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I n this article, we report a representative result 
in the science of security. To explain what we 
mean by a “science,” we can draw an analogy 
with physics. A physical theory consists of a 

model of the physical universe. The model should be 
general—that is, it should encompass a large class of 
physical phenomena. It should also support analyses 
that identify relationships among physical concepts, 
which researchers can then use to explain observed 
behavior in the physical universe and predict behavior 
that they haven’t yet observed. For example, Albert 
Einstein’s general theory of relativity presents a model 
of gravitation—a set of equations that describe how 
spacetime is curved by matter and energy (a relation-
ship among physical concepts). It explains observed 
phenomena, such as the bending of light near the 
sun, and predicts the existence of black holes, regions 
of spacetime where the gravitational attraction is so 
strong that even light can’t escape. The theory is gen-
eral in that its predictions apply to a very large class of 
phenomena ranging from motion of bodies (apples, 
stars, planets) in free fall to the propagation of light.

A science of security should include theories for 
the security universe that have similar characteristics. 
The security universe includes a large class of comput-
er systems (Web browsers, hypervisors, virtual ma-
chine monitors, operating systems, trusted computing 
systems, and network protocols, to name a few) that 
are intended to provide subtle security properties 
in the presence of adversaries who actively interfere 
with a system’s execution. A security theory should 
therefore include a model for systems, adversaries, and 

properties that 
supports analy-
ses that iden-
tify relationships 
among classes of systems, adversaries, and properties. 
These relationships should in turn help explain ob-
served phenomena (why specific attacks work against 
specific systems) and predict phenomena (how well a 
system will hold up as adversaries launch new attacks). 
A theory is general if it applies to large classes of sys-
tems, adversaries, and properties. 

In this article, we present the outline of a theory 
of compositional security that addresses a recognized 
scientific challenge.1 Contemporary systems evolve 
from smaller components, but even if each compo-
nent is secure in isolation, the composed system might 
not achieve the desired security property because an 
adversary could still exploit complex interactions be-
tween components to compromise security. A theory 
of compositional security should identify relationships 
among systems, adversaries, and properties such that 
precisely defined composition operations over systems 
and adversaries preserve security properties. Such a 
theory would thus enable scalable analysis of large, 
complex systems by constructing their security proofs 
from separately constructed proofs of properties of the 
simpler components from which they’re built. In addi-
tion, if a component is used to build multiple systems, 
the proof of its security property could be reused in 
the proofs for all systems constructed.

Although researchers have made progress in un-
derstanding secure composition in specific settings, 

AnupAm 
DAttA, JAson 
FrAnklin, 
DeepAk GArG, 
limin JiA, 
AnD Dilsun 
kAynAr

Carnegie 
Mellon 
University

On Adversary Models  
and Compositional Security

A unified view of a wide range of adversary classes and 

composition principles for reasoning about security 

properties of systems are cornerstones of a science of 

security. They provide a systematic basis for security 

analysis by explaining and predicting attacks on systems.



The Science of Security

 www.computer.org/security 19 

such as information flow control for noninterference-
style properties2 and cryptographic protocols,3–5 a 
systematic understanding of the general problem of 
secure composition hasn’t emerged yet. Our theory 
builds on and generalizes prior work on a composi-
tional theory for the domain of cryptographic pro-
tocols4 and is influenced by compositional reasoning 
principles for functional correctness of programs.6,7 
The security literature offers several alternative ap-
proaches to compositional security. In particular, one 
recent work applies the universal composability ap-
proach,3,5 originally developed for cryptographic pro-
tocols, to systems.8 We refer the interested reader to 
a technical paper we’ve written for comparison with 
additional related work.9

Modeling Both Systems  
and Adversaries
We model a system as a set of concurrently run-
ning—and possibly interacting—threads of programs 
that access a set of resources only through stipulated 
interfaces. Figure 1a illustrates our model’s key com-
ponents. In the figure, Ri and Ii represent resources 
and interfaces, respectively. Trusted components, Ti, 
combine interface calls in known ways. Adversarial 
(untrusted) components, Ai, on the other hand, can 
combine calls to interfaces they access arbitrarily. In 
general, the set of interfaces IAi available to adversaries 
is a subset of the set of interfaces ITi available to the 
trusted system components.

