proess alulus is assumed to be synhronous, we interpose \bu�ers" between proessesto enfore asynhronous ommuniation when desired. Consequently, our proofs require ertain equationalproperties of bu�ers and simple proesses that forward messages from one hannel to another.For any pair a and b of disjoint lists of hannel names, both of the same length, we assume two proessesDba and Bba, whih we will all a dummy adversary and a bu�er proess, respetively. Intuitively, the axioms



about Dba and Bba below state that these proesses forward data between hannels a1; : : : ; ak and b1; : : : ; bk,respetively. A dummy adversary may need to preserve message order to satisfy Axiom 1, but a bu�er neednot preserve message order. We assume that Dba and Bba have the hannel names a1; : : : ; ak and b1; : : : ; bkfree, and no other free hannel names.Axiom 1 (Dummy Adversary (DUMMY)). Let P be a protool and A be an adversary. Then �net(P jA) �= �net;dummy(P j Ddummynet j A[dummy=net℄) where dummy is a set of fresh hannels of ardinality jnetjused to ommuniate between the dummy adversary and the modi�ed adversary.Axiom 2 (Double Bu�ering (DBLBUF)). Let Bba, Bb and Ba be three bu�ers, for disjoint lists ofhannel names a, b,  of the same length. Then, �b(Bba j Bb) �= Ba.Axiom 3 (Dummy and Bu�er (DUMBUF)). Let Bba, Bb and Ba be three bu�ers and let Db and Dba bedummy adversaries, for disjoint lists of hannel names a, b,  of the same length. Then, �b(Bba j Db) �= Baand �b(Dba j Bb) �= BaIntuitively, Axiom 1 states that the interation between a protool and adversary through the network isindistinguishable from a situation when the ommuniation between the protool and the adversary is routedthrough the dummy adversary. Axiom 2 states that two bu�ers plaed on a hannel are indistinguishable fromone bu�er on that hannel and Axiom 3 states that plaing a dummy adversary and a bu�er in sequene on ahannel is equivalent to just having a bu�er on that hannel. Spei� bu�er and dummy adversary proessesare presented in Setion 6.3 Seurity De�nitionsIn this setion, we de�ne three relations on proesses, universal omposability, blak-box simulatability andproess equivalene. These de�nitions are �rst presented in the synhronous form, then modi�ed at the endof the setion to assume asynhronous ommuniation by plaing bu�ers between proess, adversary, andenvironment.De�nition 4. Universal Composability: A protool P is said to seurely realize an ideal funtionality F iffor any adversary A attaking the protool, there exists an adversary A� attaking the ideal funtionality,suh that no ontext an distinguish whether it is interating with P and A or with F and A� . Formally,8A:9A� : �net(P j A) �= �net(F j A�)Figure 1 provides further intuition. The protool as well as the ideal funtionality ommuniate with therespetive adversary proesses over the network hannels (denoted net in the �gure). These hannels arenot visible to the ontext (or \environment" to use the terminology of [7, 18℄). However, the ontext getsto ommuniate with these proesses over the input-output hannels (denoted io in the �gure). All otherhannels of P, A, F, and A� are private. The intuition behind the distintion between hannels is that if youare a user of SSL (Seure Sokets Layer), for example, your browser ommuniates with the implementationof SSL through io hannels, while an attaker on the network has ontrol of traÆ on net hannels.Sine the two proess expressions in the de�nition of Universal Composability are observationally equiv-alent, this implies that if there is an attak on the real protool, then there exists an equivalent attak onthe ideal funtionality. Hene, if the ideal funtionality is impervious to attak by onstrution, then a realprotool that satis�es the above de�nition wrt the ideal funtionality also annot be attaked. While [7{9,11, 10℄ disuss an adversary and environment, the environment here is provided by the ontext used in thede�nition of �=.In the de�nition of blak-box simulatability and proess equivalene, we use a simulator proess whosepubli hannels orrespond to the union of the network hannels of the ideal funtionality (denoted simbelow) and the network hannels of the adversary (denoted net below).
