
Protocol Composition Logic (PCL)

Anupam Datta 1 Ante Derek 2 John C. Mitchell 3

Arnab Roy 4

Computer Science Department
Stanford University

Abstract

Protocol Composition Logic (PCL) is a logic for proving security properties of network protocols that use
public and symmetric key cryptography. The logic is designed around a process calculus with actions
for possible protocol steps including generating new random numbers, sending and receiving messages,
and performing decryption and digital signature verification actions. The proof system consists of axioms
about individual protocol actions and inference rules that yield assertions about protocols composed of
multiple steps. Although assertions are written only using the steps of the protocol, the logic is sound in a
strong sense: each provable assertion involving a sequence of actions holds in any protocol run containing
the given actions and arbitrary additional actions by a malicious adversary. This approach lets us prove
security properties of protocols under attack while reasoning only about the actions of honest parties in the
protocol. PCL supports compositional reasoning about complex security protocols and has been applied to
a number of industry standards including SSL/TLS, IEEE 802.11i and Kerberos V5.

Keywords: Security protocol analysis, logic, composition

1 Introduction

Network security protocols, such as key-exchange and key-management protocols,

are difficult to design and debug. For example, the 802.11 Wired Equivalent Privacy

(WEP) protocol, used to protect link-layer communications from eavesdropping

and other attacks, has several serious security flaws [11]. Anomalies and short-

comings have also been discovered in standards and proposed standards for Secure

Sockets Layer [76,60], the later 802.11i wireless authentication protocols [37,38],

Kerberos [43,7,19,14], and others. Although many of these protocols may seem

relatively simple, in comparison with more complex distributed systems, security

1 Email: danupam@cs.stanford.edu
2 Email: aderek@cs.stanford.edu
3 Email: mitchell@cs.stanford.edu
4 Email: arnab@cs.stanford.edu

Electronic Notes in Theoretical Computer Science 172 (2007) 311–358

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.02.012

mailto:danupam@cs.stanford.edu
mailto:aderek@cs.stanford.edu
mailto:mitchell@cs.stanford.edu
mailto:arnab@cs.stanford.edu
http://www.elsevier.com/locate/entcs

protocols must achieve certain goals when an arbitrary number of multiple ses-

sions are executed concurrently and an attacker may use information acquired in

one session to compromise the security of another. Since security protocols form

the cornerstones of modern secure networked systems, it is important to develop

informative, accurate, and deployable methods for finding errors and proving that

protocols meet their security requirements. While model checking has proven useful

for finding certain classes of errors in network security protocols [59,60,66], logical

methods and proof procedures are needed to show that protocols are correct, with

respect to precise models of protocol execution and precise models of the capabil-

ities of malicious attackers. In this paper, we describe a specific logic, developed

for the purpose of proving security properties of network protocols, and give some

examples of its use.

Protocol Composition Logic (PCL) [20,21,22,23,24,25,26,29,30,38,67,68] is a for-

mal logic for stating and proving security properties of network protocols. The logic

codifies and supports direct reasoning about the consequences of individual protocol

steps, in a way that allows properties of individual steps to be combined to prove

properties of complex protocols. The basic assertions are similar to Hoare logic [40]

and dynamic logic [35], with the formula θ[P]Xϕ stating that after actions P are

executed in thread X, starting from a state where formula θ is true, formula ϕ is

true about the resulting state. While the formula only mentions the actions P of

thread X, states reached after X does P may arise as the result of these actions

and any additional actions performed by other threads, including arbitrary actions

by an attacker. PCL includes a number of action predicates, such as Send(X, t),

Receive(X, t), New(X, t), Decrypt(X, t), Verify(X, t), which assert that the named

thread has performed the indicated actions. For example, Send(X, t) holds in a run

if thread X sent the term t as a message. One class of secrecy properties can be

specified using the predicate Has(X, t), which intuitively means that t is built from

constituents that X either generated (using a new action) or received in a way that

did not hide them under encryption by a key not had by X. One predicate that is

novel to PCL is Honest(X̂), which asserts that all actions of X̂ are actions prescribed

by the protocol. Honest is used primarily to assume that one party has followed

the prescribed steps of the protocol. For example, if Alice initiates a transaction

with Bob, and wishes to conclude that only Bob knows the data she sends, she may

be able to provably do so by explicitly assuming that Bob is honest. If Bob is not

honest, then Bob may make his private key known to the attacker, allowing the

attacker to decrypt intercepted messages.

The PCL axioms and inference rules fall into several categories. One simple but

necessary class of axioms assert that after an action is performed, the indicated

thread has performed that action. Another class of axioms are those that state

properties of cryptographic operations. For example, an axiom reflecting the un-

forgeability property of digital signatures states that whenever an agent verifies the

signature of an honest agent, then that agent must have generated a signature on

that message and sent it out in an earlier message. PCL also uses a novel form

of induction, currently referred to as the “honesty rule”, in which induction over

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358312

basic sequences of actions performed by honest agents can be used to derive con-

clusions about arbitrary runs in the presence of adversary actions. To see how this

works, in simple form, suppose that in some protocol, whenever a principal receives

a message of the form ENCK{|a, b|}, representing the encryption of a pair (a, b)

under key K, the principal then responds with ENCK{|b|}. Assume further that

this is the only situation in which the protocol specifies that a message consisting

of a single encrypted datum is sent. Using the honesty rule, it is possible to prove

that if a principal A is honest, and A sends a message of the form ENCK{|b|}, then

A must have previously received a message of the form ENCK{|a, b|}. For certain

protocols, this form of reasoning allows us to prove that if one protocol partici-

pant completes the prescribed sequence of actions, and another principal named in

one of the messages is honest, then the two participants are guaranteed a form of

authentication.

Like the previous generation of protocol logics exemplified by BAN and GNY

logics [13,32], PCL was also initially designed as a logic of authentication, involves

annotating programs with assertions, does not require explicit reasoning about the

actions of an attacker, and uses formulas for freshness, sending and receiving mes-

sages, and to express that two agents have a shared secret. In contrast to BAN and

related logics, PCL avoids the need for an “abstraction” phase because PCL formu-

las contain the protocol programs, and PCL addresses temporal concepts directly,

both through modal formulas that refer specifically to particular points in the exe-

cution of a protocol, and through temporal operators in pre- and post-conditions.

