
The Science of Security

18 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES 1540-7993/11/$26.00 © 2011 IEEE MAY/JUNE 2011

I n this article, we report a representative result
in the science of security. To explain what we
mean by a “science,” we can draw an analogy
with physics. A physical theory consists of a

model of the physical universe. The model should be
general—that is, it should encompass a large class of
physical phenomena. It should also support analyses
that identify relationships among physical concepts,
which researchers can then use to explain observed
behavior in the physical universe and predict behavior
that they haven’t yet observed. For example, Albert
Einstein’s general theory of relativity presents a model
of gravitation—a set of equations that describe how
spacetime is curved by matter and energy (a relation-
ship among physical concepts). It explains observed
phenomena, such as the bending of light near the
sun, and predicts the existence of black holes, regions
of spacetime where the gravitational attraction is so
strong that even light can’t escape. The theory is gen-
eral in that its predictions apply to a very large class of
phenomena ranging from motion of bodies (apples,
stars, planets) in free fall to the propagation of light.

A science of security should include theories for
the security universe that have similar characteristics.
The security universe includes a large class of comput-
er systems (Web browsers, hypervisors, virtual ma-
chine monitors, operating systems, trusted computing
systems, and network protocols, to name a few) that
are intended to provide subtle security properties
in the presence of adversaries who actively interfere
with a system’s execution. A security theory should
therefore include a model for systems, adversaries, and

properties that
supports analy-
ses that iden-
tify relationships
among classes of systems, adversaries, and properties.
These relationships should in turn help explain ob-
served phenomena (why specific attacks work against
specific systems) and predict phenomena (how well a
system will hold up as adversaries launch new attacks).
A theory is general if it applies to large classes of sys-
tems, adversaries, and properties.

In this article, we present the outline of a theory
of compositional security that addresses a recognized
scientific challenge.1 Contemporary systems evolve
from smaller components, but even if each compo-
nent is secure in isolation, the composed system might
not achieve the desired security property because an
adversary could still exploit complex interactions be-
tween components to compromise security. A theory
of compositional security should identify relationships
among systems, adversaries, and properties such that
precisely defined composition operations over systems
and adversaries preserve security properties. Such a
theory would thus enable scalable analysis of large,
complex systems by constructing their security proofs
from separately constructed proofs of properties of the
simpler components from which they’re built. In addi-
tion, if a component is used to build multiple systems,
the proof of its security property could be reused in
the proofs for all systems constructed.

Although researchers have made progress in un-
derstanding secure composition in specific settings,

AnupAm
DAttA, JAson
FrAnklin,
DeepAk GArG,
limin JiA,
AnD Dilsun
kAynAr

Carnegie
Mellon
University

On Adversary Models
and Compositional Security

A unified view of a wide range of adversary classes and

composition principles for reasoning about security

properties of systems are cornerstones of a science of

security. They provide a systematic basis for security

analysis by explaining and predicting attacks on systems.

The Science of Security

 www.computer.org/security 19

such as information flow control for noninterference-
style properties2 and cryptographic protocols,3–5 a
systematic understanding of the general problem of
secure composition hasn’t emerged yet. Our theory
builds on and generalizes prior work on a composi-
tional theory for the domain of cryptographic pro-
tocols4 and is influenced by compositional reasoning
principles for functional correctness of programs.6,7
The security literature offers several alternative ap-
proaches to compositional security. In particular, one
recent work applies the universal composability ap-
proach,3,5 originally developed for cryptographic pro-
tocols, to systems.8 We refer the interested reader to
a technical paper we’ve written for comparison with
additional related work.9

Modeling Both Systems
and Adversaries
We model a system as a set of concurrently run-
ning—and possibly interacting—threads of programs
that access a set of resources only through stipulated
interfaces. Figure 1a illustrates our model’s key com-
ponents. In the figure, Ri and Ii represent resources
and interfaces, respectively. Trusted components, Ti,
combine interface calls in known ways. Adversarial
(untrusted) components, Ai, on the other hand, can
combine calls to interfaces they access arbitrarily. In
general, the set of interfaces IAi available to adversaries
is a subset of the set of interfaces ITi available to the
trusted system components.

