
A Logic of Secure Systems and its Application to Trusted Computing

Anupam Datta
danupam@cmu.edu

Jason Franklin
jfrankli@cs.cmu.edu

Deepak Garg
dg@cs.cmu.edu

Dilsun Kaynar
dilsun@cs.cmu.edu

Abstract

We present a logic for reasoning about properties of
secure systems. The logic is built around a concurrent
programming language with constructs for modeling ma-
chines with shared memory, a simple form of access
control on memory, machine resets, cryptographic oper-
ations, network communication, and dynamically loading
and executing unknown (and potentially untrusted) code.
The adversary’s capabilities are constrained by the system
interface as defined in the programming model (leading
to the name CSI-ADVERSARY). We develop a sound proof
system for reasoning about programs without explicitly
reasoning about adversary actions. We use the logic
to characterize trusted computing primitives and prove
code integrity and execution integrity properties of two
remote attestation protocols. The proofs make precise
assumptions needed for the security of these protocols and
reveal an insecure interaction between the two protocols.

1. Introduction

Contemporary secure systems are complex and de-
signed to provide subtle security properties in the face
of attack. Examples of such systems include hypervi-
sors, virtual machine monitors, security kernels, operating
systems, web browsers, and secure co-processor-based
systems such as those utilizing the Trusted Computing
Group’s Trusted Platform Module (TPM) [1]. In this paper
we initiate a program to formally model abstractions
of such systems and specify and analyze their security
properties in the presence of a general class of adver-
saries. Specifically, we introduce the Logic of Secure
Systems (LS2) and use it to carry out a detailed analysis
of Trusted Computing systems. The logic is built around
a programming language for modeling systems and is
inspired by a logic for network protocol analysis, Protocol
Composition Logic (PCL) [2]–[5].

Programming Model. The programming language is
designed to be expressive enough to model practical
secure systems while still maintaining a sufficiently high
level of abstraction to enable simple reasoning. Following

PCL, the language includes process calculi and func-
tional constructs for modeling cryptographic operations,
straightline code, and network communication. We in-
troduce constructs for modeling machines and shared
memory, a simple form of access control on memory,
machine resets, and dynamically loading and executing
unknown (and potentially untrusted) code. The primitives
for reading and writing to memory are inspired by the
treatment of memory cells in impure functional languages
like Standard ML [6]. We model memory protection, a
fundamental building block for secure systems [7], by
allowing programs to acquire exclusive-write locks on
memory locations. The treatment of dynamically loading
and executing unknown code is novel to this work.

While these constructs are the common denominator
for many secure systems, including the trusted comput-
ing systems examined in this paper, they are by no
means sufficient to model all systems of interest. The
language, however, is extensible in a modular fashion, as
we illustrate by extending the core language (presented
in Section 2) with a trusted computing subsystem (in
Section 3). At a high level, each system component can be
viewed as exposing an interface. For example, the inter-
face for memory includes read, write, and reset operations.
Adding a new component to the system involves adding
operations in the programming language corresponding
to the interface exposed by it. Platform Configuration
Registers (PCR) in the TPM are an example since they
can be modeled as a special form of memory that may be
accessed via read, reset, and a new extend operation. Some
extensions can have a more global effect on the language
semantics. For instance, adding the reset operation to the
language affects both how state of local memory and TPM
PCRs may be updated.

Interfaces to system components also provide a useful
conceptual view of the adversary. Since the capabilities
of the adversary are constrained by the system interface,
we refer to her as a CSI-ADVERSARY. For example, the
adversary can write to unprotected memory locations, but
can only update PCRs through the extend operation in
its interface. Formally, the adversary may execute any
program expressible in our programming model, i.e. the
adversary can perform symbolic cryptographic operations,

intercept messages on the network, inject messages that it
can create, read and write memory locations that are not
explicitly locked by another thread, and reset machines.
Because of these capabilities, the adversary can launch
a broad range of attacks on the network and the local
machines including replay attacks, modifying and inject-
ing malicious code on local machines, and exploiting race
conditions to compromise systems.
Logic. Security properties of programs are expressed
in LS2 using modal formulas of the form [P]tb,te

I A,
which means that formula A holds whenever thread I
executes exactly the program P in the time interval (tb, te],
irrespective of the actions executed concurrently by other
threads including the adversary. The thread I identifies the
principal executing the program, the machine on which the
program is being executed, and includes a unique identi-
fier. The formula A expresses security properties, such as
confidentiality, integrity, authentication, as well as code
and execution integrity. The logic includes predicates that
reflect the programming language constructs for shared
memory, memory protection, machine resets and a form
of unconditional jump to model branching to dynamically
loaded code.

Security properties are established using a proof system
for LS2. A central design goal that LS2 achieves (following
PCL) is that the proof system does not mention adversary
actions. Instead, the semantics and soundness of the
proof system guarantee that if [P]tb,te

I A is provable, then
A holds in all traces in which I completes execution
of program P, including those that contain adversarial
threads. This implicit treatment of adversaries simplifies
proofs significantly. Designing a sound proof system that
supports this local style of reasoning, in spite of the
global nature of shared memory changes and execution
of dynamically loaded unknown code, turned out to be a
significant technical challenge.

We formalize local reasoning principles about shared
memory with axioms that reason about invariance of
values in memory based on local actions of threads that
hold locks (see Section 2). This approach is technically
similar to concurrent separation logic, whose regions
resemble LS2’s locks [8], but distinct from formal systems
which support global reasoning about concurrent shared
memory programs [9]. Our initial idea to reason about
execution of dynamically loaded code was to treat the
code being branched to as a continuation of the code
calling it. However, this approach does not work for the
case where the code being branched to is either read from
memory or received over the network, because nothing
can be determined about the called code by looking at
the caller’s program. As a result, traditional methods for
proving program invariants such as those based on Hoare
logic and its extensions [10]–[12] do not apply to this
setting. Yet this is exactly what we needed to reason in

the face of adversaries who can modify or inject code
into the system. Our final technical approach for reasoning
about execution of dynamically loaded code is based on
a program invariance rule, which we elaborate on in
Section 2 and illustrate in Section 4.1.
Trusted Computing. We model and analyze two trusted
computing protocols that rely on TPMs to provide in-
tegrity properties: load-time attestation using a Static
Root of Trust for Measurement (SRTM) [13] and late-
launch-based attestation using a Dynamic Root of Trust
for Measurement (DRTM) [14]–[16]. In doing so, we
make the following contributions. First, we formalize,
using axioms, the behavior of core trusted computing
primitives including the TCG’s widely-deployed secure
co-processor, the Trusted Platform Module (TPM), as
well as recently introduced hardware to support the late
launch of a security kernel in a protected execution
environment. Hardware implementations of late launch are
publicly available in both AMD’s Secure Virtual Machine
Architecture (SVM) [15] and Intel’s Trusted eXecution
Technology (TXT) [16]. These axioms provide a succinct
specification of the primitives, which serve as building
blocks in the proofs of the protocols (see Section 3).

Second, we formally define and prove code integrity and
execution integrity properties of the attestation protocols
(Section 4; Theorems 2–4). To the best of our knowledge,
these are the first logical security proofs of these protocols.

Finally, the formal proofs yield insights about the secu-
rity of these protocols. The invariants used in the proofs
make precise the properties that the Trusted Computing
Base (TCB) must satisfy. In Section 4, we describe these
invariants and manually check that an invariant holds on
a security kernel implementation used in an attestation
protocol. We demonstrate that newly introduced hardware
support for late launch actually adversely affects the
security of previous generation attestation protocols. We
describe an attack that utilizes hardware support for late
launch to exploit load-time attestation protocols that mea-
sure software starting at system boot. The attack enables
an adversary to report false system integrity measurements
that are not tied to the actual state of the platform. This
attack could be used to exploit Digital Rights Management
(DRM) protocols that rely on load-time attestation.

2. Logic of Secure Systems

We introduce the syntax of the Logic of Secure Systems
(LS2) in this section. The next section introduces features
of LS2 that are specific to trusted computing. Due to lack
of space, we restrict technical descriptions to the extent
necessary to explain the main concepts and application,
and refer the reader to a technical report for details [17].

Expressions/Values e ::= n Number
| X̂ ,Ŷ Agent
| K Key
| K−1 Inverse of key K
| x Variable
| (e,e′) Pair
| SIGK{|e|} Value e signed by private key K
| ENCK{|e|} Value e encrypted by public key K
| SY MENCK{|e|} Value e encrypted by symmetric key K
| H(e) Hash of e
| P Program reified as data

Machine m
Location l ::= m.RAM.k | m.disk.k | m.pcr.k | m.d pcr.k
Action a ::= read l Read location l

| write l,e Write e to location l
| extend l,e Extend PCR l with e
| lock l Obtain write lock on location l
| unlock l Release write lock on location l
| send e Send e as a message
| receive Receive a message
| sign e,K Sign e with private key K
| verify e,K Check that e = SIGK{|e′|}
| enc e,K Encrypt e with public key K
| dec e,K Decrypt e with private key K
| symenc e,K Encrypt e with symmetric key K
| symdec e,K Decrypt e with symmetric key K
| hash e Hash the expression e
| eval f ,e Evaluate function f with argument e
| proj1 e Project the 1st component of a pair
| proj2 e Project the 2nd component of a pair
| match e,e′ Check that e = e′
| new Generate a new nonce

Program P,Q ::= · | jump e | latelaunch | x := a;P
Thread id I,J ::= 〈X̂ ,η ,m〉
Thread identifier η

Thread T,S ::= [P]I
Store σ : Locations→ Expressions
Lock map ι : Locations→ (Thread ids) ∪ { }
Configuration C ::= ι ,σ ,T1| . . . |Tn

Figure 1. Syntax of the programming language

2.1. Programming Model

The programming language definition includes its syn-
tax and operational semantics. The syntax is summarized
in Figure 1. The current language includes process cal-
culi and functional constructs for modeling cryptographic
operations, straightline code, and network communication
among concurrent processes, but does not have condition-
als (if. . .then. . .else. . .), returning function calls or loops.
Instead, it has a match construct that tests equality of
expressions (match e,e′) and blocks if the test fails, as
well as unconditional jumps to arbitrary code (jump e).
These constructs are sufficient for applications we have
considered so far. In future work, we plan to investigate
the technical challenges associated with adding condition-
als, returning function calls, and loops to the language.
We describe below the core language constructs, the ad-
versary model, and the form of the operational semantics.