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Fig. 1. Universal ComposabilityDe�nition 5. Blak-box Simulatability: A protool P is said to seurely realize an ideal funtionality F ifthere exists a simulator S suh that for any adversary A, no ontext an distinguish whether it is interatingwith P and A or with F, S and A. Formally,9S:8A: �net(P j A) �= �net(�sim(F j S) j A)Figure 2 depits this senario. In e�et, the simulator S uses the ideal funtionality F to simulate thereal protool P. The di�erene between universal omposability and blak-box simulatability is that in the�rst ase, for every attak on the protool, there must be an attak on the ideal funtionality. In the seondase, the same is true, but the seond attak must be the same as the �rst attak, arried out on a simulationof the protool that may rely on the ideal funtionality.
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Fig. 2. Blak Box SimulatabilityDe�nition 6. Proess Equivalene: A protool P is said to seurely realize an ideal funtionality F if thereexists a simulator S suh that no ontext an distinguish whether it is interating with P or with F and S.Formally, 9S: P �= �sim(F j S)Figure 3 depits this situation. Note that, unlike the �rst two de�nitions, the ontext has aess to boththe network and the input-output hannels. Intuitively, the ontext used in the de�nition of observationalequivalene serves the roles of both the adversary and the environment.For eah of these three relations, we formulate below orresponding asynhronous onditions by interpos-ing message bu�ers or \bags" [15℄ on the network, input-output, and simulation hannels. A bu�er is anyproess satisfying the syntati restritions and axioms desribed in Setion 2.2.
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Fig. 3. Proess EquivaleneUC : 8A:9A�: �ph;pn;an;ah(Bhph j P j Banpn j A j Bh0ah) �= �fh;fn;sn;sh(Bhfh j F j Bsnfn j A� j Bh0sh)BB : 9S:8A �ph;pn;h0;ah0(Bhph j P j Bh0pn j A j Bh00ah0) �= �fh;fn;sn;sh;h0;ah0(Bhfh j F j Bsnfn j S j Bh0sh j A j Bh00ah0)PE : 9S: �ph;pn(Bhph j P j Bnpn) �= �fh;fn;sh;sn(Bhfh j F j Bshfn j S j Bnsn)The binding of hannels used in these de�nitions should be intuitively lear. In the UC ondition, forexample, Bhph bu�ers messages on P 0s input-output hannels; it forwards messages on the hannels labelledh to P 0s input-output hannels (denoted ph). By binding the hannels ph, we ensure that they are notobservable by the environmental ontext. Similarly, Banpn and Bh0ah bu�er messages on the network hannelsbetween P and A and the io hannels of A.4 Blak-box Simulatability and Universal ComposabilityIn this setion, we prove that universal omposability and blak-box simulatability are equivalent for bothsynhronous and asynhronous ommuniation.Theorem 7. Universal omposability is equivalent to blak-box simulatability with synhronous ommuni-ation.Proof. (: Follows immediately by sope extrusion (SCOPE), assoiativity of parallel-or (ASC) and re-naming of private hannels (RENAME). The formal proof is given in Table 2. A� is simply �sim(SR j AR).Thus, the ombination of the simulator and the real adversary gives us the ideal proess adversary demandedby the universal omposability de�nition.BB 9S:8A: �net(P j A) �= �net(�sim(F j S) j A) (1)(1);SCOPE;ASC 9S:8A: �net(P j A) �= �sim(F j �net(S j A)) (2)(2);RENAME 9S:8A: �net(P j