This model is general: it captures a wide range
of real systems and associated adversary models. For
example, Figure 1b shows a model of Web mashups
obtained by instantiating the elements of Figure 1a.
Resources include the mashup’s document object
model (DOM), communication channels between
frames, and the network. Each frame in the mashup
corresponds to one thread of the system. An adversary
is a set of malicious frames. Interfaces ID for accessing
the DOM include functions for reading and writing
DOM elements; interfaces for interframe communi-
cation include the postmessage method; and inter-
faces for the network include methods for obtaining
data and code over the network. Note that adversarial
frames are limited in their behavior by these interfac-
es—if all network interfaces restrict communication
to servers in the same domain as the originating frame
(the so-called same-origin policy), then an adversarial
frame can’t contact a server from a different domain
regardless of its program.

Another example obtained by instantiating Figure
1a is that of a file system (Figure 1c). Here, the resources
are files, the data structure holding the access permis-
sion matrix, and possibly the network. As usual, the
model assumes that the administrator (such as the su-

peruser in Unix-based systems) is trusted and that other
users might be adversarial. Again, adversaries can’t
break the interface abstraction: if no interface allows
Mallory to read secret.txt, Mallory’s program can’t read
secret.txt regardless of the instructions it executes.

Yet another instance of our abstract model of
systems is a network security protocol in which we
view the network as the sole shared resource of inter-
est and in which interfaces include message send and
receive functions, encryption, decryption, and nonce
generation. Trusted threads follow their parts of the
protocol, whereas adversarial threads combine inter-
face calls any way they choose. Yet again, adversaries
are confined by the interfaces available to them—they
can intercept and send messages, but they can’t de-
crypt messages that are encrypted using keys that they
don’t know.

At a technical level, interfaces are modeled as re-
cursive functions in an expressive programming lan-
guage. Trusted components and adversaries are also
represented using programs in the same programming

T1 Tn

R1

IT1

...

IA1

Rk

ITk IAk
...

AmA1 ...

frame1

DOM

ID

Communication channels

IC

Network

IN

framenframe2

File system

IF

Network

IN

Permission matrix

IP

Admin UnU1 ...

(a)

(b)

(c)

Figure 1. (a) Abstract interface view of a system and its instantiations to (b)

a Web mashup and (c) a file system. Trusted components combine interface

calls in known ways. Adversaries can combine interface calls in arbitrary ways

but can’t break the interface abstraction.

The Science of Security

20 IEEE SECURITY & PRIVACY MAY/JUNE 2011

language. Typically, we assume that the programs
for the trusted components (or their properties) are
known. On the other hand, an adversary is modeled
by considering all possible programs that can be con-
structed by combining calls to the interfaces to which
the adversary has access.

Modeling Security Properties
In defining models for security properties, a useful ab-
straction is that of a trace, which is a possible sequence
of events obtained via system execution. Our model
focuses on trace properties, specifically, safety prop-
erties. Informally, safety properties state that “noth-
ing bad ever happens on the trace.” Formally, a trace
violates a safety property if and only if the trace has a
finite prefix on which the property is violated. In con-
trast, liveness properties state that “something good
eventually happens on a trace.”

We focus on safety properties for the following
reasons:

•	 safety properties are general enough to either ex-
press or approximate most security properties of
interest, including authorization, integrity, secrecy,
and information flow properties;

•	 interfaces can reliably guarantee only safety proper-
ties—although a file system interface might guar-
antee that Mallory never reads secret.txt (a safety
property), no file system interface can guarantee
that secret.txt will eventually be read (a liveness
property);10 and

•	 safety properties are possibly amenable to compo-
sitional reasoning, but common compositional rea-
soning principles such as rely-guarantee reasoning
don’t apply to liveness properties.7

We represent security properties as formulas in a first-
order temporal logic, following prior work on model-
ing functional correctness properties.