Examples of programs in the language can be found in
Section 4.

Data, agents, and keys. Data is represented in the
programming model symbolically as expressions e (also
called values). Expressions may be numbers n, identi-
ties of agents (principals) X̂ , keys K, variables x, pairs
(e,e′), signatures using private keys SIGK{|e|} (denoting
the signature on e made using the key K), asymmetric
key encryptions ENCK{|e|}, symmetric key encryptions
SY MENCK{|e|}, hashes H(e), or code reified as data P.
All expressions are assumed to be simply typed (e.g. a
pair can be distinguished from a number), but we elide
the details of the types. Agents, denoted X̂ ,Ŷ , are users
associated with a system on behalf of whom programs
execute. Keys are denoted by the letter K. The inverse of
key K is denoted by K−1. We assume that the expression
e may be recovered from the signature SIGK{|e|} if the

verification key K is known. We also assume that hashes
are confidentiality preserving.
Systems, programs, and actions. A secure system is
specified as a set of programs P in the programming
language. For example, a trusted computing attestation
system will contain two programs, one to be executed by
the untrusted platform and the other by the remote verifier.
Each program consists of a number of actions x := a that
are executed in a straight line. The name x binds the value
returned by the action a, and is used to refer to the value
in subsequent actions. Our model of straightline code
execution is thus functional. This design choice simplifies
reasoning significantly. For some actions such as sending a
message, the value returned is meaningless. In such cases
we assume that the value returned is the constant 0. A
program ends with either an empty action ·, or one of the
special actions jump e or latelaunch . The expression
jump e is described below and latelaunch is covered
in the next section. A single executing program is called
a thread [P]I (threads are referred to with variables T , S).
It contains a program P, and a descriptor I for the thread
that is a tuple 〈X̂ ,η ,m〉. X̂ is the agent that owns the
thread, m is the machine on which the thread is hosted,
and η is a unique identifier (akin to a process id). The
abstract runtime environment of the language is called
a configuration C, written ι ,σ ,T1| . . . |Tn. It contains all
executing threads (T1| . . . |Tn), the state of memory on all
machines (represented by the map σ), and the state of
memory locks held by threads (represented by the map
ι).
Cryptography and network primitives. The program-
ming language includes actions for standard operations
like signing and signature verification, encryption and
decryption (both symmetric and asymmetric), nonce gen-
eration, hashing, expression matching, projection from a
pair, and evaluation of arbitrary side-effect free functions
(eval f ,e). Threads can communicate with each other
using actions to send and receive values over the network.
Network communication is untargeted, i.e., any thread
may intercept and read any message (dually, a received
message could have been sent by any thread). Information
being sent over the network may be protected using
cryptography, if needed. The treatment of cryptography
and network communication follows PCL. The language
constructs we present next are new to this work.
Machines and shared memory. Threads can also share
data through memory. The programming model contains
machines m explicitly. Each machine contains a number
of memory locations l that are shared by all threads
running on the machine. Each location is classified as
either RAM, persistent store (hard disk), or other special
purpose location (such as Platform Configuration Regis-
ters that are described in the next section). The machine on
which a location exists and the location’s type are made

explicit in the location’s name. For instance, m.RAM.k
is the kth RAM location on machine m. The behavior
of a location depends on its type. For example, RAM
locations are set to a fixed value when a machine resets,
whereas persistent locations are not affected by resets.
Despite these differences, the prominent characteristics
of all locations are that they can be read and written
through actions provided in the programming language,
and that they are shared by all threads on the machine.
Consequently, any thread, including an adversarial thread,
has the potential to read or modify any location.
Access control on memory. Shared memory, by its
very nature, cannot be used in secure programs unless
some access control mechanism enforces the integrity and
confidentiality of data written to it. Access control varies
by type of memory and application (e.g., memory seg-
mentation, page table read-only bits, access control lists
in file systems, etc). Our programming model provides
an abstract form of access control through locks. Any
running thread may obtain an exclusive-write lock on any
previously unlocked memory location l by executing the
action lock l. Information on locks held by threads is
included in a configuration as a map ι from locations
to identities of threads that hold locks on them. The
semantics of the programming language guarantee that
while a lock is held by a thread, no other thread will
be able to write the location. A thread may relinquish a
lock it holds by executing the action unlock l. Locking in
this manner may be used to enforce integrity of contents
of memory. Similarly, one may add read locks that provide
confidentiality of memory contents. Although technically
straightforward, read locks are omitted from this paper
since we are focusing on integrity properties.
Machine resets. The language allows a machine to be
spontaneously reset. There is no specific action that causes
a reset. Instead, there is a reduction in the operational
semantics that may occur at any time to reset a machine.
When this happens, all running threads on the machine
are killed, all its RAM and PCR locations are set to
a fixed value, and a single new thread is created to
reboot the machine. This new thread executes a fixed
booting program. We model the reset operation since it has
significant security implications for secure systems [18].
In the context of trusted computing, e.g., the fact that a
TPM’s Platform Configuration Registers (PCRs) are set
to a fixed value is critical in reasoning about the security
properties of attestation protocols. In addition, it has been
shown that adversaries can launch realistic attacks against
trusted computing systems using machine resets [19].
Untrusted code execution. The last salient feature of
our programming model is an action jump e that dynami-
cally branches to code represented by the expression e.
The code e is arbitrary; it may have been read from
memory or disk, or even have been received over the net-

work. As a result, it could have come from an adversary.
Execution of untrusted code is necessary to model several
systems of interest, e.g., trusted computing systems and
web browsers.
Adversary Model. We formally model adversaries as
extra threads executing concurrently with protocol par-
ticipants. Such an adversary may contain any number of
threads, on any machines, and may execute any program
expressible in our programming model. However, the
adversary cannot perform operations that are not permitted
by the language semantics. For example, the adversary can
neither write to memory locked by another thread, nor can
she break cryptography.
Operational semantics. The operational semantics of
the language captures how systems execute to produce
traces. It is defined using process calculus-style reduction
rules that specify how a configuration may transition to
another. A trace C0 −→ C1 . . . −→ Cn is a sequence of
configurations, such that successive configurations in the
sequence can be obtained by applying one reduction rule.
A timed trace C0

t1−→C1 . . .
tn−→Cn associates monotonically

increasing time points t1, . . . , tn with reductions on a trace.
These time points may be drawn from any totally ordered
set, such as integers or real numbers.

2.2. Logic

The logic LS2 is used to specify and reason about
properties of secure systems.
Syntax. Figure 2 summarizes LS2’s syntax, including
predicates specific to trusted computing that we discuss
in the next section. Predicates for representing network
communication and cryptographic operations are taken
from PCL. Other predicates that capture information about
state, unconditional jumps, and resets are new to this work.
A significant difference from PCL is that LS2 incorporates
time explicitly in formulas and semantics. All predicates
and formulas are interpreted relative to not only a timed
trace but also a point of time (modal formulas, described
below, are an exception since they are interpreted relative
to a timed trace only). In the proof system, time is used to
track the relative order of actions on a trace and to specify
program invariants.

Action predicates capture actions performed by threads.
For instance, Send(I,e) holds on a trace at time t if
thread I executes action send e at time t in the trace.
Write(I, l,e) holds on a trace whenever thread I executes
write l,e. Similarly, we have predicates to capture cryp-
tographic operations. General predicates capture other
information, including information about the state of the
environment. Particularly prominent are the two predicates
Mem(l,e) which holds whenever location l contains value
e, and Jump(I,e) which holds whenever thread I executes
jump e. Access control on memory is reflected in the

logic through three predicates: Lock(I, l), Unlock(I, l),
and IsLocked(l, I). The first two of these capture actions:
Lock(I, l) holds on a trace when a thread I obtains an
exclusive-write lock on location l, whereas Unlock(I, l)
holds when thread I releases the lock. The third predicate
IsLocked(l, I) captures state: it holds whenever thread I
has an exclusive-write lock on location l. As an example,
suppose that thread I executes an action to obtain the lock
on location l at time t and executes another action to
release the lock at a later point t ′. Then Lock(I, l) will
hold exactly at time t, Unlock(I, l) will hold exactly at
time t ′, and IsLocked(l, I) will hold at all points of time
between t and t ′. The predicate Reset(m, I) holds at time
t if machine m is reset at time t, creating the new thread
I to boot it. We define the abbreviations Reset(m) and
Jump(I) as ∃I. Reset(m, I) and ∃e. Jump(I,e) respec-
tively. Contains(e,e′) means that e′ is a sub-expression of
e. The predicate Honest(X̂ ,~P) is described in Section 3.1.