PCL is also formulated using standard logical concepts (predicate logic and modal

operators), does not involve “jurisdiction” or “belief”, and has a direct connection

with the execution semantics of network protocols that is used in explicit reason-

ing about actions of a protocol and an attacker, such as with Paulson’s inductive

method [64] and Schneider’s rank function method [71].

A distinctive goal of PCL is to support compositional reasoning about secu-

rity protocols, including parallel composition of different protocols, and sequential

composition of protocol steps. For example, many protocols assume that long-term

cryptographic keys have been properly distributed to protocol agents. PCL allows

proofs of key-distribution protocols to be combined with proofs for protocols that

use these keys. Another aspect of PCL is a composition method based on protocol

templates, which are “abstract” protocols containing function variables for some of

the operations used to construct messages. In the template method, correctness

of a protocol template may be established under certain assumptions about these

function variables. Then, a proof for an actual protocol is obtained by replacing the

function variables with combinations of operations that satisfy the proof assump-

tions. PCL appears to scale well to industrial protocols of five to twenty messages

(or more), in part because PCL proofs appear to be relatively short (for formal

proofs) and it has been successfully applied to a number of industry standards in-

cluding SSL/TLS, IEEE 802.11i and Kerberos V5. The PCL composition theorems

are particularly useful in carrying out these larger-scale case studies.

This paper collects results from previous papers, develops the basic concepts in

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 313

A → B : m

B → A : n, SIGB{|n,m,A|}

A → B : SIGA{|n,m,B|}

Fig. 1. Challenge-response protocol as arrows-and-messages

a uniform notation and semantic setting, improves on some of the previous technical

definitions and proofs, and completes some details omitted from previous papers.

The core of PCL was formulated earlier in [30,24]. Subsequent work on proof

methods for PCL [20,21,22,23,68] as well as case studies using PCL [5,38,68] led to

extensions and modifications to the syntax, semantics and proof system. In this

paper, we unify the results in the earlier papers by presenting a definition of the

logic using a uniform notation. Specifically, this paper subsumes [30,24] in scope

and draws on the programming language syntax and the treatment of temporal

operators from [5].

The rest of the paper is organized as follows. Section 2 describes the syntax and

operational semantics for the protocol programming language. Section 3 presents

the syntax and semantics for PCL, with the proof system and soundness theorem

in Section 4. An application of the formal system to an authentication protocol is

presented in Section 5. Section 6 presents theorems about sequential and parallel

composition of protocols and illustrates their use through application to a key ex-

change protocol. Section 7 summarizes other results associated with PCL, which are

not elaborated in this paper. Related work is discussed in Section 8 with conclusions

in Section 9.

2 Modelling Protocols

In order to formally state and prove properties of security protocols we first need

to represent protocols parts as mathematical objects and define how they execute.

The common informal arrows-and-messages notation (used, for example, in [69,12])

is generally insufficient, since it only presents the executions of the protocol that

occur when there is no attack. One important part of security analysis involves

understanding the way honest principals running a protocol will respond to messages

from a malicious attacker. In addition, our protocol logic requires more information

about a protocol than the set of protocol executions obtained from honest and

malicious parties; we need a high-level description of the program executed by each

principal performing each protocol role so that we know not only which actions

occur in a run (and which do not), but why they occur.

Now, we show how protocols are represented with an example. Figure 1 shows

the standard three-way signature based challenge-response protocol (CR) in the

informal arrows-and-messages notation. The goal of the protocol – mutual authen-

tication of two parties, is achieved by exchanging two fresh nonces m and n, and

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358314

the signature over both nonces and the identity of the other party.

The roles of the same protocol are written out in our notation in Figure 2, writ-

ing X̂ and Ŷ for the principals executing roles InitCR and RespCR, respectively.

We differentiate between principals (denoted by X̂, Ŷ , . . .) which correspond to

protocol participants and may be involved in more than one execution of the pro-

tocol at any point and threads (denoted by X, Y , . . .) which refer to a principal

executing one particular session of the protocol. In this example, the protocol con-

sists of two roles, the initiator role and the responder role. The sequence of actions

in the initiator role is given by the cord InitCR in Figure 2. In words, the actions

of a principal executing the role InitCR are: generate a fresh random number; send

a message with the random number to the peer Ŷ ; receive a message with source

address Ŷ ; verify that the message contains Ŷ ’s signature over the data in the ex-

pected format; and finally, send another message to Ŷ with the initiator’s signature

over the nonce sent in the first message, the nonce received from Ŷ and Ŷ ’s identity.

Formally, a protocol will be given by a finite set of roles, one for each role of the

protocol. In addition to the sequence of actions, a cord has static input and output

parameters used when sequentially composing roles.

InitCR ≡ (Ŷ)[

new m;

send X̂, Ŷ ,m;

receive Ŷ , X̂, y, s;

verify s, (y,m, X̂), Ŷ ;

r := sign (y,m, Ŷ), X̂ ;

send X̂, Ŷ , r;

]X()

RespCR ≡ ()[

receive X̂, Ŷ , x;

new n;

r := sign (n, x, X̂), Ŷ ;

send Ŷ , X̂, n, r;

receive X̂, Ŷ , t;

verify t, (n, x, Ŷ), X̂ ;

]Y ()

Fig. 2. Roles of the Challenge-response protocol

2.1 Protocol Programming Language

Our protocol programming language is a conventional process calculus in the same

vein as CCS, CSP, and their variants and descendants [41,57]. However, since the

protocols we consider in this paper are a concurrent composition of sequential roles,

the process calculus is tailored to this form. The formalism was originally described

in [29,30] as cord calculus, a reference to the strand space formalism [31], which con-

veniently formalizes the practice of describing protocols by “arrows-and-messages”,

and displays the distributed traces of interacting processes. However, while strand

spaces provide a global and static view of the information flow, we needed to analyze

dynamics of distributed reasoning and computation. In order to formally capture

the ways in which principals’ actions (e.g. what they receive) may determine and

change their later action (e.g. what they will send), we progressed from our initial

attempt to use the strand model directly to a process calculus approach with op-

erational semantics in the style of chemical abstract machine [9]. To represent the