Compositional Security
Two compositional reasoning principles capture rela-
tionships among systems, adversaries, and properties
in our model. These relationships are general; they
explain why certain attacks work against specific sys-
tems and predict when specific systems will preserve
their security properties even as adversaries come up
with new attacks.

Composition Principle 1
If two system components T1 and T2 satisfy properties
j1 and j2 in isolation, respectively, does their simul-
taneous execution T1∙T2 satisfy j1 ∧ j2? Equivalently,
assuming we’ve proven that a trusted component T1
satisfies property j1, can we prove that the simultane-

ous execution of T1 and another component T2 still
satisfies j1? It’s easy to see that the latter isn’t true
for all properties j1. For instance, let component T1
contain two concurrent threads, A1 and B1, execut-
ing the simple protocol in which A1 sends a message
to B1, and B1 sends back an acknowledgment. Then
let jAB1 be the property: if A1 receives an acknowl-
edgment from B1, then B1 received a message ear-
lier. Clearly, T1 in isolation satisfies jAB1. However,
in a system in which message senders can spoof their
identities, simultaneous execution of T1 with an ad-
versarial thread T2 that simply sends an acknowledg-
ment to A1, spoofing its origin to be B1, no longer
satisfies the property jAB1 because A1 might receive
an acknowledgment from T2 without B1 having re-
ceived a message.

Even though not all security properties are com-
positional, certain properties—namely, those that
mention only the actions (or activities) of a single
thread—are compositional. We use the term local
for such properties. For instance, the property jB1—
which says that if B1 sends an acknowledgement, then
it must have received a payload earlier—is local. The
fact that local properties compose is captured in the
following rule for local properties j1 and j2, where
⊢T : j means that thread T satisfies property j:

� �

�

T T

T T
1 1 2 2

1 2 1 2

: :

:

j j

j j∧
.

Although local properties compose, most security
properties of interest, such as jAB1, aren’t local. How,
then, might we develop compositional proofs for se-
curity properties in general? The critical observation
that lets us proceed is that because a security property
is a consequence of actions of individual threads, we
can factor the security property’s proof into proofs of
local properties, followed by reasoning that combines
these local properties. This combination step, called
global reasoning in the sequel, often relies on domain-
specific assumptions about the system—that is, as-
sumptions that apply to all system components. For
instance, in network protocol analysis, the assump-
tion that a message can’t be decrypted without proper
keys is domain-specific. Such assumptions can either
be axiomatic or established through an analysis of
interfaces, as described later. Continuing our earlier
example, suppose we make the domain-specific as-
sumption that sender identities can’t be spoofed. We
can prove ⊢ T1 : jAB1 as follows. First, we establish
that the local property jB1 holds. Then, we com-
plete the proof by global reasoning: if A1 receives a
message purportedly from B1, then because of the
domain-specific assumption, B1 must have sent the
message, and because of jB1, we can conclude that

The Science of Security

 www.computer.org/security 21

B1 must have received a payload earlier. Interestingly,
this proof remains virtually unchanged when we add
the malicious thread T2 because ⊢ T1∙T2 : jB1 follows
from the composition rule presented earlier and ⊢ T1 :
jB1 (choose j1 = jB1 and j2 = true in the above rule),
whereas the step of global reasoning is unchanged.
Thus, by factoring proofs into proofs of local prop-
erties followed by reasoning from domain-specific
assumptions about the system, we obtain fully com-
positional proofs of security.