A) �= �net(FR j �sim(SR j AR)) (3)(3) 8A:9A�: �net(P j A) �= �net(FR j A�) (4)Table 2. Blak-Box Simulatability implies Universal Composability (Synhronous Communiation)): The formal proof is in Table 3. In Figure 4, the same proof is skethed out using intuitive diagrams ofthe form introdued in Setion 3. We use standard proess alulus proof rules: ongruene (CONG), asso-iativity of parallel-or (ASC), renaming of private hannels (RENAME), and sope extrusion (SCOPE).The only step in the proof that does not immediately follow from our general equational priniples rulesis (4). We use the network-spei� equivalene rule DUMMY (see Axiom 1) here. This rule aptures theintuition that the environment annot distinguish whether it is interating with a proess P and adversary



A or it is interating with P and A where the ommuniation between them is forwarded through a \dummyadversary", D, whih just forwards messages in the order in whih it reeives them. Naturally, a dummyadversary proess has to be de�ned and the assumed equivalene has to be proven in any onrete alulusin whih we wish to apply our general results. In partiular, as disussed in a later setion, the notion ofa \dummy adversary" is made rigorous in De�nition 16 and the equivalene proved in Lemma 18 for theprobabilisti polytime proess alulus of [20℄.UC 9S: �net(P j D) �= �net(F j S) (1)(1);CONG 9S:8A: �a0(�net(P j D j AR)) �= �a0(�net(F j S) j AR) (2)(2);SCOPE;ASC 9S:8A: �net(P j �a0(D j AR)) �= �a0(�net(F j S) j AR) (3)(3);DUMMY 9S:8A: �net(P j A) �= �a0(�net(F j S) j AR) (4)(4);RENAME 9S:8A: �net(P j A) �= �net(�sim(FR j SR) j A) (5)Table 3. Universal Composability implies Blak-Box Simulatability (Synhronous Communiation)
Theorem 8. Universal omposability is equivalent to blak-box simulatability with asynhronous ommuni-ation.Proof. (: Follows immediately by sope extrusion (SCOPE), assoiativity of parallel-or (ASC) and renam-ing of private hannels (RENAME). The formal proof is exatly the same as the one for the synhronousmodel. A� is simply �sn;an(S j Bansn j A).): The formal proof is given in Table 4. The standard proess alulus rules used in the proof areongruene (CONG) and sope extrusion (SCOPE). The two non-standard rules used are (DBLBUF)and (DUMBUF). As for (DUMMY) these rules need to be proven in any onrete alulus in whih wewish to apply our general results. These rules are formally proved for the probabilisti polytime alulus inLemma 19 and Lemma 20 respetively.UC 9S: �ph;pn;an;ah(Bhph j P j Banpn j Dahan j Bh0ah) �= �fh;fn;sn;sh(Bhfh j F j Bsnfn j S j Bh0sh) (1)(1);CONG 9S:8A �ph;pn;an;ah;h0;ah0(Bhph j P j Banpn j Dahan j Bh0ah j A j Bh00ah0) �=�fh;fn;sn;sh;h0;ah0 (Bhfh j F j Bsnfn j S j Bh0sh j A j Bh00ah0) (2)(2);SCOPE;DUMBUF 9S:8A �ph;pn;an;h0;ah0(Bhph j P j Banpn j Bh0an j A j Bh00ah0) �=�fh;fn;sn;sh;h0;ah0 (Bhfh j F j Bsnfn j S j Bh0sh j A j Bh00ah0) (3)(3);SCOPE;DBLBUF 9S:8A �ph;pn;h0;ah0(Bhph j P j Bh0pn j A j Bh00ah0) �=�fh;fn;sn;sh;h0;ah0 (Bhfh j F j Bsnfn j S j Bh0sh j A j Bh00ah0) (4)Table 4. Universal Composability implies Blak-Box Simulatability (Asynhronous Communiation)
5 Proess Equivalene and Blak-box SimulatabilityProess equivalene and blak-box simulatability are equivalent with asynhronous ommuniation. Withsynhronous ommuniation, however, proess equivalene implies blak-box simulatability but not on-versely.