Predicates can be combined using the usual logical
connectives: ∧ (conjunction), ∨ (disjunction), ⊃ (impli-
cation), and ¬ (negation) as well as first-order universal
and existential quantifiers that may range over expressions,
keys, principals, threads, locations, and time. There is a
special formula, A @ t, which captures time explicitly in
the logic. A @ t means that formula A holds at time t.
We often write intervals in the usual mathematical sense;
they may take the forms (t1, t2), [t1, t2], (t1, t2], and [t1, t2).
For an interval i, we also define the formula A on i as
∀t. ((t ∈ i)⊃A @ t), where t ∈ i is the obvious membership
predicate. A on i means that A holds at each point in the
interval i. This treatment of time in the logic draws ideas
from work on hybrid modal logic [20]–[22].

Security properties of programs are expressed in LS2

using one of two forms of modal formulas. The principal
of these, [P]tb,te

I A, means that formula A holds whenever
thread I executes exactly the program P sequentially in the
semi-open interval (tb, te]. A may mention any variables
occurring unbound in P. It usually expresses a safety
property about the program P. For example, if P is the
client program of a key exchange protocol, A may say
that P generated a key after tb, sent it to a server, and
received a confirmation that it was received. Examples of
security properties for trusted computing systems can be
found in Section 4.
Proof System. Security properties of a program are
established using a proof system for LS2. This proof
system contains some basic rules for reasoning about
modal formulas, and a number of axioms that capture
intuitive properties of program behavior. Parts of the proof
system, particularly the part dealing with cryptographic
primitives were easily designed using existing ideas from
PCL. As mentioned in the introduction, a central design
goal that LS2 achieves is that the proof system does not
mention adversary actions. We elaborate below on the

Action Predicates R ::= Receive(I,e) | Send(I,e) | Sign(I,e,K) | Verify(I,e,K) | Encrypt(I,e,K) | Decrypt(I,e,K) |
SymEncrypt(I,e,K) | SymDecrypt(I,e,K) | Hash(I,e) | Eval(I, f ,e,e′) | Match(I,e,e′) |
New(I,n) | Write(I, l,e) | Read(I, l,e) | Lock(I, l) | Unlock(I, l) | Extend(I, l,e)

General Predicates M ::= Mem(l,e) | IsLocked(l, I) | Reset(m, I) | Jump(I,e) | LateLaunch(m, I) | Contains(e,e′) |
e = e′ | t ≥ t ′ | Honest(X̂ ,~P)

Formulas A,B ::= R | M | > | ⊥ | A ∧ B | A ∨ B | A⊃ B | ¬A | ∀x.A | ∃x.A | A @ t
Modal Formulas J ::= [P]tb,teI A | [a]tb,teI,x A

Figure 2. Syntax of LS2

technical approach for designing a sound proof system
that supports this local style of reasoning in spite of the
global nature of shared memory changes and execution of
dynamically loaded code.

We reason about memory locally using axioms that es-
tablish invariance of values in memory, using information
about locks and actions of threads that hold the locks.
These axioms are modular (there is one set of axioms for
each type of memory) and extensible (more axioms can
be added for new types of memory, as we do for Platform
Configuration Registers in Section 3). As examples, the
following two axioms are invariance rules for locations of
RAM and disk respectively. The first axiom says that if
location m.RAM.k (denoting a location with address k in
the RAM of machine m) contains value e at time tb, during
the interval (tb, te) thread I has a lock on this location,
thread I does not write to the location, and machine m is
not reset during the interval, then m.RAM.k must contain
the value e throughout the interval (tb, te). The second
axiom is similar, but it applies to locations on disk. In
this case, the precondition that machine m not be reset is
unnecessary because contents of the disk do not change
due to a reset.

(MemIR) ` (Mem(m.RAM.k,e) @ tb)
∧ (IsLocked(m.RAM.k, I) on (tb, te))
∧ (∀e′. ¬Write(I,m.RAM.k,e′) on (tb, te))
∧ (¬Reset(m) on (tb, te))
⊃ (Mem(m.RAM.k,e) on (tb, te))

(MemID) ` (Mem(m.disk.k,e) @ tb)
∧ (IsLocked(m.disk.k, I) on (tb, te))
∧ (∀e′. ¬Write(I,m.disk.k,e′) on (tb, te))
⊃ (Mem(m.disk.k,e) on (tb, te))

For reasoning about execution of dynamically loaded
code, we introduce the following rule that allows us
to combine information about the invariants of a pro-
gram P with the knowledge that the program was
branched to. We define a program invariant as a prop-
erty that holds whenever any prefix of the sequence
of actions of the program executes. The prefixes or
initial sequences IS(P) of a program P are formally
defined as follows: IS(·) = {·}, IS(jump e) = {·,jump e},
IS(latelaunch) = {·,latelaunch }, IS(x := a;P) =
{·}∪{x := a;Q | Q ∈ IS(P)}.

For every Q in IS(P) : ` [Q]tb,te
I A(tb, te)

(tb, te fresh constants)
` Jump(I,P) @ t ⊃ ∀t ′. (t ′ > t)⊃ A(t, t ′)

Jump

In its premise the rule requires that for every initial
sequence Q of P, there be a proof, generic in the constants
tb and te, that establishes A(tb, te) given that Q executes
in thread I during the interval (tb, te]. The conclusion says
that if thread I branches to program P at time t (assump-
tion Jump(I,P) @ t), then for any time t ′ > t, A(t, t ′) must
hold. Informally, we may explain the soundness of this
rule as follows. If thread I branches to code P at time t,
then for any t ′ > t, the thread I must execute some prefix
of P in the interval (t, t ′]. Instantiating the premise with
this prefix Q, and t, t ′ for tb, te, we get exactly the desired
property A(t, t ′).

The above rule is central among LS2’s principles for
reasoning about dynamically loaded code, which we be-
lieve to be novel. Both a discussion of the novelty and
an example of the reasoning principles are postponed to
Section 4.1. Whereas their application to reasoning about
dynamically loaded code is new, invariants over initial
segments of code are not a contribution of this work. PCL
uses invariants similar to ours to reason about principals
who are executing known pieces of code. LS2 also uses
invariants for many other purposes besides reasoning
about jumps, including reasoning about resets. The latter
is simpler than reasoning about jumps, because we assume
that when a machine is reset, a fixed program is started
to reboot the machine. The code marked SRT M(m) in
Figure 3 is one example of the form this program may
have.
Semantics and Soundness. Formulas of LS2 are inter-
preted over timed traces obtained from execution of a
program in the programming language. The proof system
of LS2 is formally connected to the programming language
semantics through a program independent soundness the-
orem which guarantees that any property established in
the proof system actually holds over all traces obtainable
from the program and any number of adversarial threads.
Let Γ denote a set of formulas, and ϕ denote a formula
or a modal formula. Further, let Γ ` ϕ denote provability
in LS2’s proof system, and Γ |= ϕ denote semantic entail-
ment. Our main technical result for LS2 is the following

soundness theorem.

Theorem 1 (Soundness). If Γ ` ϕ then Γ |= ϕ .

The proof of this theorem, as well as those of all
later theorems, can be found in the full version of this
paper [17].

3. Modeling Trusted Computing Primitives

This section describes extensions to LS2 to model and
reason about hardware primitives used with protocols
specified by the Trusted Computing Group (TCG). These
hardware primitives include the TCG’s Trusted Platform
Module (TPM) and static Platform Configuration Regis-
ters (PCRs), as well as the more recent hardware support
for late launch and dynamic PCRs as implemented by
AMD’s Secure Virtual Machine (SVM) extensions [23]
and Intel’s Trusted eXecution Technology (TXT) [16].
We describe below the hardware primitives and their for-
malization in LS2 at a high level. In subsequent sections,
we use our formalizations to prove security properties of
trusted computing protocols.

3.1. Trusted Platform Module

The Trusted Platform Module (TPM) is a secure co-
processor that performs cryptographic operations such as
encryption, decryption, and creation and verification of
digital signatures. Each TPM includes a unique embedded
private key (called the Attestation Identity Key or AIK).
The public key corresponding to each AIK is published in
a manufacturer-signed certificate. The private component
of the AIK is assumed to be protected from compromise
by malicious software. As a result, signatures produced
by a TPM are guaranteed to be authentic, and unique to
the platform on which the TPM resides.