Our interface-based model is useful in justifying
domain-specific assumptions made in the global rea-
soning step described earlier. Because we assume that
all threads in a system are confined to a stipulated set of
interfaces, we can treat any invariant preserved by all
interfaces in the set as a domain-specific assumption.
Formally, if we can prove that a component T (pos-
sibly composed of several other components) satisfies
property j under the domain-specific assumption jA,
written jA ⊢ T : j, and we can prove that all allowed
interfaces IA preserve jA, written �I AA

j , then T satis-
fies j. This is captured in the following rule:

� �

�

I A
A A

T

T
j j j

j

:

:
.

Therefore, from a composition perspective, the
following style of proofs is beneficial:

•	 local reasoning—prove local properties of known
threads by analyzing their programs;

•	 interface analysis—prove invariants by analyzing the
interfaces available to threads; and

•	 global reasoning—combine local reasoning and inter-
face analysis by logical deduction to complete the
proof.

Any such proof is compositional—it’s correct regard-
less of what other components (possibly adversarial)
exist, provided that the other components are con-
fined to the interfaces considered in the interface
analysis step.

Let’s review a published analysis of the widely
deployed Trusted Computing technology using our
method,11 and the consequent discovery of a real in-
compatibility between an existing standard protocol
for attesting the software stack’s integrity to a remote
party and a newly added hardware instruction. Ma-
chines with Trusted Computing abilities include a
special, tamper-proof hardware called the Trusted
Platform Module (TPM), which contains protect-
ed append-only registers to store measurements, or
hashes, of programs loaded into memory and a dedi-
cated coprocessor to sign the contents of the registers
with a unique hardware-protected key. The protocol

in question, called Static Root of Trust Measure-
ment (SRTM), uses this hardware to establish the
software stack’s integrity on a machine to a remote
third party. The protocol works by requiring each
program to store in the protected registers the hash
of any program it loads. For example, the hash of the
first program loaded into memory, usually the boot
loader, is stored in the protected registers by the boot-
ing firmware, usually the Basic Input/ Output System
(BIOS). The stack’s integrity following this protocol
can be proved to a third party by asking the copro-
cessor to sign the contents of the protected registers
with the hardware-protected key and then sending
the third party the signed hashes. The third party can
compare these hashes to known ones, thus validating
the stack’s integrity.

Note that the SRTM protocol is correct only if
software that hasn’t already been measured can’t ap-
pend to the protected registers. Indeed, this invariant
was true in the hardware the initial Trusted Comput-
ing standard prescribed, so this protocol was secure at
that point. However, a new instruction, called late-
launch, added to the standard in a later extension
allows an unmeasured program to be started with full
access to the TPM. This violates the necessary invari-
ant and results in an actual attack on the SRTM pro-
tocol: a program invoked with latelaunch can add
hashes of arbitrary programs to the protected registers
without actually loading them. Because the program
isn’t measured, the remote third party obtaining the
signed measurements will never detect its presence.
An analysis of the protocol using our method as
outlined here easily discovered this incompatibility
between the SRTM protocol and the latelaunch
instruction. In the analysis, the TPM instruction set
(which included latelaunch) was modeled as an
available interface to programs. The necessary in-
variant can be established for all interfaces except
latelaunch, thus leading to failure of a proof of
correctness with latelaunch and to discovery of
the actual attack.

Composition Principle 2
Although the structure of proofs presented above is

very general, it doesn’t suffice for proving those in-
ductive security properties that hold at a point in time
if and only if they’ve held at all prior points in time.
Consider the following two examples:

A failure to complete an expected proof step might

help explain why a specific system doesn’t satisfy a

security property.

The Science of Security

22 IEEE SECURITY & PRIVACY MAY/JUNE 2011

•	A file system whose access control mechanism in-
cludes a special permission “admin” that lets a user
modify permissions for other users. Suppose that,
initially, only Alice and Bob have admin permis-
sion, and that the programs Alice and Bob run never
provide the admin permission to anyone. The prop-
erty of interest is no principal besides Alice or Bob ever
has the admin permission.