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 315

(keys) K ::= k basic key

N name

K inverse key

(basic terms) u ::= x basic term variable

n nonce

N name

P thread

K key

u, u tuple of basic terms

(terms) t ::= y term variable

u basic term

t, t tuple of terms

ENCK{|t|} term encrypted with key K

SIGK{|t|} term signed with key K

Table 1
Syntax of the Protocol Programming Language - terms

stores where the messages are to be received, we use process calculus variables, and

a substitution mechanism expressed by simple reaction rules, corresponding to the

basic communication and computation operations. In comparison with conventional

process calculus, we needed a mechanism for identifying the principal executing a

sequence of actions, so that access to cryptographic keys could be identified and re-

stricted. The resulting process calculus provides a protocol execution model, based

on accepted concepts from process calculi, strand spaces and the chemical abstract

machine. Its formal components are as follows.

Terms

A basic algebra of terms t is assumed to be given. As usual, they are built

from constants c and variables x, by a given set of constructors p, which in this

case includes at least the tupling, the public key encryption ENCK{|t|}, and the

signature SIGK{|t|}. We assume enough typing to distinguish the keys K from the

principals Â, the nonces n and so on. Each type is given with enough variables.

As usual, the computation is modelled as term evaluation. The closed terms,

that can be completely evaluated, are the contents of the messages exchanged in

protocols. The terms containing free variables (i.e. pointers and references) cannot

be sent. An example term is X̂, Ŷ ,m sent in the first message of the CR protocol

(see Figure 1), it is important to note that X̂, Ŷ are parts of the message specifying

indented sender and the recipient rather than parameters to the send action.

For technical purposes, we make a distinction between basic terms u which

do not contain cryptographic operations explicitly (although, they may contain

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358316

(actions) a ::= ε the null action

send u send a term u

receive x receive term into variable x

new x generate new term x

match u/u match a term to a pattern

x := sign u,K sign the term u

verify u, u,K verify the signature

x := enc u,K encrypt the term u

x := dec u,K decrypt the term u

(strands) S ::= [a; . . . ; a]P

(roles) R ::= (�x)S(�t)

Table 2
Syntax of the Protocol Programming Language - actions, strands and roles

variables whose value is, for example, an encryption) and terms t which may contain

cryptographic primitives.

Names, keys, sessions and threads

We use Â, B̂, . . . as names for protocol participants. We will overload the no-

tation and also use Â, B̂, . . . as designation for public-private key pairs of the cor-

responding agents. A particular participant might be involved in more than one

session at a time. For example, agent Â involved in the CR protocol might be

acting as an initiator in two sessions with agents B̂ and Ĉ and as a responder in

another parallel session with D̂. For this reason, we will give names to sessions and

use A to designate a particular thread being executed by Â.

Actions, strands and roles

The set of actions contains nonce generation, encryption, decryption, signature

generation and verification, pattern matching, testing and communication steps

(sending and receiving). Pattern matching operator is used to construct and break

tuples and perform equality checks. We will often omit the pattern matching oper-

ator and perform matching implicitly. For example, in the description of the CR

protocol given in Figure 1 matching is implicitly done in the receive actions, if we

were to completely write out actions there would be a receive x action followed

by a match action analyzing the tuple, and performing the equality checks.

The list of actions will only contain basic terms which means that encryption

cannot be performed implicitly; explicit enc action has to be used instead. For

convenience, we assume that any variable will be assigned at most once, and the

first occurrence of a particular variable has to be the assignment. Operational

semantics of such single-assignment language will be significantly simpler as we can

model the assignment with term substitution.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 317

[receive x;S]X | [send t;T]Y −→ [S(t/x)]X | [T]Y(1)

[match p(t)/p(x);S]X −→ [S(t/x)]X(2)

[new x;S]X −→ [S(m/x)]X(3)

[x := enc t,K;S]X −→ [S(ENCK{|t|}/x)]X(4)

[x := dec ENCK{|t|},K;S]X −→ [S(t/x)]X(5)

[x := sign t,K;S]X −→ [S(SIGK{|t|}/x)]X(6)

[verify SIGK{|t|}, t,K;S]X −→ [S]X(7)

Where the following conditions must be satisfied:

(1) FV (t) = ∅
(2) m �∈ FV (C) ∪ FV (S), where C is the entire cord space

Table 3
Basic reaction steps

A strand is just a sequence of actions together with the designation of a thread

performing the actions. A role is a strand with input and output interfaces used

when performing sequential composition. All variables inside a role must be bound

either by the input interface or by other actions. A cord is just a strand with no

free variables, i.e. all ground terms are either constants or bound by a particular

action.

2.2 Execution Model

Cord Spaces

A cord space is a multiset of cords, each annotated in the subscript by the name

of the agent executing it. The multiset union is denoted by |, the empty multiset by

[]. The idea is that a cord space represents a group of processes ready to engage in

communication and distributed computation. Their operational behavior is defined

by the reaction rules in Table 3.

The required side conditions for each reaction are shown below them. The

substitution (t/x) acts on the strand to the left. As usual, it is assumed that no free

variable becomes bound after substitution, which is achieved by renaming the bound

variables. Reaction (1) is a send and receive interaction, showing the simultaneous

sending of term t by the first cord, with the receiving of t into variable x by the

second cord. We call this an external action because it involves an interaction

between two cords. The other reactions all take place within a single cord. We call

these internal actions.

Reaction (2) is a basic pattern match action, where the cord matches the pattern

p(t) with the expected pattern p(x), and substitutes t for x. Reaction (3) shows the

binding action where the cord creates a new value that doesn’t appear elsewhere

in the cordspace, and substitutes that value for x in the cord to the right. The

intuitive motive for the condition FV (t) = ∅ should be clear: a term cannot be

sent, or tested, until all of its free variables have been instantiated, so that it can be

evaluated. Also, when the new nonce is generated via the new action, it is required

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358318

that the resulting constant is unique in the entire cord space.