This model is general: it captures a wide range 
of real systems and associated adversary models. For 
example, Figure 1b shows a model of Web mashups 
obtained by instantiating the elements of Figure 1a. 
Resources include the mashup’s document object 
model (DOM), communication channels between 
frames, and the network. Each frame in the mashup 
corresponds to one thread of the system. An adversary 
is a set of malicious frames. Interfaces ID for accessing 
the DOM include functions for reading and writing 
DOM elements; interfaces for interframe communi-
cation include the postmessage method; and inter-
faces for the network include methods for obtaining 
data and code over the network. Note that adversarial 
frames are limited in their behavior by these interfac-
es—if all network interfaces restrict communication 
to servers in the same domain as the originating frame 
(the so-called same-origin policy), then an adversarial 
frame can’t contact a server from a different domain 
regardless of its program. 

Another example obtained by instantiating Figure 
1a is that of a file system (Figure 1c). Here, the resources 
are files, the data structure holding the access permis-
sion matrix, and possibly the network. As usual, the 
model assumes that the administrator (such as the su-

peruser in Unix-based systems) is trusted and that other 
users might be adversarial. Again, adversaries can’t 
break the interface abstraction: if no interface allows 
Mallory to read secret.txt, Mallory’s program can’t read 
secret.txt regardless of the instructions it executes. 

Yet another instance of our abstract model of 
systems is a network security protocol in which we 
view the network as the sole shared resource of inter-
est and in which interfaces include message send and 
receive functions, encryption, decryption, and nonce 
generation. Trusted threads follow their parts of the 
protocol, whereas adversarial threads combine inter-
face calls any way they choose. Yet again, adversaries 
are confined by the interfaces available to them—they 
can intercept and send messages, but they can’t de-
crypt messages that are encrypted using keys that they 
don’t know.

At a technical level, interfaces are modeled as re-
cursive functions in an expressive programming lan-
guage. Trusted components and adversaries are also 
represented using programs in the same programming 
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Figure 1. (a) Abstract interface view of a system and its instantiations to (b) 

a Web mashup and (c) a file system. Trusted components combine interface 

calls in known ways. Adversaries can combine interface calls in arbitrary ways 

but can’t break the interface abstraction.
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language. Typically, we assume that the programs 
for the trusted components (or their properties) are 
known. On the other hand, an adversary is modeled 
by considering all possible programs that can be con-
structed by combining calls to the interfaces to which 
the adversary has access.

Modeling Security Properties
In defining models for security properties, a useful ab-
straction is that of a trace, which is a possible sequence 
of events obtained via system execution. Our model 
focuses on trace properties, specifically, safety prop-
erties. Informally, safety properties state that “noth-
ing bad ever happens on the trace.” Formally, a trace 
violates a safety property if and only if the trace has a 
finite prefix on which the property is violated. In con-
trast, liveness properties state that “something good 
eventually happens on a trace.”

We focus on safety properties for the following 
reasons:

•	 safety properties are general enough to either ex-
press or approximate most security properties of 
interest, including authorization, integrity, secrecy, 
and information flow properties;

•	 interfaces can reliably guarantee only safety proper-
ties—although a file system interface might guar-
antee that Mallory never reads secret.txt (a safety 
property), no file system interface can guarantee 
that secret.txt will eventually be read (a liveness 
property);10 and

•	 safety properties are possibly amenable to compo-
sitional reasoning, but common compositional rea-
soning principles such as rely-guarantee reasoning 
don’t apply to liveness properties.7

We represent security properties as formulas in a first-
order temporal logic, following prior work on model-
ing functional correctness properties.

Compositional Security
Two compositional reasoning principles capture rela-
tionships among systems, adversaries, and properties 
in our model. These relationships are general; they 
explain why certain attacks work against specific sys-
tems and predict when specific systems will preserve 
their security properties even as adversaries come up 
with new attacks.

Composition Principle 1
If two system components T1 and T2 satisfy properties 
j1 and j2 in isolation, respectively, does their simul-
taneous execution T1∙T2 satisfy j1 ∧ j2? Equivalently, 
assuming we’ve proven that a trusted component T1 
satisfies property j1, can we prove that the simultane-

ous execution of T1 and another component T2 still 
satisfies j1? It’s easy to see that the latter isn’t true 
for all properties j1. For instance, let component T1 
contain two concurrent threads, A1 and B1, execut-
ing the simple protocol in which A1 sends a message 
to B1, and B1 sends back an acknowledgment. Then 
let jAB1 be the property: if A1 receives an acknowl-
edgment from B1, then B1 received a message ear-
lier. Clearly, T1 in isolation satisfies jAB1. However, 
in a system in which message senders can spoof their 
identities, simultaneous execution of T1 with an ad-
versarial thread T2 that simply sends an acknowledg-
ment to A1, spoofing its origin to be B1, no longer 
satisfies the property jAB1 because A1 might receive 
an acknowledgment from T2 without B1 having re-
ceived a message.