We model relevant aspects of the TPM in LS2 as
follows. The private attestation identity key of the TPM
on machine m is modeled as a value in LS2, de-
noted AIK−1(m). Its corresponding public key is denoted
AIK(m). The TPM itself is represented as a principal,
denoted ˆAIK(m). Of the many programs hardcoded into
the TPM, only two are relevant for our purposes. These
are idealized by the LS2 programs marked T PMSRT M(m)
and T PMDRT M(m) in Figures 3 and 4 respectively, and are
explained in the next section. Both the fact that the TPM
executes only one of these programs, and the fact that the
TPM’s private key cannot be leaked are modeled in LS2

by a single predicate:

Honest(ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)})

This predicate entails (through the rules and axioms of
the proof system) that any signature created by the key
AIK−1(m) could only have been created in the TPM on

machine m. It can also be used to prove invariants about
threads which are known to execute on the TPM, using a
rule similar to (Jump) that was described in Section 2.2.1

We emphasize that the predicate mentioned above is not
an axiom in LS2, since its soundness cannot be established
directly. Instead, we always assume it explicitly when we
reason about the TPM.
Static PCRs. Static Platform Configuration Registers
(PCRs) are protected registers contained in every TPM.
From our perspective, the relevant property of PCRs is that
their contents can only be modified in two ways: (a) by re-
setting the machine on which the TPM resides; this sets all
the static PCRs to a special value that we denote symboli-
cally using the name sinit (sinit is zero on most platforms),
and (b) through a special TPM interface extend , which
takes two arguments: a PCR to modify, and a value v that
is appended to the PCR. Since each PCR is of a fixed
length but may be asked to store arbitrarily many values,
extend replaces the current value of the PCR with a hash
of the concatenation of its current value and a hash of v.
In pseudocode, the effect of extending PCR p with value
v may be described as the assignment p←H(p || H(v)),
where || denotes concatenation and H denotes a hash
function. More generally, if the values extended into a
PCR after a reset are v1, . . . ,vn in sequence, its contents
will be H(. . .(H(sinit||H(v1))||H(v2)) . . . ||H(vn)). We use
the notation seq(sinit,v1, . . . ,vn) to denote this value. A
common use for PCRs is to extend integrity measurements
of program code into them during the boot process, then
to have the TPM sign them with its AIK, and to submit
this signed aggregate to a remote party as evidence that
the values were generated in sequence on the machine.

We model PCRs as a special class of memory in LS2.
The kth static PCR on machine m is denoted m.pcr.k.
PCRs can be read using the usual read action in LS2’s
programming language, and they can be locked for access
control, but the usual write action does not apply to them.
Instead, the extend program is modeled as a primitive
action in the programming language. It has exactly the
effect described in the previous paragraph. Properties of
PCRs are captured through axioms in LS2. For example,
the following axiom models the fact that sinit is written
to every PCR when a machine is reset. In words, it states
that if machine m is reset at time t, then any PCR k on m
contains value sinit at time t.

(MemPR) ` (Reset(m) @ t)⊃ (Mem(m.pcr.k,sinit) @ t)

Several other important properties of PCRs arise as a
consequence of their restricted interface. First, if a PCR
contains sinit at time t, then the machine m on which it

1. The predicate Honest is adapted from a predicate of the same
name in PCL. PCL’s predicate is slightly weaker since it lacks the
second argument, but the reasoning principles associated with the two
are similar.

resides must have been reset most recently at some time
t ′ since a reset is the only way to put sinit into a PCR.
This is captured by the following axiom:

(PCR2) ` (Mem(m.pcr.k,sinit) @ t)
⊃ (∃t ′. (t ′ ≤ t) ∧ (Reset(m) @ t ′)
∧ (¬Reset(m) on (t ′, t]))

Second, if a PCR contains seq(sinit,v1, . . . ,vn) at time
t, it must also have contained seq(sinit,v1, . . . ,vn−1) at
some prior time t ′, without any reset in the interim. Thus
the contents of a PCR are witness to every extension
performed on it since its last reset. Formally, this property
is captured in LS2 by the following axiom:

(PCR1) ` (Mem(m.pcr.k,seq(sinit,v1, . . . ,vn)) @ t)
⊃ (∃t ′. (t ′ < t)
∧ (Mem(m.pcr.k,seq(sinit,v1, . . . ,vn−1)) @ t ′)
∧ (¬Reset(m) on (t ′, t])) (n≥ 1)

In many cases of interest, we need to prove that the value
in a PCR does not change over a period of time. To this
end, we introduce an invariance axiom for PCRs, similar
to axioms (MemIR) and (MemID) from Section 2.2. The
modular design of the logic eases the introduction of this
axiom.

(MemIP) ` (Mem(m.pcr.k,e) @ tb)
∧ (IsLocked(m.pcr.k, I) on (tb, te))
∧ (∀e′. ¬Extend(I,m.pcr.k,e′) on (tb, te))
∧ (¬Reset(m) on (tb, te))
⊃ (Mem(m.pcr.k,e) on (tb, te))

3.2. Late Launch and Dynamic PCRs

Another hardware feature available in trusted comput-
ing platforms is late launch. Late launch provides the
ability to measure and invoke a program, typically a
security kernel or Virtual Machine Monitor (VMM), in
a protected environment. Upon receiving a late launch
instruction (SKINIT on the AMD SVM and SENTER on
the Intel TXT), the processor switches from the currently
executing operating system to a Dynamic Root of Trust
for Measurement (DRTM) from which it is possible to
later resume the suspended operating system. The program
to be executed in a late launch session is specified by
providing the physical address of the Secure Loader Block
(SLB). When a late launch is performed, interrupts are
disabled, direct memory access (DMA) is disabled to all
physical memory pages containing the SLB and debugging
access is disabled. The processor then jumps to the code
in the SLB. This code may load other code. In addition to
providing a protected environment, a special set of PCRs
called dynamic PCRs are reset with a special value that we
call dinit symbolically and the code in the SLB is hashed
and extended into the dynamic PCR 17 (dinit is distinct
from sinit). The dynamic PCRs can then be extended with

other values, and the contents of the PCRs, signed by the
TPM’s key AIK, can be submitted as evidence that a late
launch was performed.

We formally model late launch by adding a new action
latelaunch to LS2’s programming language. This action
can be executed by any thread. The operational semantics
of the language are extended to ensure that whenever
latelaunch executes a new thread I is created with a
special program LL(m), which extends the SLB into a
dynamic PCR and branches to it. This program is shown
in Figure 4. Protection of I is modeled using locks –
when started, I is given locks to all dynamic PCRs on
the machine m it uses. I may subsequently acquire more
locks to protect itself. In the logic, the implicit locking
of dynamic PCRs is captured by the following axiom,
which means that if some thread executes latelaunch
on machine m at time t, creating the thread I, then I has
a lock on any dynamic PCR on m at time t. m.d pcr.k
denotes the kth dynamic PCR on machine m.

(LockLL) ` (LateLaunch(m, I) @ t)
⊃ (IsLocked(m.d pcr.k, I) @ t)

Dynamic PCRs have properties very similar to static
PCRs. For example, the following axiom, similar to
(MemPR) described above, means that dinit is written to
every dynamic PCR when a late launch happens.

(MemLL) ` (LateLaunch(m, I) @ t)
⊃ (Mem(m.d pcr.k,dinit) @ t)

Axioms corresponding to (PCR1) and (PCR2) are also
sound for dynamic PCRs. The difference is that Reset and
sinit must be replaced by LateLaunch and dinit respec-
tively. The following axiom is used to prove invariance
properties of dynamic PCRs.

(MemIdP) ` (Mem(m.d pcr.k,e) @ tb)
∧ (IsLocked(m.d pcr.k, I) on (tb, te))
∧ (∀e′. ¬Extend(I,m.d pcr.k,e′) on (tb, te))
∧ (¬Reset(m) on (tb, te))
∧ (¬∃I. LateLaunch(m, I) on (tb, te))
⊃ (Mem(m.d pcr.k,e) on (tb, te))

4. Trusted Computing Protocols

We analyze two trusted computing protocols that rely on
TPMs to provide integrity properties: load-time attestation
using an SRTM and late-launch-based attestation using a
DRTM. In an attestation protocol, a platform utilizes a
TPM to attest to platform state by performing two steps:
integrity measurement and integrity reporting. Integrity
measurement consists of collecting cryptographic hashes
of local software events such as program loading. Integrity
reporting consists of transmitting collected measurements
in a signed aggregate to an external verifier. The external
verifier may then use the measurements to make trust

SRT M(m) ≡ b = read m.bl loc;
extend m.pcr.s,b;
jump b

BL(m) ≡ o = read m.os loc;
extend m.pcr.s,o;
jump o

OS(m) ≡ a = read m.app loc;
extend m.pcr.s,a;
jump a

APP(m) ≡ . . .

T PMSRT M(m) ≡ w = read m.pcr.s;
r = sign (PCR(s),w),AIK−1(m);
send r

Veri f ier(m) ≡ sig = receive ;
v = verify sig,AIK(m);
match v,(PCR(s),

seq(sinit,BL(m),OS(m),APP(m)))

Figure 3. Security Skeleton for SRTM Attestation Protocol

decisions. We first analyze an attestation protocol using
a Static Root of Trust for Measurement (SRTM), then
we consider an attestation protocol utilizing hardware
support for late launch and a Dynamic Root of Trust
for Measurement (DRTM). We simplify both protocols
by assuming the AIK has been certified as authentic by a
manufacturer certificate and by verifying a fixed sequence
of system integrity measurements.

4.1. Attestation Using a Static Root of Trust

We start by performing an analysis of a load-time
attestation protocol using an SRTM. The security skeleton
of the protocol is specified in Figure 3. A security skeleton
retains only relevant actions, in this case, actions per-
forming integrity measurement and reporting. The SRTM
protocol is composed of code that performs measurement
followed by code that performs integrity reporting. We
analyze the components separately.