Reactions (4) and (5) are the encryption and decryption actions respectively.

For example, the decryption action matches the pattern ENCK{|p(t)|} and sub-

stitutes t for x. Reactions (6) and (7) are the signature generation and signature

verification actions respectively. As we already mentioned, since the assignment is

modelled via term substitution, a single variable can be assigned only once.

Protocols

A protocol Q is a set of roles {ρ1, ρ2, . . . , ρk}, each executed by zero or more

honest principals in any run of Q. Intuitively, these roles may correspond to the

initiator, responder and the server, each specified by a sequence of actions to be

executed in a single instance of a role. A protocol participant is called a principal

and denoted by Â, B̂, · · · etc. A single instance of a particular role executed by a

principal will be called a thread. All threads of a single principal share static data

such as long-term keys. This is formalized using static binding, described above.

As a notational convenience, we will use X to denote a thread of a principal X̂ .

A private key is a key of form X, which represents the decryption key in a public

key cryptosystem. Private key X is only allowed to occur in the threads of principal

X̂ . Moreover, it is only allowed to occur in the decryption pattern (corresponding to

a participant decrypting a message encrypted by its public key) and in the signature

construction (corresponding to a participant signing a message). These restrictions

prevent private keys from being sent in a message. While some useful protocols

might send private keys, we prevent roles from sending their private keys (in this

paper) since this allows us to take secrecy of private keys as an axiom, shortening

proofs of protocol properties.

Intruder roles

An attack is usually a process obtained by composing a protocol with another

process, in such a way that the resulting runs, projected to the protocol roles, do

not satisfy the protocol requirements. An attacker, or intruder, is a set of threads

sharing all data in an attack, and playing roles in one or more protocol sessions.

This intuition is captured in the definition of initial configurations below. The

actions available for building the intruder roles usually include receiving and sending

messages, decomposing them into parts, decrypting them by known keys, storing

data, and even generating new data. This is the standard “Dolev-Yao model”, which

appears to have developed from positions taken by Needham and Schroeder [61] and

a model presented by Dolev and Yao [28].

Buffer cord

Cords reactions, as we defined them, model synchronous communication – a

message send action cannot happen in one cord unless a message receive action

happens simultaneously. Since real communication networks are asynchronous, we

need to introduce a buffer where sent messages can be stored until someone is ready

to receive them. In order to model this with cords we introduce a buffer cord

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 319

[receive x; send x], it models a message being received and than eventually send.

We will require that all send and receive actions by principals and the intruder

are performed via buffer cords and assume that in every protocol there are enough

instances of the buffer cord to guarantee delivery of every message. Buffer cords

are a part of the infrastructure rather than a part of the protocol, we assume that

they are executed by special nameless agents. Unless otherwise specified, when we

refer to a thread, we mean a non-buffer thread, similarly, when we refer to an ac-

tion, we mean an action performed by a non-buffer thread. As demonstrated by [6],

this synchronous process calculus extended with buffers faithfully represents asyn-

chronous communication and corresponds to the usual definition of asynchronous

process calculus.

Configurations and runs

Initial configuration of a protocol Q is determined by: (1) A set of principals,

some of which are designated as honest. (2) A cordspace constructed by assigning

roles of Q to threads of honest principals. (3) One or more intruder cords, which

may use keys of dishonest principals. (4) A finite number of buffer cords, enough

to accommodate every send action by honest threads and the intruder threads.

A run R is a sequence of reaction steps from the initial configuration, subject to

constraint that every send/receive reaction step happens between some buffer cord

and some (non-buffer) thread. A particular initial configuration may give rise to

many possible runs.

Events and traces

Since the protocol logic reasons about protocol runs, we need to introduce some

additional notation for them. An event is a ground substitution instance of an

action, i.e., an action in which all variables have been replaced by terms containing

only constants. An event represents the result of a reaction step, viewed from the

perspective of a single cord that participated in it. For example, if the thread A

sends message m (into a receiving buffer cord), then the event send m is a send

event of A. Alternatively, we can look at a run as a linear sequence of events starting

from an initial configuration.

We use the following meta-notation to describe a reaction step of cord calculus:

EVENT (R,X,P, �n, �x) ≡
((

[PS]X | C −→ [S(�n/�x)]X | C ′
)
∈ R

)

When EVENT(R,X,P, �n, �x) holds we will say that in in run R, thread X executed

action P , receiving data �n into variables �x, where �n and �x are the same length.

A trace is a list of events by some thread in a run. We use R|X to denote the

events that occurred for thread X in run R. For a sequence of actions P , protocol

Q, run R and thread X, we say “P matches R|X” if R|X is precisely σP , where

σ is a substitution of values for variables. If P matches R|X using substitution σ,

then σ is called the matching substitution.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358320

2.2.1 Protocol properties

In this section we collect some properties of the protocols that will be useful in the

rest of the paper.

Lemma 2.1 (No Telepathy) Let Q be a protocol, R be an arbitrary run, and X be

a thread. Let m be any message sent by X as part of cord ρi. Then every symbol in

the term m is either generated in ρi, received in ρi, or was in the static interface of

ρi.

Proof. This follows from the definition of the cords we use to represent roles. Each

role is a closed cord, so all values must be bound. Symbols can be bound by the

static interface, or by the new , receive and pattern match actions. �

Lemma 2.2 (Asynchronous communication) In every run, any thread that wished

to send a message can always send it. Also, there is a strict linear order between

all external actions.

Proof. By definition, there are enough buffer cords in the initial configuration to

provide a receive for every send action by a non-buffer thread. Since “external

action” refers to a send or a receive by a non-buffer thread, it follows from the

definition of a run that no two external actions can happen in the same step of the

run. �

Lemma 2.3 For every receive action there is a corresponding send action. More

formally, if in run R, thread X executed action receive x, receiving data m into

variable x then there exists a thread Y such that in the same run R thread Y executed

the send m action.