Even though not all security properties are com-
positional, certain properties—namely, those that 
mention only the actions (or activities) of a single 
thread—are compositional. We use the term local 
for such properties. For instance, the property jB1—
which says that if B1 sends an acknowledgement, then 
it must have received a payload earlier—is local. The 
fact that local properties compose is captured in the 
following rule for local properties j1 and j2, where 
⊢T : j means that thread T satisfies property j: 

� �

�

T T

T T
1 1 2 2
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:

j j

j j∧
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Although local properties compose, most security 
properties of interest, such as jAB1, aren’t local. How, 
then, might we develop compositional proofs for se-
curity properties in general? The critical observation 
that lets us proceed is that because a security property 
is a consequence of actions of individual threads, we 
can factor the security property’s proof into proofs of 
local properties, followed by reasoning that combines 
these local properties. This combination step, called 
global reasoning in the sequel, often relies on domain-
specific assumptions about the system—that is, as-
sumptions that apply to all system components. For 
instance, in network protocol analysis, the assump-
tion that a message can’t be decrypted without proper 
keys is domain-specific. Such assumptions can either 
be axiomatic or established through an analysis of 
interfaces, as described later. Continuing our earlier 
example, suppose we make the domain-specific as-
sumption that sender identities can’t be spoofed.  We 
can prove ⊢ T1 : jAB1 as follows. First, we establish 
that the local property jB1 holds. Then, we  com-
plete the proof by global reasoning: if A1 receives a 
message purportedly from B1, then because of the 
domain-specific assumption, B1 must have sent the 
message, and because of jB1, we can conclude that 



The Science of Security

 www.computer.org/security 21 

B1 must have received a payload earlier. Interestingly, 
this proof remains virtually unchanged when we add 
the malicious thread T2 because ⊢ T1∙T2 : jB1 follows 
from the composition rule presented earlier and ⊢ T1 : 
jB1 (choose j1 = jB1 and j2 = true in the above rule), 
whereas the step of global reasoning is unchanged. 
Thus, by factoring proofs into proofs of local prop-
erties followed by reasoning from domain-specific 
assumptions about the system, we obtain fully com-
positional proofs of security.

Our interface-based model is useful in justifying 
domain-specific assumptions made in the global rea-
soning step described earlier. Because we assume that 
all threads in a system are confined to a stipulated set of 
interfaces, we can treat any invariant preserved by all 
interfaces in the set as a domain-specific assumption. 
Formally, if we can prove that a component T (pos-
sibly composed of several other components) satisfies 
property j under the domain-specific assumption jA, 
written jA ⊢ T : j, and we can prove that all allowed 
interfaces IA preserve jA, written �I AA

j , then T satis-
fies j. This is captured in the following rule: 

� �

�

I A
A A

T

T
j j j

j

:

:
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Therefore, from a composition perspective, the 
following style of proofs is beneficial: 

•	 local reasoning—prove local properties of known 
threads by analyzing their programs;

•	 interface analysis—prove invariants by analyzing the 
interfaces available to threads; and 

•	 global reasoning—combine local reasoning and inter-
face analysis by logical deduction to complete the 
proof. 

Any such proof is compositional—it’s correct regard-
less of what other components (possibly adversarial) 
exist, provided that the other components are con-
fined to the interfaces considered in the interface 
analysis step.

Let’s review a published analysis of the widely 
deployed Trusted Computing technology using our 
method,11 and the consequent discovery of a real in-
compatibility between an existing standard protocol 
for attesting the software stack’s integrity to a remote 
party and a newly added hardware instruction. Ma-
chines with Trusted Computing abilities include a 
special, tamper-proof hardware called the Trusted 
Platform Module (TPM), which contains protect-
ed append-only registers to store measurements, or 
hashes, of programs loaded into memory and a dedi-
cated coprocessor to sign the contents of the registers 
with a unique hardware-protected key. The protocol 

in question, called Static Root of Trust Measure-
ment (SRTM), uses this hardware to establish the 
software stack’s integrity on a machine to a remote 
third party. The protocol works by requiring each 
program to store in the protected registers the hash 
of any program it loads. For example, the hash of the 
first program loaded into memory, usually the boot 
loader, is stored in the protected registers by the boot-
ing firmware, usually the Basic Input/ Output System 
(BIOS). The stack’s integrity following this protocol 
can be proved to a third party by asking the copro-
cessor to sign the contents of the protected registers 
with the hardware-protected key and then sending 
the third party the signed hashes. The third party can 
compare these hashes to known ones, thus validating 
the stack’s integrity.