4.1.1. Integrity Measurement. In the SRTM protocol,
integrity measurement starts after a machine reset. The
programs marked SRT M(m), BL(m), and OS(m) in Fig-
ure 3 represent those portions of the SRTM, boot loader,
and operating system that participate in the measurement
process. The SRT M(m) program is always the first pro-
gram invoked when a machine reboots. It first reads the
boot loader’s code b from the fixed disk address m.bl loc,
then measures the code by extending it into a static PCR
m.pcr.s (which in this case stores all measurements),
and then branches to the the boot loader by executing
the instruction jump b. The boot loader (BL(m)) in turn

reads the operating system’s code o from a fixed location
m.os loc, extends it into PCR m.pcr.s, and branches to it.
The operating system (OS(m)) performs similar actions
with the application’s code a. The application (APP(m))
may perform any actions. In practice, the sequence of
measurement and loading may continue beyond the first
application but we have chosen to terminate it here be-
cause extending the chain further does not lead to any
new insights about the security of the system.

Security Property. We summarize the integrity measure-
ment security property as follows: if m.pcr.s is protected
while a machine boots, and the contents of m.pcr.s are
seq(sinit,BL(m),OS(m),APP(m)), then the initial soft-
ware loaded on machine m since its last reboot was
BL(m) followed by OS(m). We now state this property
formally. We define the formulas ProtectedSRTM(m) and
MeasuredBootSRTM(m, t) as follows.

ProtectedSRTM(m) =
∀t, I. (Reset(m, I) @ t)⊃ (IsLocked(m.pcr.s, I) @ t)

MeasuredBootSRTM(m, t) =
∃tT . ∃tB. ∃tO. ∃J. (tT < tB < tO < t) ∧

(Reset(m,J) @ tT) ∧ (Jump(J,BL(m)) @ tB) ∧
(Jump(J,OS(m)) @ tO) ∧ (¬Reset(m) on (tT , t])
(¬Jump(J) on (tT , tB)) ∧ (¬Jump(J) on (tB, tO))

ProtectedSRTM(m) means that any thread I created
to boot machine m after a reset obtains an exclusive-
write lock on m.pcr.s. MeasuredBootSRTM(m, t) identifies
software events on m such as the boot loader and operating
system being branched to before time t. It comprises
four facts: (1) There exists a time tT before t at which
m was reset, creating a thread J to boot the machine
(Reset(m,J) @ tT), (2) This thread J branched to the
programs BL(m) and OS(m) at later time points tB and
tO (Jump(J,BL(m)) @ tB and Jump(J,OS(m)) @ tO), (3) J
did not make any other jumps in the interim (¬Jump(J) on
(tT , tB)) and (¬Jump(J) on (tB, tO)), and (4) Machine m
was not reset between tT and t (¬Reset(m) on (tT , t]).
Equivalently, after its last reboot before time t, the first
programs loaded on m were BL(m) and OS(m). We believe
this is a natural property to expect from a system integrity
measurement protocol.

The following theorem formalizes our security prop-
erty. It states that under the assumptions that m.pcr.s
is protected during booting, and that m.pcr.s contains
seq(sinit,BL(m),OS(m),APP(m)) at time t, it is guaran-
teed that the boot loader and operating system used to
boot the machine are BL(m) and OS(m) respectively.

Theorem 2 (Security of Integrity Measurement). The

following is provable in LS2:

ProtectedSRTM(m) `
Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t
⊃MeasuredBootSRTM(m, t)

We refer the reader to the full version of this paper for
a detailed proof of this theorem [17]. Major steps in the
proofs are discussed below to illustrate novel reasoning
principles in LS2. All programs mentioned below refer to
Figure 3.

(1) Using axioms (PCR1) and (PCR2)
in succession on the antecedent
Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @
t, we show that all sub-sequences of
seq(sinit,BL(m),OS(m),APP(m)) must have
appeared in m.pcr.s at times earlier than t, and that
machine m must have been reset at some time tT ,
creating a thread J to boot it. Formally, we obtain

∃tT , t1, t2, t3,J. (tT ≤ t1 < t2 < t3 < t)
∧ (Mem(m.pcr.s,seq(sinit,BL(m),OS(m))) @ t3)
∧ (Mem(m.pcr.s,seq(sinit,BL(m))) @ t2)
∧ (Mem(m.pcr.s,sinit) @ t1)
∧ (Reset(m,J) @ tT)
∧ (¬Reset(m) on (tT , t])

(2) Since m was reset creating thread J (second from
last conjunct above), it follows in our model that the
thread J above must have started with the program
SRT M(m). (We have omitted a description of the
rules that force this to be the case.) Thus, we
would like to proceed by proving an invariant of
SRT M(m). However, we can say nothing about the
program b loaded at the end of SRT M(m). This is
because b is read from a memory location m.bl loc,
which could potentially have been written by an
adversarial thread earlier. Fortunately, the extension
of b into m.pcr.s in the second line of SRT M(m)
lets us proceed. Precisely, this extension along with
some basic properties of PCRs lets us prove the
following property that is parametric (universally
quantified) in the code b. tT and J were obtained in
property (1).

∀t ′,b,o.
(((Mem(m.pcr.s,seq(sinit,b,o)) @ t ′)
∧ (tT < t ′ ≤ t))
⊃ ∃tB. ((tT < tB < t ′) ∧ (Jump(J,b) @ tB)))

∧ (IsLocked(m.pcr.s,J) @ tB))

This property means that if at any time t ′ between tT
and t, m.pcr.s contained seq(sinit,b,o), then thread
J must have branched to b at some time tB between
tT and t ′, and that J must hold a lock on m.pcr.s
at tB. Informally this holds because the action im-
mediately following the extension in SRT M(m) is

jump b, so if there is a further extension with o,
jump b must have happened in the interim. The
assumption ProtectedSRTM(m) is used to rule out
the possibility that a thread other than J extended o
into m.pcr.s before jump b happened, and to show
that J holds the lock on m.pcr.s at tB.

(3) We instantiate the property in (2), choosing b =
BL(m), o = OS(m), and t ′ = t3 (t3 was obtained
in (1)). Eliminating the antecedents of the impli-
cation using facts from (1), we obtain:

∃tB. ((tT < tB < t3) ∧ (Jump(J,BL(m)) @ tB)
∧ (IsLocked(m.pcr.s,J) @ tB))

(4) From (3) we know Jump(J,BL(m)) @ tB. Next
we use the (Jump) rule from Section 2.2. In the
premise we show that ∀tb, te. ∀Q ∈ IS(BL(m)). `
[Q]tb,te

J A(tb, te) for a suitable invariant A(tb, te),
whose details we omit here (see [17] for details).
The main difficulty here is similar to that in (2): we
do not know what o in the program of BL(m) may
be. Again, the invariant we prove is parametric in
o. Using the (Jump) rule, we obtain the following
property.

∀t ′,o,a.
(((Mem(m.pcr.s,seq(sinit,BL(m),o,a)) @ t ′)
∧ (tB < t ′ ≤ t))
⊃ ∃tO. ((tB < tO < t) ∧ (Jump(J,o) @ tO)))

This property is very similar to that in (2), except
that it follows from an invariant of BL(m), not
SRT M(m). The fact IsLocked(m.pcr.s,J) @ tB from
(3) is needed to rule out the possibility that a thread
other than J extended a into m.pcr.s.

(5) We instantiate the property in (4), choosing o =
OS(m), a = APP(m) and t ′ = t. Combining with
facts from (1), we obtain:

∃tO. ((tB < tO < t) ∧ (Jump(J,OS(m)) @ tO))

The facts (Reset(m,J) @ tT), (¬Reset(m) on (tT , t]),
(Jump(J,BL(m)) @ tB), and (Jump(J,OS(m)) @
tO) in (1), (3), and (5) establish part of
MeasuredBootSRTM(m, t). The remaining part follows
from a similar analysis with slightly stronger invariants
in (2) and (4).

The hardest part in designing LS2’s proof system was
coming up with sound principles for reasoning about dy-
namically branching to unknown code that are illustrated
above, and in particular, the (Jump) rule. Although the
final design is simple to use, it was not obvious at first.
We believe that this method for reasoning about branching
to completely unknown code (like b and o) is new to this
work. Prior work on reasoning about dynamically loaded
code, usually based on higher-order extensions of Hoare
logic [24]–[28], assumes that at least the invariants of the

code being branched to are known at the point of branch in
the program. In our setting, this assumption is unrealistic
because we allow executable code to either be obtained
over the network or be read from memory, and hence,
potentially, to come from an adversary.