Proof. This follows from the definition of the basic cord calculus reaction steps

and the definition of the buffer cords. �

Lemma 2.4 For any initial configuration C of protocol Q, and any run R, if prin-

cipal X̂ ∈ HONEST(C), then for any thread X performed by principal X̂, R|X is

a trace of a single role of Q executed by X̂.

Proof. This follows from the definition of initial configuration, which is constructed

by assigning roles to threads of honest principals. �

3 Protocol Logic

3.1 Syntax

The formulas of PCL are given by the grammar in Table 4, where S may be any

strand. Here, t and P denote a term and a thread, respectively. We use φ and ψ to

indicate predicate formulas, and m to indicate a generic term we call a “message”. A

message has the form (source, destination, protocol-identifier, content), giving each

message source and destination fields and a unique protocol identifier in addition

to the message contents. The source field of a message may not identify the actual

sender of the message since the intruder can spoof the source address. Similarly, the

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 321

Action formulas

a ::= Send(P, t) |Receive(P, t) |New(P, t) |Encrypt(P, t) |

Decrypt(P, t) |Sign(P, t) |Verify(P, t)

Formulas

φ ::= a | a < a |Has(P, t) |Fresh(P, t) |Gen(P, t) |FirstSend(P, t, t) |

Honest(N) | t = t |Contains(t, t) |φ ∧ φ | ¬φ | ∃x.φ |Start(P)

Modal formulas

Ψ ::= φ S φ

Table 4
Syntax of the logic

principal identified by the destination field may not receive the message since the

intruder can intercept messages. Nonetheless, the source and destination fields in

the message may be useful for stating and proving authentication properties while

the protocol-identifier is useful for proving properties of protocols.

Most protocol proofs use formulas of the form θ[P]Xφ, which means that after

actions P are executed in thread X, starting from a state where formula θ is true,

formula φ is true about the resulting state of X. Here are the informal interpre-

tations of the predicates, with the precise semantics discussed in the next section.

Action formulas

Action formulas are used to state that particular actions have been performed

by various threads. Formula Send(X,m) means that principal X̂ has send a message

m in the thread X. Predicates Receive,Encrypt,Sign, · · · etc. are similarly used to

state that the corresponding actions have been performed. Action predicates are

crucial in modelling authentication properties of the protocol. In PCL, a fact that

Â has authenticated B̂ will be described by saying that B̂ must have performed

certain actions prescribed by the protocols.

Knowledge

Formula Has(X,x) means that principal X̂ possesses information x in the thread

X. This is “possess” in the limited sense of having either generated the data or

received it in the clear or received it under encryption where the decryption key is

known. Formula Fresh(X, t) means that the term t generated in X is “fresh” in the

sense that no one else has seen any term containing t as a subterm. Typically, a

fresh term will be a nonce and freshness will be used to reason about the temporal

ordering of actions in runs of a protocol. Formula Gen(X, t) means that the term

t originated in the thread X in the sense that it was “fresh” in X at some point.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358322

Formula Contains(t1, t2) means that the term t1 contains term t2 as a subterm.

Predicate Has can be used to model secrecy properties, for example, a fact that

a term t is a shared secret between threads X and Y is captured by the logical

formula ∀Z.Has(Z, t) ⊃ (Z = X ∨ Z = Y).

Temporal ordering

Formula Start(X) means that the thread X did not execute any actions in the

past. Formula, a1 < a2 means that both actions a1 and a2 happened in the run

and moreover, that the action a2 happened after the action a1. Note that actions

may not be unique. For example, a thread X might have received the same term

multiple times, temporal ordering operator only states that some two actions a1 and

a2 have happened in that order. Formula FirstSend(P, t, t′) means that the thread

P has send a term t (possibly as a part of some bigger message) and that the first

such occurrence was an action when P send the message t′. Temporal ordering rela-

tion can be used to strengthen the authentication properties by imposing ordering

between actions of different participants.

Honesty

Formula Honest(X̂) means the actions of principal X̂ in the current run are

precisely an interleaving of initial segments of traces of a set of roles of the protocol.

In other words, each thread X of principal X̂ assumes a particular role of the

protocol and does exactly the actions prescribed by that role.

Modal Formulas

Modal formulas attach assertions – preconditions and postconditions – to pro-

grams. Informally, formula of the form θ[P]Xφ means that after actions P are

executed in thread X, starting from a state where formula θ is true, formula φ is

true about the resulting state of X.

3.2 Semantics

A formula may be true or false at a run of a protocol. More precisely, the main

semantic relation, Q, R |= φ, may be read, “formula φ holds for run R of protocol

Q.” In this relation, R may be a complete run, with all sessions that are started in

the run completed, or an incomplete run with some principals waiting for additional

messages to complete one or more sessions. If Q is a protocol, then let Q̄ be the

set of all initial configurations of protocol Q, each including a possible intruder

cord. Let Runs(Q) be the set of all runs of protocol Q with intruder, each beginning

from an initial configuration in Q̄ sequence of reaction steps within a cord space.

If φ has free variables, then Q, R |= φ if we have Q, R |= σφ for all substitutions

σ that eliminate all the free variables in φ. We write Q |= φ if Q, R |= φ for all

R ∈ Runs(Q).

The inductive definition of Q, R |= φ is given below. Because a run is a sequence

of reaction steps, each step resulting from a principal executing an action, is possible

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 323

to assert whether a particular action occurred in a given run and also to make

assertions about the temporal ordering of the actions. An alternative view, similar

to the execution model used in defining Linear Temporal Logic (LTL) semantics, is

to think of a run as a linear sequence of states. Transition from one state to the

next is effected by an action carried out by some thread in some role.

Action Formulas

Action formulas hold as a result of a thread executing a particular action in the

run. Semantics of corresponding predicates is defined in a straightforward fashion;

a particular action predicate holds in the run if the corresponding action happened

in the run with the same terms as parameters.

Q, R |= Send(A,m) if in the run R, thread A executed action send m.

Q, R |= Receive(A,m) if there exists a variable x such that in the run R, thread A

executed action receive x, receiving data m into variable x.

Q, R |= New(A,m) if there exists a variable x such that in the run R, thread A

executed action new x, receiving data m into variable x.