•	An operating system kernel mechanism that stores
page tables in a protected area of memory. Initially,
the page tables map all virtual addresses to physical
addresses outside the protected area. The property
of interest is the page tables never map any virtual address
in the protected area.

In both cases, there are data structures (access con-
trol list in the first case and page tables in the second)
that protect themselves from modification. In both
cases, the proof that the respective property holds at a
particular point in time relies on the property having
been true at all points in the past. We can prove the
first example as follows: if its property doesn’t hold at
time t, then someone other than Alice or Bob must
have added the admin permission for someone other
than Alice or Bob before time t. So the former prin-
cipal also had admin permission at that earlier time,
hence the property didn’t hold then either. A similar
argument applies to the second example. Formally,
these proofs proceed by induction over traces. Can we
structure these inductive proofs so that they’re com-
positional—that is, they’re valid regardless of what
other components execute simultaneously?

Fortunately, we can make such inductive proofs
compositional by combining ideas from the previ-
ous section with a well-understood style of proofs
called rely-guarantee reasoning.6,7 Suppose we want
to prove that property j holds at all times. First, we
identify a set S = {T1, …, Tn} of trusted threads rel-
evant to the property and local properties yT1, …, yTn
of these threads, satisfying the following conditions:

1. If j holds at all time points strictly before any giv-
en time point, then each of yT1, …, yTn holds at
the given time point

2. If j doesn’t hold at any time, then at least one of
yT1, …, yTn must have been violated strictly be-
fore that time.

The rely-guarantee principle states that under these
conditions, if j holds initially, then j holds forever.
We illustrate the technique by using it to prove the
property j of the example with Alice and Bob. We
choose S to be the set of all threads in the system and
yT (for a thread T) to be the property that the thread
T doesn’t add the admin permission for anyone. Then,

statement 1 above follows for Alice and Bob’s threads
because they don’t give the admin permission to any-
one and for other threads because to change the per-
missions, they must have the admin permission—that
is, j must be previously violated, which is ruled out
by the assumption in statement 1. Statement 2 declares
that if someone other than Alice or Bob has an admin
permission, then some thread must have added that
permission. This follows from a domain-specific as-
sumption that permissions can’t change on their own.
Thus, the rely-guarantee principle implies that j holds
forever, as required. The important observation here
is that this proof is completely compositional. State-
ment 1 proves local properties, which are composi-
tional as discussed previously; statement 2 is trivially
compositional because all components must adhere to
it. Consequently, the proof is valid regardless of which
threads execute in the system besides Alice and Bob’s.

In general, any proof produced using this tech-
nique is compositional, and this reasoning method is
compatible with reasoning about interfaces as well. In
proving either statements 1 or 2, we can assume in-
variants that are satisfied by all interfaces available to
programs in the system.

Another application of the rely-guarantee tech-
nique, different from verification of self-protecting
data structures, is in proofs of key secrecy in network
protocols. We explain one instance here—proving
that the so-called authentication key (AKey) gener-
ated during the Kerberos V protocol becomes known
only to three protocol participants:9 the client authen-
ticated by the key, the Kerberos Authentication Server
(KAS) that generates the key, and the Ticket Grant-
ing Server (TGS) to whom the key authenticates the
client. At the center of this proof is the property that
whenever any of these three participants sends out the
AKey over the (unprotected) network, it’s encrypted
with other secure keys. Proving this property requires
induction because as part of the protocol, the client
blindly forwards an incoming message to the TGS.
Consequently, the fact that the client’s outgoing mes-
sage doesn’t contain the unencrypted AKey relies
on the fact that the incoming message doesn’t con-
tain the unencrypted AKey. The latter follows from
the inductive hypothesis that any network adversary
couldn’t have had the unencrypted AKey to send it
to the client.