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Theorem 9. Proess equivalene implies blak-box simulatability with synhronous ommuniation.Proof. By de�nition, we have 9S: P �= �sim(F j S). Hene, by the ongruene rule, CONG, we have that9S:8A: �net(P j A) �= �net(�sim(F j S) j A). This is preisely the de�nition of blak-box simulatability inthe synhronous ommuniation.The reason that proess equivalene is stritly stronger than blak-box simulatability in the synhronousase is that when the the adversary and environment are ombined into one surrounding proess on-text, this ontext may use the global ordering of events on the net and io hannels to distinguish be-tween real and ideal proesses. This global ordering is not available when the adversary and the environ-ment are separate proesses as in the de�nition of blak-box simulatability. Consider the two proessesP ::= out [io; �℄ :out [io; ℄ :out [net; �℄ and Q ::= out [io; �℄ :out [net; �℄ :out [net; ℄. These two proessessatisfy the de�nition of blak-box simulatability in a non-deterministi proess alulus like spi-alulus (us-ing a simulator that just forwards messages to the adversary). However, they do not satisfy the de�nition ofproess equivalene sine the global ordering of observables on the io and net hannels is �; ; � in one aseand �; �;  in the other.Theorem 10. Proess equivalene is equivalent to blak-box simulatability with asynhronous ommunia-tion.Proof. ): By de�nition, 9S: �ph;pn(Bhph j P j Bnpn) �= �fh;fn;sh;sn(Bhfh j F j Bshfn j S j Bnsn). Hene, by theongruene rule, CONG, we have 9S:8A: �ph;pn;an;ah(Bhph j P j Banpn j A j Bh0ah) �= �fh;fn;sh;sn;an;ah(Bhfh j F jBshfn j S j Bansn j A j Bh0ah). This is preisely the de�nition of blak-box simulatability when ommuniation isasynhronous. The proof follows the same line of reasoning as the one for synhronous ommuniation.(: The formal proof is in Table 5. Besides sope extrusion, it uses (DBLBUF) and (DUMBUF) toreplae a dummy adversary and bu�er proess ombination as well as two sequentially onneted bu�ers bya single instane of a bu�er proess. BB 9S: �ph;pn;an;ah(Bhph j P j Banpn j Dahan j Bh0ah) �=�fh;fn;sh;sn;an;ah(Bhfh j F j Bshfn j S j Bansn j Dahan j Bh0ah) (1)(1);SCOPE;DUMBUF 9S: �ph;pn;an(Bhph j P j Banpn j Bh0an) �=�fh;fn;sh;sn;an(Bhfh j F j Bshfn j S j Bansn j Bh0an) (2)(2);SCOPE;DBLBUF 9S: �ph;pn;an(Bhph j P j Bh0pn) �=�fh;fn;sh;sn;an(Bhfh j F j Bshfn j S j Bh0sn) (3)Table 5. Blak-Box Simulatability implies Proess Equivalene (Asynhronous Communiation)
6 Appliations to spei� proess aluliIn this setion, we demonstrate that several standard proess aluli used for reasoning about seurityprotools (the probabilisti polynomial-time proess alulus of [20℄, the spi-alulus [3℄, and the applied�-alulus [1℄) satisfy the equational priniples used in the axiomati proofs in the previous setions. Theproved relations between the various seurity de�nitions therefore hold in these aluli.6.1 Probabilisti Poly-time Proess CalulusA probabilisti polynomial-time proess alulus (PPC) for seurity protools is developed in [16, 14, 17℄; thebest urrent presentations are [19, 20℄. It onsists of a set of terms that do not perform any ommuniations,



expressions that an ommuniate with other expressions, and, hannels that are used for ommuniation.Terms ontain variables that reeive values over hannels. There is also a speial variable n alled the seurityparameter. Eah expression de�nes a set of proesses, one for eah hoie of value for the seurity parameter.Eah hannel name has a bandwidth polynomial in the seurity parameter assoiated with it by a funtionalled �. The bandwidth ensures that no message gets too large and, thus, ensures that the expression anbe evaluated in time polynomial in the seurity parameter.The lass of terms used must satisfy the following two properties:1. If � is a term with k variables, then there exists a probabilisti Turing mahine M� with k inputs and apolynomial q�(x1; : : : ; xk) suh that:(a) The term �, with a1; : : : ; ak