Q, R |= Encrypt(A,ENCK{|m|}) if there exists a variable x such that in the run R,

thread A executed action x := enc m,K, receiving data ENCK{|m|} into variable

x.

Q, R |= Decrypt(A,ENCK{|m|}) if there exists a variable x such that in the run R,

thread A executed action x := dec ENCK{|m|},K, receiving data m into variable

x.

Q, R |= Sign(A,SIGK{|m|}) if there exists a variable x such that in the run R,

thread A executed action x := sign m,K, receiving data SIGK{|m|} into variable

x.

Q, R |= Verify(A,SIGK{|m|}) if in the run R, thread A executed the signature ver-

ification action verify SIGK{|m|},K.

Predicate Has

We model knowledge using the predicate Has. Intuition behind the semantics

definition for this predicate is simple, Has should hold for terms that are known

directly, either as a free variable of the rule or as a result of receiving or generating

a term. Furthermore, Has should hold for all terms that can be obtained from terms

known directly via one or more “Dolev-Yao” operations (decomposing via pattern

matching, or decryption with a known key or composing via encryption or tupling).

Q, R |= Has(A,m) if there exists an i such that Hasi(A,m) where Hasi is inductively

as follows:

Has0(A,m) if m ∈ FV (R|A)

Has0(A,m) if EVENT (R,A, (new x),m, x)

Has0(A,m) if EVENT (R,A, (receive x),m, x)

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358324

Hasi+1(A,m) if Hasi(A,m)

Hasi+1(A, (m,m′)) if Hasi(A,m) and Hasi(A,m′)

Hasi+1(A,m) if Hasi(A, (m,m′)) or Hasi(A, (m′,m))

Hasi+1(A,ENCK{|m|}) if Hasi(A,m) and Hasi(A,K)

Hasi+1(A,m) if Hasi(A,ENCK{|m|}) and Hasi(A,K)

Hasi+1(A,m) if Hasi(A,m′) and m′ = p(m)

and EVENT (R,A, (match m′/p(y)),m, y)

Other Formulas

Q, R |= Start(A) if R|A is empty. Intuitively this formula means that A didn’t

execute any actions in the past.

Q, R |= Fresh(A, t) if Q, R |= New(A, t) holds and furthermore for all m such that

Q, R |= Send(A,m) it holds that t is not a subterm of m.

Q, R |= Gen(A, t) if there is a prefix R′ of R such that Q, R′ |= Fresh(A, t) holds.

Q, R |= FirstSend(A, t, t′) if t is a subterm of t′, Q, R |= Send(A, t′) holds and for all

prefixes R′ of R and all terms t′′ such that t ⊆ t′′ and Q, R′ |= Send(A, t′′) it has

to be that Q, R′ |= Send(A, t′).

Q, R |= Honest(Â) if Â ∈ HONEST (C) in initial configuration C for R and all

threads of Â are in a “pausing” state in R. More precisely, R|
Â

is an interleaving

of basic sequences of roles in Q.

Q, R |= Contains(t1, t2) if t2 ⊆ t1, where ⊆ is the subterm relation between terms.

Q, R |= (φ1 ∧ φ2) if Q, R |= φ1 and Q, R |= φ2

Q, R |= ¬φ if Q, R �|= φ

Q, R |= ∃x.φ if Q, R |= (d/x)φ, for some d, where (d/x)φ denotes the formula ob-

tained by substituting d for x in φ.

Modal Formulas

Q, R |= φ1[P]Aφ2 if R = R0R1R2, for some R0, R1 and R2, and either P does not

match R1|A or P matches R1|A and Q, R0 |= σφ1 implies Q, R0R1 |= σφ2, where

σ is the substitution matching P to R1|A.

4 Proof System

The proof system combines a complete axiom system for first-order logic (not listed

since any axiomatization will do), together with axioms and proof rules for protocol

actions, temporal reasoning, and a specialized form of invariance rule.

4.1 Axioms for Protocol Actions

Axioms for protocol actions state properties that hold in the state as a result of

executing certain actions (or not executing certain actions). We use a in the axioms

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 325

to denote any one of the actions and a to denote the corresponding predicate in

the logic. � denotes the boolean value true. Axiom AA1 states that if a principal

has executed an action in some role, then the corresponding predicate asserting

that the action had occurred in the past is true while AA2 states that at the

start of a thread any action predicate applied to the thread is false. Axiom AA3

states that the predicate asserting thread X has not sent the term t remains false

after any action that does not send a term that unifies with t, if it is false before

the action. AA4 states that after thread X does actions a, · · · , b in sequence, the

action predicates, a and b, corresponding to the actions, are temporally ordered in

the same sequence.

AA1 �[a]X a

AA2 Start(X)[]X ¬a(X)

AA3 ¬Send(X, t)[b]X¬Send(X, t)

if σSend(X, t) �= σb for all substitutions σ

AA4 �[a; · · · ; b]Xa < b

The following axioms deal with properties of freshly generated nonces. Axiom

AN1 states that a particular nonce is generated by a unique thread. If thread X

generates a new value n and does no further actions, then axiom AN2 says that no

one else knows n, and axiom AN3 says that n is fresh, and axiom AN4 says that

X is the originating thread of nonce n.

AN1 New(X,x) ∧ New(Y, x) ⊃ X = Y

AN2 �[new x]X Has(Y, x) ⊃ (Y = X)

AN3 �[new x]X Fresh(X,x)

AN4 Fresh(X,x) ⊃ Gen(X,x)

4.2 Possession Axioms

The possession axioms characterize the terms that a principal can derive if it pos-

sesses certain other terms. ORIG and REC state respectively that a principal

possesses a term if she freshly generated it (a nonce) or if she received it in some

message. TUP and ENC enable construction of tuples and encrypted terms if

the parts are known. PROJ and DEC allow decomposition of a tuple into its

components and decryption of an encrypted term if the key is known.