4.1.2. Insights From Analysis. A number of insights
follow from the analysis. These insights include high-
lighting an unexpected property, clarifying assumptions
on the TCB, and identifying program invariants required
for security.
Property Excludes Last Jump. A key insight from the
analysis is that the integrity measurement protocol does
not provide sufficient evidence to deduce that the last pro-
gram in a chain of measurements is actually executed. For
example, an adversary can reboot the platform after OS(m)
extends APP(m), but before it is jumped to. Alternatively,
a race may occur between two application-level processes
whereby the OS extends the first into m.pcr.s and then
the other process reads the value in m.pcr.s before the
first process is branched to.
TCB Assumptions. The value of m.pcr.s does not guar-
antee that the measured software was also executed unless
it is also guaranteed that no other process had write access
to m.pcr.s. If the latter assumption fails, an attack exists: a
malicious process may extend a piece of code into m.pcr.s
without executing it. This assumption usually holds in
practice because booting is generally single threaded, but
may fail if for example a malicious thread executes on
another processor core concurrently with the measurement
thread. Formally, this shows up as the ProtectedSRTM(m)
formula, which is a necessary assumption for the proof.
Program Invariants. To establish Theorem 2, we prove
program invariants for the SRT M(m) and BL(m) pro-
grams. These invariants provide a specification of the
properties that an SRTM and a boot loader program must
satisfy to be secure in an integrity measurement protocol,
i.e. the assumptions about the TCB. The SRT M(m) in-
variant states that there exists a time point t ′ and thread
J such that J branches to the boot loader b, J does not
branch to any program at any time point before t ′, m.pcr.s
contains the hashed value of the boot loader b, and m.pcr.s
is locked by J at t ′. The invariant of BL(m) states that there
exists a time point t and thread J such that J branches
to program code o only after the entire program code o
has been measured into m.pcr.s. Kauer [29] performed a
manual source code audit of a number of TPM-enabled
boot loaders to check the informal security condition
that “no code...is executed but not hashed.” Our invari-
ant on the boot loader BL was developed independently
during the course of proving the above theorem and
is a formal specification of this condition. We envisage
that these invariants can be used to derive properties
to automatically check against implementations of TCB

components, thereby providing greater assurance that the
trusted components are trustworthy.

4.1.3. Integrity Reporting. After the integrity measure-
ment protocol loads the PCRs with measurements, the
measurements can be used by the TPM to attest to the
identify of the software loaded on the local platform.
This protocol, called integrity reporting, involves two
participants. One of the participants is the remote party
itself, called the verifier. Its code is marked Veri f ier(m)
in Figure 3. The other participant in the protocol is the
TPM of machine m in the role of T PMSRT M(m). This code
is also shown in the same figure.

The integrity reporting protocol contains two steps. In
the first, the TPM on machine m reads the contents w
of m.pcr.s, signs them and an identifier (denoted PCR(s))
that uniquely identifies m.pcr.s with its embedded private
key AIK−1(m) and sends the signed aggregate to the
remote verifier. In the second step, the remote verifier
verifies this signature with the known public key AIK(m),
and checks that the contents of the signature match the
pair of PCR(s) and seq(sinit,BL(m),OS(m),APP(m)).
Security Properties. The security properties of integrity
reporting are formalized by the following two LS2 formu-
las, which we call J1 and J2 respectively.

[Veri f ier(m)]tb,te
V ∃t. (t < te) ∧

(Mem(m.pcr.s,seq(sinit,BL(m),OS(m),APP(m))) @ t)

[Veri f ier(m)]tb,te
V ∃t. (t < te) ∧MeasuredBootSRTM(m, t)

The first property (J1) states that if the code Veri f ier(m)
is executed successfully between the time points tb and
te, then there must be a time t before te at which m.pcr.s
contained seq(sinit,BL(m),OS(m),APP(m)). The second
property (J2) means that a remote verifier can identify the
boot loader and operating system that were loaded on m
at some time prior to te.

To prove these properties, we require two new assump-
tions, which we combine in the set ΓSRT M below. The
first of these assumptions states that the remote verifier
is distinct from the TPM. This assumption is needed to
distinguish protocol participants, and is true in practice.
The second assumption is the honesty assumption for the
TPM from Section 3.1 that guarantees that the TPM’s
signature cannot be forged, and that the TPM always
executes only specified programs.

ΓSRT M =
{V̂ 6= ˆAIK(m),

Honest(ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)})}

Theorem 3 (Security of Integrity Reporting). The follow-
ing are provable in LS2’s proof system:

(1) ΓSRT M ` J1
(2) ΓSRT M,ProtectedSRTM(m) ` J2

The proof of (1) critically relies on the assump-
tion Honest(ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)}) to
establish both that the TPM on m actually produced a
signature in the past, and that the value signed by the
TPM was actually read from m.pcr.s. The latter follows
from knowledge of the programs that the TPM may be
executing. (2) follows from (1) and Theorem 2.

4.1.4. Insights From Analysis. The security analysis
lead to a number of insights including highlighting
weaknesses in the property provided by the protocol and
identifying program invariants required for security.

Staleness of Measurements. A key insight from the
analysis is that after executing the integrity reporting
protocol, the verifier has no knowledge of how recent
the time of measurement t is in comparison to te, the
time the verifier’s execution finished. This staleness of
measurements is inherent in the protocol: it is possible
to reboot the machine with a different boot sequence after
sending the signature to the remote verifier, as is known
from prior work [19]. Formally, one can only prove that
m.pcr.s contained the reported measurements at time t,
but not after.
Program Invariants. In the process of proving the above
theorem, we prove a program invariant for the roles of
the TPM (i.e., T PMSRT M(m) and T PMDRT M(m)). This
invariant provides a specification of the properties that a
TPM’s signing role must satisfy. In particular, the invariant
requires that if the TPM returns a value then the value is
a signature over the value stored in m.pcr.s and that the
TPM does not write to any memory locations. The latter
constraint is necessary to prevent previously measured
code from being modified after being measured.

4.2. Attestation Using a Dynamic Root of Trust

We perform an analysis of DRTM attestation using our
model of hardware support for late launch. We jointly
analyze the protocol code that performs integrity measure-
ment and reporting.

4.2.1. DRTM Protocol. We describe the security skeleton
of the DRTM attestation protocol in Figure 4. The DRTM
protocol is a four agent protocol. The processes are: (1)
OS(m), executed by the machine itself (called m̂), that
receives a nonce from the remote verifier, and performs a
late launch. (2) LL(m), executed by the hardware platform,
that reads the binary of the program P(m) from the secure
loader block (SLB), and measures then branches to P(m),
(3) P(m) that measures the nonce, evaluates the function
f on input 0 (the function f and its input may be changed
depending on application), and extends a distinguished
string EOL into m.d pcr.k to signify the end of the late

launch session. (4) T PMDRT M(m), executed by the TPM
of m, that signs the dynamic PCR m.d pcr.k, and sends
it to the verifier. (5) Veri f ier(m), executed by a remote
verifier, that generates and sends a nonce, receives signed
measurements, verifies the signature, and checks that the
measurements match the sequence (dinit,P(m),n,EOL).
Security Property. We summarize the DRTM security
property as follows: if the verifier is not the TPM, the
TPM does not leak its signing key, and the TPM executes
only the processes T PMDRT M(m) and T PMSRT M(m), then
the remote verifier is guaranteed that J performed a single
late launch on machine m at some time tL, J branched
to P(m) only once at tC, J evaluated f once at tE (and
this happened after the verifier generated the nonce),
J extended EOL into m.d pcr.k at some time tX , and
m.d.pcr.k was locked for the thread J from tL to tX . We
formalize this security property called JDRT M below.

[Veri f ier(m)]tb,te
V ∃J, tX , tE , tN , tL, tC,n.

∧ (tL < tC < tE < tX < te)
∧ (tb < tN < tE)
∧ (New(V,n) @ tN)
∧ (LateLaunch(m,J) @ tL)
∧ (¬LateLaunch(m) on (tL, tX])
∧ (¬Reset(m) on (tL, tX])
∧ (Jump(J,P(m)) @ tC)
∧ (¬Jump(J) on (tL, tC))
∧ (Eval(J, f) @ tE)
∧ (Extend(J,m.d pcr.k,EOL) @ tX)
∧ (¬Eval(J, f) on (tC, tE))
∧ (¬Eval(J, f) on (tE , tX))
∧ (IsLocked(m.d pcr.k,J)on(tL, tX])

In order to prove the property, we have to make the
following assumptions.

ΓDRT M =
{V̂ 6= ˆAIK(m),

Honest(ˆAIK(m),{T PMSRT M(m),T PMDRT M(m)})}

We also made the same assumptions in the SRTM protocol
(ΓSRT M = ΓDRT M). We prove the following theorem:

Theorem 4 (Security of DRTM). The following is prov-
able in LS2: ΓDRT M ` JDRT M

As in the SRTM protocol, the security of the DRTM
protocol relies on PCRs being append-only and write-
protected in memory. In addition, the DRTM protocol
relies on (1) write locks on all dynamic PCRs that are
provided by the late launch and (2) a dynamic reset of
m.d pcr.k , to reset the values in the dynamic PCRs to dinit
and signal that P(m) was executed with the protections
provided by late launch.