Note that the SRTM protocol is correct only if 
software that hasn’t already been measured can’t ap-
pend to the protected registers. Indeed, this invariant 
was true in the hardware the initial Trusted Comput-
ing standard prescribed, so this protocol was secure at 
that point. However, a new instruction, called late-
launch, added to the standard in a later extension 
allows an unmeasured program to be started with full 
access to the TPM. This violates the necessary invari-
ant and results in an actual attack on the SRTM pro-
tocol: a program invoked with latelaunch can add 
hashes of arbitrary programs to the protected registers 
without actually loading them. Because the program 
isn’t measured, the remote third party obtaining the 
signed measurements will never detect its presence. 
An analysis of the protocol using our method as 
outlined here easily discovered this incompatibility 
between the SRTM protocol and the latelaunch 
instruction. In the analysis, the TPM instruction set 
(which included latelaunch) was modeled as an 
available interface to programs. The necessary in-
variant can be established for all interfaces except 
latelaunch, thus leading to failure of a proof of 
correctness with latelaunch and to discovery of 
the actual attack.

Composition Principle 2
Although the structure of proofs presented above is 

very general, it doesn’t suffice for proving those in-
ductive security properties that hold at a point in time 
if and only if they’ve held at all prior points in time. 
Consider the following two examples: 

A failure to complete an expected proof step might 

help explain why a specific system doesn’t satisfy a 

security property.
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•	A file system whose access control mechanism in-
cludes a special permission “admin” that lets a user 
modify permissions for other users. Suppose that, 
initially, only Alice and Bob have admin permis-
sion, and that the programs Alice and Bob run never 
provide the admin permission to anyone. The prop-
erty of interest is no principal besides Alice or Bob ever 
has the admin permission. 

•	An operating system kernel mechanism that stores 
page tables in a protected area of memory. Initially, 
the page tables map all virtual addresses to physical 
addresses outside the protected area. The property 
of interest is the page tables never map any virtual address 
in the protected area. 

In both cases, there are data structures (access con-
trol list in the first case and page tables in the second) 
that protect themselves from modification. In both 
cases, the proof that the respective property holds at a 
particular point in time relies on the property having 
been true at all points in the past. We can prove the 
first example as follows: if its property doesn’t hold at 
time t, then someone other than Alice or Bob must 
have added the admin permission for someone other 
than Alice or Bob before time t. So the former prin-
cipal also had admin permission at that earlier time, 
hence the property didn’t hold then either. A similar 
argument applies to the second example. Formally, 
these proofs proceed by induction over traces. Can we 
structure these inductive proofs so that they’re com-
positional—that is, they’re valid regardless of what 
other components execute simultaneously? 

Fortunately, we can make such inductive proofs 
compositional by combining ideas from the previ-
ous section with a well-understood style of proofs 
called rely-guarantee reasoning.6,7 Suppose we want 
to prove that property j holds at all times. First, we 
identify a set S = {T1, …, Tn} of trusted threads rel-
evant to the property and local properties yT1, …, yTn 
of these threads, satisfying the following conditions: 

1. If j holds at all time points strictly before any giv-
en time point, then each of yT1, …, yTn holds at 
the given time point 

2. If j doesn’t hold at any time, then at least one of 
yT1, …, yTn must have been violated strictly be-
fore that time. 

The rely-guarantee principle states that under these 
conditions, if j holds initially, then j holds forever. 
We illustrate the technique by using it to prove the 
property j of the example with Alice and Bob. We 
choose S to be the set of all threads in the system and 
yT (for a thread T ) to be the property that the thread 
T doesn’t add the admin permission for anyone. Then, 

statement 1 above follows for Alice and Bob’s threads 
because they don’t give the admin permission to any-
one and for other threads because to change the per-
missions, they must have the admin permission—that 
is, j must be previously violated, which is ruled out 
by the assumption in statement 1. Statement 2 declares 
that if someone other than Alice or Bob has an admin 
permission, then some thread must have added that 
permission. This follows from a domain-specific as-
sumption that permissions can’t change on their own. 
Thus, the rely-guarantee principle implies that j holds 
forever, as required. The important observation here 
is that this proof is completely compositional. State-
ment 1 proves local properties, which are composi-
tional as discussed previously; statement 2 is trivially 
compositional because all components must adhere to 
it. Consequently, the proof is valid regardless of which 
threads execute in the system besides Alice and Bob’s.