Formally, the rely-guarantee framework is in-
stantiated by choosing j to be the property that any
message sent out on the network doesn’t contain the
unencrypted AKey. yT, for threads T of the client, the
KAS, and the TGS, is the property that the respec-
tive threads don’t send out the AKey unencrypted.
Then, the proof of statement 2 is trivial, and statement
1 follows from an analysis of the client’s programs, the

The Science of Security

 www.computer.org/security 23

KAS, and the TGS. The first of these, as mentioned
earlier, uses the assumption that j holds at all points
in the past. Note that the three programs are analyzed
individually, even though the secrecy property relies
on the interactions between them.

Predicting and Explaining Attacks
The composition principles described earlier are quite
general, as demonstrated in the first principle (system-
atic combination of local reasoning, interface analysis,
and global reasoning) by successfully proving authen-
tication properties of network protocols4 and integ-
rity properties for trusted computing platforms.11 The
second principle (rely-guarantee reasoning) has been
applied to compositionally prove self-protecting data
structures’ integrity properties9 and network proto-
cols’ secrecy properties.9,12

Our model of interfaces can also help predict
whether a system has a security property, given that it
exposes certain interfaces to adversaries: if we assume
only the invariant jA in proving a security property
j, then the system is secure provided that all inter-
faces it exposes maintain this invariant. This interface
invariant thus abstractly characterizes a class of attacks
that are ineffective against the system: any specific at-
tack that doesn’t break the invariant won’t break the
security property. Dually, if even one interface doesn’t
maintain this invariant, the system could potentially
face attack. Of course, the attack might not be real
because the assumption jA might not be essential to
the proof (there could be another proof without the
assumption), but such a failure could be used as a red
flag during system design.

A failure to complete an expected proof step
might help explain why a specific system doesn’t sat-
isfy a security property. For example, missing checks
in interfaces could result in failure to prove invariants
that are necessary for proving the security property.
One concrete example of such vulnerability in a se-
curity hypervisor appears in a recent paper.13 Another
common source of attacks observed in practice arises
from failure to consider certain interfaces available
to adversaries. In this case, by omitting analysis of
some interfaces, we may prove stronger invariants
than ones that actually hold in the system and (incor-
rectly) use these invariants in proving security prop-
erties. We mentioned one such example earlier, in
the context of TPMs; similarly, vulnerabilities have
resulted from a failure to consider the direct memory
access (DMA) write procedure as part of the interface
available to adversaries.14

F uture work in theory of compositional security
can take several directions. First, automating the

compositional reasoning principles we presented is an
open problem. Rely-guarantee reasoning principles
have already been automated for functional verifica-
tion of realistic systems, and we expect that progress
can be made by building on these prior results. Sec-
ond, there’s a strong need to develop and standardize
domain-specific adversary models for system secu-
rity. Although work exists on such models in some
domains—network protocols and trusted computing
platforms—we haven’t yet arrived at a similar level of
understanding in other important domains, such as
the Web platform. Finally, it’s important to extend the
compositional reasoning principles presented here to
support analysis of more refined models that consider,
for example, features of implementation languages
such as C.

References
1. J.M. Wing, “A Call to Action: Look beyond the

Horizon,” IEEE Security & Privacy, vol. 1, no. 6, 2003,
pp. 62–67.

2. D. McCullough, “A Hookup Theorem for Multilevel
Security,” IEEE Trans. Software Eng., vol. 16, no. 6,
1990, pp. 563–568.

3. R. Canetti, “Universally Composable Security: A New
Paradigm for Cryptographic Protocols,” Proc. 42nd
Ann. Symp. Foundations of Computer Science (FOCS),
IEEE CS Press, 2001, pp. 136–145.

4. A. Datta et al., “A Derivation System and Compositional
Logic for Security Protocols,” J. Computer Security, vol.
13, no. 3, 2005, pp. 423–482.

5. B. Pfitzmann and M. Waidner, “A Model for
Asynchronous Reactive Systems and Its Application to
Secure Message Transmission,” Proc. 21st IEEE Symp.
Security and Privacy, IEEE CS Press, 2001, pp. 184–200.