OS(m) ≡ n′ = receive ;
write m.nonce,n′;
late launch

LL(m) ≡ P = read m.SLB;
extend m.d pcr.k,P;
jump P

P(m) ≡ n′′ = read m.nonce;
extend m.d pcr.k,n′′;
eval f ,0;
extend m.d pcr.k,EOL

T PMDRT M(m) ≡ w = read m.d pcr.k;
r = sign (dPCR(k),w),AIK−1(m);
send r

Veri f ier(m) ≡ n = new ;
send n;
sig = receive ;
v = verify sig,AIK(m);
match v,(dPCR(k),

seq(dinit,P(m),n,EOL))

Figure 4. Security Skeleton for DRTM Attestation Protocol

4.2.2. Insights From Analysis. The security analysis lead
to a number of insights including revealing an insecure
protocol interaction between the DRTM and SRTM attes-
tation protocols, highlighting differences with the SRTM
protocol, and identifying program invariants required for
DRTM security that we subsequently used to manually
audit a security kernel implementation.
Insecure Protocol Interaction. In extending LS2 to
model DRTM, we discovered that adding late launch
required us to weaken some axioms related to reason-
ing about invariance of values in memory in order to
retain soundness in the proof system. With these weaker
axioms, we were unable to prove the safety property
of the SRTM protocol. Soon after, we realized that
SRTM’s safety property can actually be violated using
latelaunch . Specifically, during the execution of the
SRTM protocol, a late launch instruction may be issued
by another thread before OS(m) has been extended into
m.pcr.s. The invoked program may then extend the code
of the programs OS(m) and APP(m) into m.pcr.s without
executing them, and send signed measurements to the
remote verifier. Since the contents of m.pcr.s would be the
sequence seq(sinit,BL(m),OS(m),APP(m)), the remote
verifier would believe incorrectly that OS(m) was executed
and the SRTM protocol would fail to provide its expected
integrity property. This vulnerability can be countered if
the program loaded in a DRTM session were unable to
change the contents of m.pcr.s if SRTM were executing
in parallel. In the final design of our formal model, we
force this to be the case by letting the thread booting a

machine to retain an exclusive-write lock on m.pcr.s even
in the face of a concurrent late launch, thus allowing a
proof of correctness of SRTM.

Late launch also opens the possibility of a code mod-
ification attack on SRTM. Specifically, after the code of
a program such as BL(m) or OS(m) has been extended
into m.pcr.s in SRTM, a concurrent thread may invoke a
DRTM session and change the code in memory before it
is executed. Any subsequent attestation of integrity of the
loaded code to a remote party would then be incorrect.
Our model prevents this attack by assuming that code
measured in PCRs during SRTM cannot be modified in
memory.
Comparison to SRTM. The property provided by the
DRTM protocol is stronger than the SRTM protocol for a
number of reasons:

Fewer Assumptions. The proof of security
for the DRTM protocol does not rely on the
ProtectedSRTM(m) assumption that static PCRs are
locked. Instead the latelaunch action locks all
dynamic PCRs. If the machine M is a multi-processor
or multi-core machine that is capable of running
multiple threads in parallel, the locks on the dynamic
PCRs will prevent attacks where malicious threads
running concurrently with the measurement thread
extend additional programs into m.d pcr.k in an
attempt to attest to their execution within a late
launch session.

Smaller TCB. The security proof of the DRTM does
not reason about the measurements of the BIOS,
boot loader, or operating system stored in the static
PCRs (e.g., m.pcr.s), indicating that the security of
the DRTM protocol does not depend on these large
software components. This considerably reduces the
trusted computing base to just P(m) and LL(m) and
opens up the possibility of verifying that the TCB
satisfies the required program invariants.

Execution Integrity. Unlike the SRTM protocol that
does not provide sufficient evidence to deduce that
the last program in a sequence of measurements is
branched to, the JDRT M property states that all pro-
grams measured during the protected session where
executed. The property goes further to state that the
programs completed execution. Specifically, the end of
session measurement EOL proves that P(m) executes
to completion.

Program Invariants. In the process of proving the above
theorem, we prove program invariants for the roles of
the TPM (i.e., T PMSRT M(m) and T PMDRT M(m)), and the
programs LL(m) and P(m). These invariants specify the
properties that T PMSRT M(m), T PMDRT M(m), LL(m), and

P(m) must satisfy for the DRTM protocol to be secure.
The invariant over the roles of the TPM is similar to
the TPM’s role invariant used for SRTM. The invariant
for LL(m) states that the code must maintain a lock on
m.d pcr.k and measure then branch to the program P(m).
The invariant for P(m) is shown below. The invariant
states that if there are no resets or late launches on m from
tb to te, m.d pcr.k is locked at tb and m.d pcr.k contains
the sequence seq(dinit,P(m)) at tb and later contains
seq(dinit,P(m),x,EOL)), then there exists a thread J such
that J extended a value x (e.g., a nonce) into m.d pcr.k,
then evaluated f , then extended the end of session symbol
EOL, and that each action was performed once, in the
order specified, and m.d pcr.k was locked from tb to tX .

[Q]tb,te
J ∀t,x. ((¬Reset(m) on (tb, te])
∧ (¬LateLaunch(m) on (tb, te])
∧ (Mem(m.d pcr.k,seq(dinit,P(m))) @ tb)
∧ (IsLocked(m.d pcr.k,J) @ tb)
∧ (tb < t ≤ te)
∧ (Mem(m.d pcr.k,seq(dinit,P(m),x,EOL)) @ t))

⊃ ∃tn, tE , tX . ((tb < tn < tE < tX < t)
∧ (Extend(J,m.d pcr.k,x) @ tn)
∧ (Extend(J,m.d pcr.k,EOL) @ tX)
∧ (Eval(J, f) @ tE)
∧ (¬Eval(J, f) on (tb, tE))
∧ (¬Eval(J, f) on (tE , tX))
∧ (IsLocked(m.d pcr.k,J) on (tb, tX]))

Manual Audit of DRTM Implementation. To check that
the invariants required by our security analysis are correct,
we performed a manual source code audit of the Flicker
implementation of the DRTM protocol [30]. We checked
that Flicker’s security kernel implementation, represented
by our program P(m), respects the invariant above. We
were able to quickly extract the security skeleton of the
security kernel from Flicker’s approximately 250 lines of
C code. To verify that the skeleton respects the exact
invariant from our security proof, we checked that instruc-
tions were present to evaluate the function f , that the EOL
marker was subsequently extended into m.d pcr.k, and that
each of the instructions would only be executed once on
all code paths. In several cases, we matched multiple C
instructions to a single action since the instructions are a
refinement of the action. For example, the extension of
EOL consists of two instructions, a memset to create the
sequence of characters corresponding to an EOL and a
call to a wrapper for the extend instruction. The entire
manual process of extracting the security skeleton and
auditing the invariant took less than one hour for an
individual with no previous experience with the Flicker
security kernel. Although we did not formally verify the
property, one interesting direction for future work is to use
these invariants to derive refined invariants to check on the

implementation, possibly using software model checking
techniques.

5. Related Work

LS2 draws on certain conceptual ideas from PCL [3],
in particular, the local reasoning style by which security
properties of protocols are proved without explicitly rea-
soning about adversary actions. In PCL, global security
properties are derived by combining properties achieved
by individual protocol steps with invariants proved by
induction over the protocol programs executed by honest
parties. LS2 supports this form of reasoning for a much
richer language that includes not only network communi-
cation and cryptography as in PCL, but also shared mem-
ory, memory protection, machine resets, and dynamically
loaded unknown pieces of code. The insights on which the
new proof rules are based are described in Section 2.2.
The technical definition of LS2 also differs significantly
from PCL: instead of associating pre-conditions and post-
conditions with all actions in a process (as PCL does),
we model time explicitly, and associate monotonically
increasing time points with events on a trace. The presence
of explicit time allows us to express invariants about
memory; for instance, we may express in LS2 that a
memory location contains the same value throughout the
interval [t1, t2]. Explicit time is also used to reason about
the relative order of events. Whereas explicit use of time
may appear to be low-level and cumbersome for practical
use, the proof system for LS2 actually uses time in a very
limited way that is quite close to temporal logics such as
LTL [31]. Indeed, it seems plausible to rework the proof
system in this paper using operators of LTL in place of
explicit time. However, we refrain from doing so because
we believe that a model of real time may be needed to
analyze some systems of interest (e.g., [32]–[34]).

LS2 also shares some features with other logics of
programs [8], [10], [35]. Hoare logic and dynamic logic
focus on sequential imperative programs, and do not
consider concurrency, network communication and adver-
saries. LS2’s abstract locks are similar to regions that are
used to reason about synchronized access to memory in
concurrent separation logic [8]. However, the two primi-
tives differ in application. Whereas we use locks to enforce
integrity of data stored in memory, regions are intended to
prevent race conditions. Another key difference between
concurrent separation logic and LS2 is that the former
does not consider network communication. Furthermore,
concurrent separation logic and other approaches for ver-
ifying concurrent systems [36] typically do not consider
an adversary model. An adversary could be encoded as
a regular program in these approaches, but then proving
invariants would involve an induction over the steps of the
honest parties programs and the attacker.

Prior proposals for reasoning about dynamically loaded
code use higher-order extensions of Hoare logic [24]–[28].
However, they are restricted to reasoning about sequential
programs only and require that invariants of code being
called be known in the program at the point of the call.
LS2’s method addresses the problem of reasoning about
dynamically loaded code in the more general context of
concurrent program execution where one thread is allowed
to modify code that is loaded by another. As illustrated
in Section 4.1, using the (Jump) rule, evidence that some
code executed can be combined with separate evidence
about the identity of the code to reason precisely about
the effects of the jump. Such reasoning is essential in
some applications including trusted computing, and is
impossible in all prior work known to us.