ORIG New(X,x) ⊃ Has(X,x)

REC Receive(X,x) ⊃ Has(X,x)

TUP Has(X,x) ∧ Has(X, y) ⊃ Has(X, (x, y))

ENC Has(X,x) ∧ Has(X,K) ⊃ Has(X,ENCK{|x|})

PROJ Has(X, (x, y)) ⊃ Has(X,x) ∧ Has(X, y)

DEC Has(X,ENCK{|x|}) ∧ Has(X,K) ⊃ Has(X,x)

Axioms AR1, AR2 and AR3 are used to model obtaining information about

structure of terms as they are being parsed. They allow us to plug in appropriate

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358326

substitutions obtained by matching, signature verification and decryption actions

to terms inside the action predicate a.

AR1 a(x)[match q(x)/q(t)]X a(t)

AR2 a(x)[verify x, t,K]X a(SIGK{|t|})

AR3 a(x)[y := dec x,K]X a(ENCK{|y|})

4.3 Encryption and Signature

The next two axioms are aimed at capturing the black-box model of encryption

and signature. Axiom VER refers to the unforgeability of signatures while axiom

SEC stipulates the need to possess the private key in order to decrypt a message

encrypted with the corresponding public key.

SEC Honest(X̂) ∧ Decrypt(Y,ENC
X̂
{|x|}) ⊃ (Ŷ = X̂)

VER Honest(X̂) ∧ Verify(Y, SIG
X̂
{|x|}) ∧ X̂ �= Ŷ ⊃

∃X.Send(X,m) ∧ Contains(m,SIG
X̂
{|x|})

4.4 Generic Rules

These are generic Floyd-Hoare style rules for reasoning about program pre-conditions

and post-conditions. For example, the generalization rule G4 says that if φ is a valid

formula (it holds in all runs of all protocols) then it can be used in a postcondition

of any modal form.

θ[P]Xφ θ[P]Xψ
θ[P]Xφ ∧ ψ

G1
θ[P]Xψ φ[P]Xψ

θ ∨ φ[P]Xψ
G2

θ′ ⊃ θ θ[P]Xφ φ ⊃ φ′

θ′[P]Xφ′ G3
φ

θ[P]Xφ
G4

4.5 Sequencing Rule

Sequencing rule gives us a way of sequentially composing two cords P and P ′ when

post-condition of P , matches the pre-condition of P ′.

φ1[P]Xφ2 φ2[P
′]Xφ3

φ1[PP ′]Xφ3
S1

4.6 Preservation Axioms

The following axioms state that the truth of certain predicates continue to hold

after further actions. P1 states this for the predicates Has,FirstSend, a whereas P2

states that freshness of a term holds across actions that do not send out some term

containing it.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 327

P1 Persist(X, t)[a]XPersist(X, t)

for Persist ∈ {Has,FirstSend, a,Gen}.

P2 Fresh(X, t)[a]XFresh(X, t)

where t �⊆ a.

4.7 Axioms and Rules for Temporal Ordering

The next two axioms give us a way of deducing temporal ordering between actions

of different threads. Informally, FirstSend(X, t, t′) says that a thread X generated

a fresh term t and sent it out first in message t′. This refers to the first such send

event and is formally captured by axiom FS1. Axiom FS2 lets us reason that if a

thread Y does some action with a term t′′, which contains a term t, first sent inside

a term t′ by a thread X as a subterm, then that send must have occurred before

Y ’s action.

FS1 Fresh(X, t)[send t′]XFirstSend(X, t, t′)

where t ⊆ t′.

FS2 FirstSend(X, t, t′) ∧ a(Y, t′′) ⊃ Send(X, t′) < a(Y, t′′)

where X �= Y and t ⊆ t′′.

4.8 The Honesty Rule

The honesty rule is an invariance rule for proving properties about the actions of

principals that execute roles of a protocol, similar in spirit to the basic invariance

rule of LTL [47] and invariance rules in other logics of programs. The honesty

rule is often used to combine facts about one role with inferred actions of other

roles. For example, suppose Alice receives a signed response from a message sent to

Bob. Alice may use facts about Bob’s role to infer that Bob must have performed

certain actions before sending his reply. This form of reasoning may be sound if

Bob is honest, since honest, by definition in our framework, means “follows one

or more roles of the protocol.” The assumption that Bob is honest is essential

because the intruder may perform arbitrary actions with any key that has been

compromised. Since we have added preconditions to the protocol logic presented

in [29,30], we reformulate the rule here is a more convenient form using preconditions

and postconditions.

To a first approximation, the honesty rule says that if a property holds before

each role starts, and the property is preserved by any sequence of actions that an

honest principal may perform, then the property holds for every honest principal.

An example property that can be proved by this method is that if a principal sends a

signed message of a certain form, the principal must have received a request for this

response. The proof of a property like this depends on the protocol, of course. For

this reason, the antecedent of the honesty rule includes a set of formulas constructed

from the set of roles of the protocol in a systematic way. A subtle issue is that

the honesty rule only involves certain points in a protocol execution. This is not a

fundamental limitation in the nature of invariants, but the result of a design tradeoff

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358328

that was made in formulating the rule. More specifically, it is natural to assume

that once a thread receives a message, the thread may continue to send messages

and perform internal actions until the thread needs to pause to wait for additional

input. Another way to regard this assumption is that we do not give the attacker

control over the scheduling of internal actions or the point at which messages are

sent. The attacker only has control over the network, not local computing. We

therefore formulate our honesty rule to prove properties that hold in every pausing

state of every honest rule. By considering fewer states, we consider more invariants

true. By analogy with database transactions, for example, we consider a property

an invariant if it holds after every “transaction” is completed, allowing roles to

temporarily violate invariants as long as they preserve them before pausing. A

similar convention is normally associated with loop invariants: a property is a loop

invariant if it holds every time the top of the loop is reached; it is not necessary

that the invariant hold at every point in the body of the loop.