6. C.B. Jones, “Tentative Steps toward a Development
Method for Interfering Programs,” ACM Trans.
Programming Languages and Systems, vol. 5, no. 4, 1983,
pp. 596–619.

7. J. Misra and K.M. Chandy, “Proofs of Networks of
Processes,” IEEE Trans. Software Eng., vol. 7, no. 4,
1981, pp. 417–426.

8. R. Canetti et al., “Composable Security Analysis of
OS Services,” Cryptology ePrint Archive, Report
2010/213, Int’l Assoc. for Cryptographic Research,
2010; http://eprint.iacr.org/2010/213.

9. D. Garg et al., “Compositional System Security in the
Presence of Interface-Confined Adversaries,” Proc. 26th
Conf. Mathematical Foundations of Programming Semantics
(MFPS), Elsevier, 2010, pp. 49–71.

10. J. Rushby, “Kernels for Safety?” Safe and Secure
Computing Systems, T. Anderson, ed., Blackwell
Scientific Publications, 1989, pp. 210–220.

11. A. Datta et al., “A Logic of Secure Systems and Its
Application to Trusted Computing,” Proc. 30th IEEE

The Science of Security

24 IEEE SECURITY & PRIVACY MAY/JUNE 2011

Symp. Security and Privacy, IEEE CS Press, 2009, pp.
221–236.

12. A. Roy et al., “Secrecy Analysis in Protocol Composition
Logic,” Formal Logical Methods for System Security and
Correctness, IOS Press, 2008.

13. J. Franklin et al., “Scalable Parametric Verification of
Secure Systems: How to Verify Reference Monitors
without Worrying about Data Structure Size,” Proc.
31st IEEE Symp. Security and Privacy, IEEE CS Press,
2010, pp. 365–379.

14. L.J. Fraim, “SCOMP: A Solution to the Multilevel Security
Problem,” Computer, vol. 16, no. 7, 1983, pp. 26–34.

Anupam Datta is a research faculty member at Carnegie Mel-

lon University. His research interests are in trustworthy sys-

tems, privacy, and analysis of cryptographic protocols. He has

served as general chair of the 2008 IEEE Computer Security

Foundations Symposium, as program cochair of the 2008 For-

mal and Computational Cryptography Workshop, and on the

program committees of many other computer security confer-

ences. Datta has a PhD in computer science from Stanford

University. Contact him at danupam@cmu.edu.

Jason Franklin is a PhD candidate in the Department of Com-

puter Science at Carnegie Mellon University. His research fo-

cuses on the application of principled techniques to improve

system and network security. Franklin has a BS in computer

science and mathematics from the University of Wisconsin-

Madison. He received the 2005 Usenix Security Best Paper

Award, the 2009 SOSP Best Paper Award, a Department of

Homeland Security Fellowship, and NSF Graduate Research

Fellowship. Contact him at jfrankli@cs.cmu.edu.

Deepak Garg is a postdoctoral researcher at CyLab, Carnegie

Mellon University. His research interests include formal logic,

type-theory, access control, privacy, and analysis of system

security properties. Garg has a PhD from Carnegie Mellon.

Contact him at dg@cs.cmu.edu.

Limin Jia is a postdoctoral researcher at CyLab, Carnegie Mel-

lon University. Her research interests include programming

languages, language-based security, type systems, logic, and

program verification. Jia has a PhD in computer science from

Princeton University. Contact her at liminjia@cmu.edu.

Dilsun Kaynar is a postdoctoral researcher at CyLab, Carn-

egie Mellon University. Her research interests include formal

modeling and verification of distributed system designs, and

foundations of security and privacy. Kaynar has a PhD from

the University of Edinburgh and did postdoctoral training at

MIT, specializing in distributed computing theory. Contact her

at dilsun@cs.cmu.edu.

Selected CS articles and columns are also available for
free at http://ComputingNow.computer.org.