There have been several previous analyses of trusted
computing. Abadi and Wobber used an authorization logic
to describe the basic ideas of NGSCB, the predecessor to
the TCG [37]. Their formalization documents and clarifies
basic NGSCB concepts rather than proving specific prop-
erties of systems utilizing a TPM. Chen et al. developed a
formal logic tailored to the analysis of a remote attestation
protocol and suggested improvements [38]. Unlike LS2,
these logics are not tied to the execution semantics of
the protocols. Gurgens et al. used a model checker to
analyze the security of several TCG protocols [39]. Millen
et al. employed a model checker to understand the role
and trust relationships of a system performing a remote
attestation protocol [40]. Our analysis with LS2 is a
complementary approach: It proves security properties
even for an infinite number of simultaneous invocations
of attestation protocols, but with a more abstract model
of the TPM’s primitives. LS2 is designed to be a more
general logic with TCG protocols providing one set of
applications. Lin [41] used a theorem prover and model
finder to analyze the security of the TPM against invalid
sequences of API calls.

6. Conclusion

In this paper, we presented LS2 and used it to carry
out a substantial case study of trusted computing attesta-
tion protocols. The design of LS2 was conceptually and
technically challenging. Specifically, it was difficult to
define a realistic adversary model and formulate sound
reasoning principles for dynamically loaded unknown (and
untrusted) code. The proof system was designed to support
reasoning at a high level of abstraction. This was partic-
ularly useful in the case studies where the proofs yielded
many insights about the security of trusted computing
systems.

In future work, we will build upon this work to model
and analyze security properties of web browsers, security
hypervisors and virtual machine monitors. We also plan

to develop further principles for modeling and reasoning
about security at the level of system interfaces, in partic-
ular, to support richer access control models and system
composition and refinement.
Acknowledgments. The authors would like to thank
Michael Hicks, Jonathan McCune, and the anonymous re-
viewers for their helpful comments and suggestions. This
work was partially supported by the U.S. Army Research
Office contract on Perpetually Available and Secure Infor-
mation Systems (DAAD19-02-1-0389) to CMU’s CyLab,
the NSF Science and Technology Center TRUST, and
the NSF CyberTrust grant “Realizing Verifiable Security
Properties on Untrusted Computing Platforms”. Jason
Franklin is supported in part by an NSF Graduate Re-
search Fellowship.

References

[1] “Trusted Computing Group (TCG),” https:
//www.trustedcomputinggroup.org/, 2008.

[2] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic, “A
derivation system and compositional logic for security
protocols,” Journal of Computer Security, vol. 13, no. 3,
pp. 423–482, 2005.

[3] A. Datta, A. Derek, J. C. Mitchell, and A. Roy, “Protocol
Composition Logic (PCL).” Electr. Notes Theor. Comput.
Sci., vol. 172, pp. 311–358, 2007.

[4] N. Durgin, J. C. Mitchell, and D. Pavlovic, “A composi-
tional logic for proving security properties of protocols,”
Journal of Computer Security, vol. 11, pp. 677–721, 2003.

[5] A. Roy, A. Datta, A. Derek, J. C. Mitchell, and J.-P. Seifert,
“Secrecy analysis in protocol composition logic,” Formal
Logical Methods for System Security and Correctness,
2008.

[6] R. Milner, M. Tofte, and R. Harper, The Definition of
Standard ML. Cambridge, MA, USA: MIT Press, 1990.

[7] J. Saltzer and M. Schroeder, “The protection of information
in computer systems,” Proceedings of the IEEE, vol. 63,
no. 9, pp. 1278–1308, September 1975.

[8] S. Brookes, “A semantics for concurrent separation logic,”
in Proceedings of 15th International Conference on Con-
currency Theory, 2004.

[9] Z. Manna and A. Pnueli, Temporal Verification of Reactive
Systems: Safety. Springer-Verlag, 1995.

[10] C. A. R. Hoare, “An axiomatic basis for computer pro-
gramming,” Communications of the ACM, vol. 12, no. 10,
pp. 576–580, 1969.

[11] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local
reasoning about programs that alter data structures,” in Pro-
ceedings of the 15th International Workshop on Computer
Science Logic. London, UK: Springer-Verlag, 2001, pp.
1–19.

[12] J. C. Reynolds, “Separation logic: A logic for shared
mutable data structures,” in Proceeding of the 17th Annual
IEEE Symposium on Logic in Computer Science (LICS).
IEEE Computer Society, 2002, pp. 55–74.

[13] Trusted Computing Group, “TCG Specification
Architecture Overview, Specification Revision 1.4,”
https://www.trustedcomputinggroup.org/groups/TCG 1 4
Architecture Overview.pdf, August 2007.

[14] TCG, “PC client specific TPM interface specification
(TIS),” Version 1.2, Revision 1.00, Jul. 2005.

[15] Advanced Micro Devices, “AMD64 virtualization: Secure
virtual machine architecture reference manual,” AMD Pub-
lication no. 33047 rev. 3.01, May 2005.

[16] “Intel Trusted Execution Technology: Software Develop-
ment Guide,” Document Number: 315168-005, Intel Cor-
poration, June 2008.

[17] A. Datta, J. Franklin, D. Garg, and D. Kaynar, “A logic of
secure systems and its application to trusted computing,”
Carnegie Mellon University, Tech. Rep. CMU-CyLab-09-
001, 2009.

[18] E. M. Chan, J. C. Carlyle, F. M. David, R. Farivar, and
R. H. Campbell, “BootJacker: Compromising computers
using forced restarts,” in Proceedings of 15th ACM Con-
ference on Computer and Communications Security, 2008.

[19] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn,
and X. Zhang, “Towards trustworthy kiosk computing,” in
Workshop on Mobile Computing Systems and Applications,
Feb. 2006.

[20] H. DeYoung, D. Garg, and F. Pfenning, “An authorization
logic with explicit time,” in Proceedings of the 21st IEEE
Computer Security Foundations Symposium (CSF-21), Jun.
2008.

[21] J. Reed, “Hybridizing a logical framework,” in Interna-
tional Workshop on Hybrid Logic 2006 (HyLo 2006), ser.
Electronic Notes in Computer Science, August 2006.

[22] T. Braüner and V. de Paiva, “Towards constructive hybrid
logic,” in Electronic Proceedings of Methods for Modalities
3 (M4M3), 2003.

[23] “Secure virtual machine architecture reference
manual.” AMD Corp., May 2005. [Online].
Available: http://www.amd.com/us-en/assets/content type/
white papers and tech docs/33047.pdf

[24] N. Krishnaswami, “Separation logic for a higher-order
typed language,” 2006, in Workshop on Semantics, Pro-
gram Analysis and Computing Environments for Memory
Management, SPACE06.

[25] H. Thielecke, “Frame rules from answer types for code
pointers,” in 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. New York, NY,
USA: ACM, 2006, pp. 309–319.

[26] Z. Ni and Z. Shao, “Certified assembly programming with
embedded code pointers,” in 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages.
New York, NY, USA: ACM, 2006, pp. 320–333.

[27] H. Cai, Z. Shao, and A. Vaynberg, “Certified self-
modifying code,” in ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. New
York, NY, USA: ACM, 2007, pp. 66–77.

[28] A. Nanevski, G. Morrisett, and L. Birkedal, “Hoare type
theory, polymorphism and separation,” Journal of Func-
tional Programming, vol. 18, no. 5&6, pp. 865–911, 2008.

[29] B. Kauer, “OSLO: Improving the security of trusted com-
puting,” in Proceedings of the USENIX Security Sympo-
sium, Aug. 2007.

[30] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki, “Flicker: An execution infrastructure for tcb
minimization,” in Proceedings of the ACM European Con-
ference in Computer Systems (EuroSys), Apr. 2008.

[31] A. Pnueli, “The temporal logic of programs,” in Pro-
ceedings of 19th Annual Symposium on Foundations on
Computer Science, 1977.

[32] R. Kennell and L. H. Jamieson, “Establishing the genuinity
of remote computer systems,” in Proceedings of the 2003
USENIX Security Symposium, Aug. 2003.

[33] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla,
“SWATT: Software-based attestation for embedded de-
vices,” in Proceedings of the IEEE Symposium on Security
and Privacy, May 2004.

[34] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. Khosla, “Pioneer: Verifying code integrity and
enforcing untampered code execution on legacy platforms,”
in Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2005.

[35] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic, ser.
Foundations of Computing. MIT Press, 2000.

[36] L. Lamport, “The temporal logic of actions,” ACM Trans-
actions on Programming Languages and Systems, vol. 16,
no. 3, May 1994.

[37] M. Abadi and T. Wobber, “A logical account of NGSCB,”
in Proceedings of Formal Techniques for Networked and
Distributed Systems, 2004.

[38] S. Chen, Y. Wen, and H. Zhao, “Formal analysis of
secure bootstrap in trusted computing,” in Proceedings of
4th International Conference on Autonomic and Trusted
Computing, 2007.

[39] S. Gurgens, C. Rudolph, D. Scheuermann, M. Atts, and
R. Plaga, “Security evaluation of scenarios based on the
TCG’s TPM specification,” in Proceedings of 12th Euro-
pean Symposium On Research In Computer Security, 2007.

[40] J. Millen, J. Guttman, J. Ramsdell, J. Sheehy, and B. Snif-
fen, “Analysis of a measured launch,” The MITRE Corpo-
ration, Tech. Rep., 2007.

[41] A. H. Lin, “Automated analysis of security apis,” Master’s
thesis, Massachusetts Institute of Technology, 2005.