substituted for its k variables, redues to a with probability p if and onlyif M�(a1; : : : ; ak) returns a with probability p; and,(b) For any hoie of a1; : : : ; ak we have that M�(a1; : : : ; ak) halts in time at most q�(ja1j; : : : ; jakj).2. For eah probabilisti polynomial-time funtion f : Nm ! N, there exists a term � suh thatM� omputesf .Essentially, the term language ompletely aptures the lass of probabilisti polynomial-time Turing ma-hines. One example of suh a set of terms is based on a term alulus alled OSLR studied in [16℄ (basedin turn on [6, 13℄).Although any probabilisti polynomial-time funtion an be omputed by a term, ommuniation requiresadditional syntati forms. Expressions of PPC are given by the grammar in Setion 2. The ontexts, Con,of PPC are obtained from the grammar by adding a plaeholder symbol for a \hole" to be �lled in, as usual.Operational Semantis The evaluation of a variable-losed proess proeeds in three steps: redution,seletion, and ommuniation. In the redution step, all terms and mathes that are not in the sope of aninput expression are evaluated. Sine the expression is variable-losed and only inputs an bind variables, weknow that every term outside the sope of an input has no free variables. This step simulates omputation.In the seletion step, we use a probabilisti sheduler to selet an ation to perform. Ations inlude thesilent ation, � ; the input ation inh; ai that reads the value a from the hannel  into the variable x; theoutput ation outh; ai that plaes the value a on the hannel ; and the simultaneous ation � � � whereone of � and � is an input ation from the hannel  of the value a and the other ation is an output of thevalue a on the hannel  obtained by using the ation produt � on � and �. We will say that two ations areof the same type if they are both inputs, outputs, or simultaneous ations with the same hannel and value.The sheduler piks a partiular type of simultaneous ation from the set of available simultaneous ationtypes aording to the distribution de�ning the sheduler. However, silent ations must be performed if theyare available sine silent ations have higher priority. Then, one ation of that type is piked uniformly atrandom from the set of available ations of that type. Further disussion may be found in [19℄.In the ommuniation step, we perform the indiated substitution taking are to trunate the value aord-ing to the bandwidth assoiated with the hannel name. This is important for preserving the polynomial-timeproperty of the proess alulus.We all this three-stage proedure an evaluation step; and evaluation proeeds in evaluation steps untilthe set of shedulable ations beomes empty. We refer the reader to [19℄ for more details.Theorem 11. Let P be a proess. Then the evaluation of P an be performed in time polynomial in theseurity parameter.The proof proeeds by onstruting a mahine that evaluates P. The time-bound follows from the represen-tation of terms and shedulers as probabilisti polynomial-time Turing mahines.A form of weak probabilisti bisimulation over asymptotially polynomial-time proesses, or more simplyprobabilisti bisimulation, is developed in [19, 20℄ (see also [21℄). Two proesses P and Q are probabilistiallybisimilar just when1. If P an take an ation � and with probability p beome P 0 , then Q must be able to take � to beomeproesses Q1; : : : ; Qk with total probability p; and,2. If Q an take an ation � and with probability p beome Q0 , then P must be able to take � to beomeproesses P1; : : : ; Pk with total probability p.