In general, any proof produced using this tech-
nique is compositional, and this reasoning method is 
compatible with reasoning about interfaces as well. In 
proving either statements 1 or 2, we can assume in-
variants that are satisfied by all interfaces available to 
programs in the system.

Another application of the rely-guarantee tech-
nique, different from verification of self-protecting 
data structures, is in proofs of key secrecy in network 
protocols. We explain one instance here—proving 
that the so-called authentication key (AKey) gener-
ated during the Kerberos V protocol becomes known 
only to three protocol participants:9 the client authen-
ticated by the key, the Kerberos Authentication Server 
(KAS) that generates the key, and the Ticket Grant-
ing Server (TGS) to whom the key authenticates the 
client. At the center of this proof is the property that 
whenever any of these three participants sends out the 
AKey over the (unprotected) network, it’s encrypted 
with other secure keys. Proving this property requires 
induction because as part of the protocol, the client 
blindly forwards an incoming message to the TGS. 
Consequently, the fact that the client’s outgoing mes-
sage doesn’t contain the unencrypted AKey relies 
on the fact that the incoming message doesn’t con-
tain the unencrypted AKey. The latter follows from 
the inductive hypothesis that any network adversary 
couldn’t have had the unencrypted AKey to send it 
to the client.

Formally, the rely-guarantee framework is in-
stantiated by choosing j to be the property that any 
message sent out on the network doesn’t contain the 
unencrypted AKey. yT, for threads T of the client, the 
KAS, and the TGS, is the property that the respec-
tive threads don’t send out the AKey unencrypted. 
Then, the proof of statement 2 is trivial, and statement 
1 follows from an analysis of the client’s programs, the 
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KAS, and the TGS. The first of these, as mentioned 
earlier, uses the assumption that j holds at all points 
in the past. Note that the three programs are analyzed 
individually, even though the secrecy property relies 
on the interactions between them.

Predicting  and Explaining Attacks
The composition principles described earlier are quite 
general, as demonstrated in the first principle (system-
atic combination of local reasoning, interface analysis, 
and global reasoning) by successfully proving authen-
tication properties of network protocols4 and integ-
rity properties for trusted computing platforms.11 The 
second principle (rely-guarantee reasoning) has been 
applied to compositionally prove self-protecting data 
structures’ integrity properties9 and network proto-
cols’ secrecy properties.9,12

Our model of interfaces can also help predict 
whether a system has a security property, given that it 
exposes certain interfaces to adversaries: if we assume 
only the invariant jA in proving a security property 
j, then the system is secure provided that all inter-
faces it exposes maintain this invariant. This interface 
invariant thus abstractly characterizes a class of attacks 
that are ineffective against the system: any specific at-
tack that doesn’t break the invariant won’t break the 
security property. Dually, if even one interface doesn’t 
maintain this invariant, the system could potentially 
face attack. Of course, the attack might not be real 
because the assumption jA might not be essential to 
the proof (there could be another proof without the 
assumption), but such a failure could be used as a red 
flag during system design.

A failure to complete an expected proof step 
might help explain why a specific system doesn’t sat-
isfy a security property. For example, missing checks 
in interfaces could result in failure to prove invariants 
that are necessary for proving the security property. 
One concrete example of such vulnerability in a se-
curity hypervisor appears in a recent paper.13 Another 
common source of attacks observed in practice arises 
from failure to consider certain interfaces available 
to adversaries. In this case, by omitting analysis of 
some interfaces, we may prove stronger invariants 
than ones that actually hold in the system and (incor-
rectly) use these invariants in proving security prop-
erties. We mentioned one such example earlier, in 
the context of TPMs; similarly, vulnerabilities have 
resulted from a failure to consider the direct memory 
access (DMA) write procedure as part of the interface 
available to adversaries.14

F uture work in theory of compositional security 
can take several directions. First, automating the 

compositional reasoning principles we presented is an 
open problem. Rely-guarantee reasoning principles 
have already been automated for functional verifica-
tion of realistic systems, and we expect that progress 
can be made by building on these prior results. Sec-
ond, there’s a strong need to develop and standardize 
domain-specific adversary models for system secu-
rity. Although work exists on such models in some 
domains—network protocols and trusted computing 
platforms—we haven’t yet arrived at a similar level of 
understanding in other important domains, such as 
the Web platform. Finally, it’s important to extend the 
compositional reasoning principles presented here to 
support analysis of more refined models that consider, 
for example, features of implementation languages 
such as C. 
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