Using ' to denote the bisimulation equivalene relation, [19, 20℄ show that ' is a ongruene.Theorem 12. 8P;Q 2 Pro:8C[ ℄ 2 Con : P ' Q =) C[P℄ ' C[Q℄De�nition 13. Let P and Q be two PPC expressions. Then P �= Q if, for suÆiently large n, Pn n isobservationally indistinguishable from Qn n.A more preise de�nition an be found in [19, 20℄. We also have the following theorem, proved in [19℄,whih states that if two proesses are probabilistially bisimilar, then they are observationally equivalent (inthe sense of [19℄). Hene, to prove observational equivalene, it is suÆient to demonstrate a probabilistibisimulation.Theorem 14. P ' Q =) P �= Q.In [19℄, it is proved that all the equational priniples of Table 1 hold in PPC. It remains to show that(DUMMY), (DBLBUF), and (DUMBUF) hold in PPC. We give below preise de�nitions of the dummyadversary and the bu�er proess in PPC, relegating proofs of the equivalenes to Appendix A. Hene, we anonlude that the results proved in the previous setions about the relationship between the various seurityproperties hold for PPC.For simpliity we will onstrut uni-diretional bu�ers, assuming that eah publi hannel is diretionali.e., a hannel name is used in a proess only for inputs or only for outputs. We will say that a hannel is aninput hannel (resp. output hannel) just when it is to be used only for inputs (resp. outputs). Bi-diretionalbu�ers may be onstruted by omposing a pair of uni-diretional hannels.De�nition 15. Let A = fa1; : : : ; akg and B = fb1; : : : ; bkg be two equinumerous sets of hannel names suhthat ai 2 A is an input hannel i� bi 2 B is an output hannel. We de�ne Bbiai as!q(�):�in [ai; y℄ :out [bi; y℄�in the ase that ai is an output hannel, and!q(�):�in [bi; y℄ :out [ai; y℄�in the ase that ai is an input hannel. Then we de�ne the asynhronous bu�er between A and B, BBA , asthe expression Bb1a1 j � � � j Bbkak .Essentially, an asynhronous bu�er forwards messages between hannels in A and hannels in B withoutpreserving any message-ordering sine, for example, it is possible that an input on ai is read, then a seondinput on ai is read and forwarded onto bi before the �rst input on ai is forwarded onto bi.De�nition 16. Let A = fa1; : : : ; akg and B = fb1; : : : ; bkg be two equinumerous sets of hannel names suhthat ai 2 A is an input hannel i� bi 2 B is an output hannel. We de�ne Dbiai asin [ai; y℄ :out [bi; y℄ :out [syni; 1℄ j !q(�):�in [syni; x℄ :in [ai; y℄ :out [bi; y℄ :out [syni; 1℄�in the ase that ai is an output hannel, andin [bi; y℄ :out [ai; y℄ :out [syni; 1℄ j !q(�):�in [syni; x℄ :in [bi; y℄ :out [ai; y℄ :out [syni; 1℄�in the ase that ai is an input hannel. Then we de�ne the dummy adversary between A and B, DBA , as theexpression �syn(Dbia1 j � � � j Dbkak )The expression DBA simply forwards ommuniations between eah hannel ai 2 A and bi 2 B. The hannelsyni is used to synhronize between the various inputs and outputs on the hannel ai in DBA to avoid situationswhere, for example, a value has been read on the hannel bi and, before it is forwarded, a new value is readon the hannel bi and then forwarded. Essentially, the use of syni allows us to preserve the ordering onommuniations on ai by guaranteeing that if DBA reeives the message o before o0, it will transmit o beforeo0. Thus a dummy adversary is just a message-order-preserving bu�er.Theorem 17. The equivalene priniples (DUMMY), (DBLBUF), and (DUMBUF) hold in PPC.We prove these equivalenes by onstruting a probabilisti bisimulation and then applying Theorem 14.Proof skethes are available in Appendix A.



6.2 Spi-Calulus and Applied �-CalulusSpi-alulus [3℄ and applied �-alulus [1℄ are two other proess aluli that have been used to reason aboutseurity protools. All the standard strutural equivalene rules: assoiativity of parallel omposition (ASC),renaming of private hannels (RENAME), sope extrusion (SCOPE), ongruene (CONG), whih wereolleted in Table 1, hold in these aluli. The network-spei� equivalenes are also satis�ed with appropriatede�nitions of dummy adversary and bu�er proesses. Hene the results proved in Setion 4 and Setion 5also hold for these aluli. A representative proof for spi-alulus is given in Appendix B.7 ConlusionsWe ompare three similar ways of speifying protool properties by formulating universal omposability,blak-box simulatability, and proess equivalene over proess alulus. Our main results are that all threeare equivalent when asynhronous ommuniation is used; with synhronous ommuniation, the �rst twoare equivalent and implied by the third. While some proess aluli provide synhronous ommuniation, theasynhronous ase is loser to omputational pratie. Although we model asynhronous ommuniation byadding bu�ers to a synhronous alulus, we onjeture that the same results ould also be ahieved startingwith a purely asynhronous form of proess alulus.Sine universal omposability, blak-box simulatability, and proess equivalene are all based on similarintuition about speifying seurity properties using indistinguishability, it is reassuring to know that they anbe proved tehnially equivalent. We expet this equivalene to be useful in further researh, sine it allowsus to transfer results about one form of spei�ation to other forms. In addition, the equivalene of threedi�erent tehnial de�nitions, and the fat that this equivalene holds for a broad range of omputationalmodels, indiate the mathematial robustness of the underlying onept.Our proofs use standard proess alulus proof rules suh as assoiativity of parallel omposition, om-mutativity, renaming of private hannels, sope extrusion, and ongruene. The only subtlety is that twoproesses ommuniating over a private hannel must be observationally equivalent to two proesses om-muniating through a dummy proess that just forwards messages in both diretions. Therefore, the proofswill arry over to any proess alulus that has the neessary features (suh as private hannels) and satis�esreasonable and well-aepted equational priniples. In future work, we hope to extend our arguments to overommuniating Turing mahines (as in [7℄ and other work on universal omposability) and I/O automata(as in [18℄ and related work).Aknowledgements Thanks to Andre Sedrov and Paulo Mateus for helpful disussions.Referenes1. Mart��n Abadi and C�edri Fournet. Mobile values, new names, and seure ommuniation. In 28th ACM Sympo-sium on Priniples of Programming Languages, pages 104{115, 2001.2. Mart��n Abadi and Andrew D. Gordon. A bisimulation method for ryptographi protool. In Pro. ESOP 98,Leture notes in Computer Siene. Springer, 1998.3. Mart��n Abadi and Andrew D. Gordon. A alulus for ryptographi protools: the spi alulus. Information andComputation, 143:1{70, 1999. Expanded version available as SRC Researh Report 149 (January 1998).4. Mihael Bakes, Birgit P�tzmann, and Mihael Waidner. Reatively seure signature shemes. In Proeedings of6th Information Seurity Conferene, volume 2851 of Leture Notes in Computer Siene, pages 84{95. Springer,2003.5. Mihael Bakes, Birgit P�tzmann, and Mihael Waidner. A general omposition theorem for seure reativesystems. In Proeedings of 1st Theory of Cryptography Conferene, volume 2951 of Leture Notes in ComputerSiene. Springer, 2004.6. Stephen Bellantoni. Prediative Reursion and Computational Complexity. PhD thesis, University of Toronto,1992.7. Ran Canetti. Universally omposable seurity: A new paradigm for ryptographi protools. In Pro.42nd IEEE Symp. on the Foundations of Computer Siene. IEEE, 2001. Full version available athttp://eprint.iar.org/2000/067/.
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However, eah of the proesses obtained after the third step are struturally idential (they only vary inwhih of the q(i) remaining bridges between the dummy hannel and its orresponding net hannel aeptsthe synhronization bit). Thus we an identify them and replae the �nal q(i)-fold step with a single step.This means that every transition of �net(P j A) an be uniquely mathed with either a transition or alength-three path of �net;dummy(P j �syn(Dudummynet ) j A[dummy=net℄). The uniqueness of the mapping followsfrom its onstrution. Thus we an infer the desired bisimilarity whih implies observational equivalene.Lemma 19 (Double Bu�ering). Let Bba, Bb and Ba be asynhronous bu�ers. Then, �b(Bba j Bb) �= Ba.Proof. We will show that �b(Bba j Bb) is probabilistially bisimilar to Ba from whih it follows that the twoexpressions are observationally equivalent. For simpliity, we will assume that jaj = jbj = jj = 1. Let us alsoassume that a is an input hannel (whene  must be an output hannel). In that ase Ba is just!q(�):�in [a; y℄ :out [; y℄�and �b(Bba j Bb) is just �b(!q(�):�in [a; y℄ :out [b; y℄� j !q(�):�in [b; y℄ :out [; y℄�)We will identify expressions equivalent by virtue of the assoiativity and ommutativity of j, the parallelomposition operator, and the equivalene P j 0 �= P. Making use of these identi�ations, it is easy to verifythat the set of pairsfh!q(�):�in [a; y℄ :out [; y℄� j !q(�):�out [; y℄�;�b(!q(�):�in [a; y℄ :out [b; y℄� j !q(�):�in [b; y℄ :out [; y℄�) j !q(�):�out [; y℄�igis a suitable probabilisti bisimulation.Lemma 20 (Dummy and Bu�er). Let Bba, Bb and Ba be three asynhronous bu�ers and let Db and Dbabe dummy adversaries. Then, �b(Bba j Db) �= Ba and �b(Dba j Bb) �= BaAn asynhronous bu�er just forwards messages without preserving the message order. Thus, intuitively,plaing it after any struture that preserves message order or before any suh struture should be the sameas just using the asynhronous bu�er. The formal proof is similar to the proof of Lemma 19 and is omitteddue to spae onstraints.B Proof of Equivalene for Spi-CalulusTheorem 21. Theorem 7 and Theorem 9 hold for spi-alulus.Proof. The standard equivalene rules used in proving the two theorems: assoiativity of parallel-or (ASC),renaming of private hannels (RENAME), ongruene (CONG), and sope extrusion (SCOPE) hold inspi-alulus. The only non-standard step orresponds to DUMMY. The proof relies on the observation thatthe situation in whih proesses P and A ommuniate over a private hannel is observationally equivalentto the one in whih all suh ommuniation is routed through a dummy proess that just forwards messagesin both diretions. For simpliity, we onsider only the ase when there are two hannels 0 and 1 betweenP and A. Sine hannels are diretional, without loss of generality, we assume that hannel 0 is from A toP (i.e., only A outputs messages on 0, and only P reeives messages on 0), and hannel 1 is from P to A.The proof extends diretly to the multiple-hannel ase.Rewriting the statement using spi-alulus formalism and letting Ad stand for A[d=℄, we wish to demon-strate that (�0; 1)(P j A) ' (�0; 1; d0; d1)(P j ((�s0; s1)(D0 j D1) j Ad))where D0 = d0(y):0hyi:s0h1i j ! s0(x):d0(y):0hyi:s0h1iD1 = d1(y):1hyi:s1h1i j ! s1(x):d1(y):1hyi:s1h1i



We outline the proof in the diretion (�0; 1)(P j A) v (�0; 1; d0; d1)(P j ((�s0; s1)(D0 j D1) j Ad)).The proof in the other diretion is similar. For our purposes, it is suÆient to reall that, informally, P passesa test (R; �) if P produes an observable on a hannel named � when run in parallel with R. By de�nition,P1 v P2 if, for any test (R; �) passed by P1, P2 also passes the test.Let (R; �) be some test passed by (�)(P j A). By Proposition 4 [3℄, this implies that there exist anagent A and a proess Q suh that (�0; 1)(P j A)jR �!� Q and Q �! A. Sine we assume that P andA ommuniate only via hannels 0 and 1, every reation of P j A is a reation of P , a reation of A,or an interation between P and A. In the latter ase, beause we assumed that hannels are diretional,P = 0(x):P 0; A = 0hmi:A0; P jA �! P 0[m=x℄jA0, or P = 1hmi:P 0; A = 1(x):A0; P jA �! P 0jA0[m=x℄. Toprove the lemma by indution over all reations of (�0; 1)(P jA)jR, it is suÆient to demonstrate that, if P =0(x):P 0; A = 0hmi:A0; 0(x):P 0j0hmi:A0 �! P 0[m=x℄jA0, then 0(x):P 0j((�s0; s1)(D0jD1)jd0hmi:A0d) �!P 0[m=x℄j((�s0; s1)(D0jD1)jA0d). The proof for the ase P = 1hmi:P 0; A = 1(x):A0; 1hmi:P 0j1(x):A0 �!P 0jA0[m=x℄ is symmetri.0(x):P 0j((�s0; s1)(D0jD1)jd0hmi:A0d) =0(x):P 0j((�s0; s1)((d0(y):0hyi:s0h1ij! s0(x):d0(y):0hyi:s0h1i)jD1)jd0hmi:A0d) �!0(x):P 0j((�s0; s1)((0hmi:s0h1ij! s0(x):d0(y):0hyi:s0h1i)jD1)jA0d) �!P 0[m=x℄j((�s0; s1)((s0h1ij! s0(x):d0(y):0hyi:s0h1i)jD1)jA0d) �!P 0[m=x℄j((�s0; s1)((d0(y):0hyi:s0h1ij! s0(x):d0(y):0hyi:s0h1i)jD1)jA0d) =P 0[m=x℄j((�s0; s1)(D0jD1)jA0d)