Recall that a protocol Q is a set of roles {ρ1, ρ2, . . . , ρk}, each executed by zero

or more honest principals in any run of Q. A sequence P of actions is a basic

sequence of role ρ, written P ∈ BS(ρ), if P is a contiguous subsequence of ρ such

that either (i) P starts at the beginning of ρ and ends with the last action before

the first receive, or (ii) P starts with a receive action and continues up to the last

action before the next receive, or (iii) P starts with the last receive action of the

role and continues through the end of the role. In the syntactic presentation below,

we use the notation ∀ρ ∈ Q. ∀P ∈ BS(ρ). φ[P]Xφ to denote a finite set of formulas

of the form φ[P]Xφ - one for each basic sequence P in the protocol. The quantifiers

∀ρ ∈ Q and ∀P ∈ BS(ρ) are not part of the syntax of PCL, but are meta-notation

used to state this rule schema.

Start(X)[]X φ ∀ρ ∈ Q.∀P ∈ BS(ρ). φ [P]X φ

Honest(X̂) ⊃ φ
HONQ

no free variable in φ

except X bound in

[P]X

4.9 Soundness

The soundness theorem for this proof system is proved, by induction on the length

of proofs, in Appendix B. Here we state the soundness theorem and demonstrate

proofs for a few relevant proof rules and axioms. We write Γ � γ if γ is provable

from the formulas in Γ and any axiom or inference rule of the proof system except

the honesty rule (HONQ for any protocol Q). We write Γ �Q γ if γ is provable

from the formulas in Γ, the basic axioms and inference rules of the proof system

and the honesty rule for protocol Q (i.e., HONQ but not HONQ′ for any Q′ �= Q).

Here γ is either a modal formula or a basic formula (i.e., of the syntactic form Ψ or

φ in Table 4).

Theorem 4.1 If Γ �Q γ, then Γ |=Q γ. Furthermore, if Γ � γ, then Γ |= γ.

Axiom VER

Honest(X̂) ∧ Verify(Y, SIG
X̂
{|x|}) ∧ X̂ �= Ŷ ⊃

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 329

∃X.Send(X,m) ∧ Contains(m,SIG
X̂
{|x|})

Informally, VER says that if an agent X̂ is honest, and some thread Y executed

by principal Ŷ has verified a signature SIGX{|x|} (i.e. a message signed with X̂ ’s

private key), then X̂ must have sent the signature out in some thread X, as a part

of some message. In other words, when X̂ is honest, he is the only one who can

sign messages with his public key. Therefore, every message signed by X̂ must have

originated from some thread X performed by principal X̂.

Let Q be a protocol, and C be an initial configuration of Q such that X̂ ∈
HONEST (C). Suppose that R is a run of Q starting from C, such that Q, R |=
Verify(Y, SIGX{|x|}) for a thread Y such that Ŷ �= X̂. By the definition of the exe-

cution model, when X̂ ∈ HONEST (C), only threads of X̂ can construct signatures

with X̂’s private key. Since, X̂ �= Ŷ , by Lemma 2.1 it has to be that the thread Y

received term SIGX{|x|} as a part of some message m′, i.e. there exists a term m′

such that EVENT (R,Y, (x),m′, x) and SIGX{|x|} ⊆ m′. By Lemma 2.3 there is a

corresponding send action for every receive, hence there exists a thread Z such that

EVENT (R,Z, send m, ∅, ∅) is true. Therefore, there exists at least one action in the

run R where SIGX{|x|} is sent as a part of some message. Let R′ be a shortest prefix

of R such that, for some thread Z and for some term m such that SIGX{|x|} ⊆ m,

it is true that EVENT(R′, Z, send m, ∅, ∅). By Lemma 2.1 SIGX{|x|} has to be

either received or generated by Z, since R′ is the shortest run in which SIGX{|x|}
is sent out as a part of some message it has to be that the thread Z generated

SIGX{|x|}. By the definition of the execution model, and honesty of X̂ it follows

that Z is a thread of X̂. Now, Q,R |= Send(Z,m) ∧ Contains(m,SIGZ{|n|})) holds

by the semantics of the action predicates and Lemma 2.2.

Sequencing rule

Sequencing rule S1 (see Section 4.5) gives us a way of sequentially composing

two cords P and P ′ when post-condition of P , matches the pre-condition or P ′.

Assume that for all protocols Q and runs R of Q both Q, R |= φ1[P]Aφ2 and

Q, R |= φ2[P
′]Aφ3 hold. We need to prove that Q, R |= φ1[PP ′]Aφ3 for all Q and

R. Let Q be a protocol and R a run of Q such that R = R0R1R2, assume that

R1|A matches PP ′ under substitution σ, and Q,R0 |= σφ1. Run R can be written

as R = R0R
′
1R

′′
1R2 where R′

1|A matches P under σ and R′′
1 |A matches P ′ under σ.

It follows that Q,R0R
′
1 |= σφ2 and therefore Q, R0R

′
1R

′′
1 |= σφ3.

The Honesty rule

The honesty rule (see Section 4.8) is an invariance rule for inductively proving

properties about the actions of principals that execute protocol roles. Assume

that Q is a protocol and R is a run of Q such that Q, R |= Start(X)[]Xφ and

Q, R |= φ [P]X φ for all roles ρ ∈ Q and for all basic sequences P ∈ BS(ρ). We

must show that Q, R |= Honest(X̂) ⊃ φ. Assume Q, R |= Honest(X̂). Then by the

semantics of predicate “Honest” and Lemma 2.4, it has to be that R|X is a trace of

a role of Q carried out by X and, moreover, thread X has to be in a pausing state

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358330

at the end of R. Therefore a R|X is a concatenation of basic sequences of Q. Now,

Q, R |= φ follows from the soundness of sequencing rule S1.

5 Example

In this section, we use the protocol logic to formally prove the authentication prop-

erty of the three-way signature based challenge-response protocol (CR) described in

Section 2. Our formulation of authentication is based on the concept of matching

conversations [8] and is similar to the idea of proving authentication using corre-

spondence assertions [77]. The same basic idea is also presented in [27] where it

is referred to as matching records of runs. Simply put, it requires that whenever

Alice and Bob accept each other’s identities at the end of a run, their records of the

run match, i.e., each message that Alice sent was received by Bob and vice versa,

each send event happened before the corresponding receive event, and moreover the

messages sent by each principal appear in the same order in both the records. Here

we demonstrate the authentication property only for the initiator in the protocol,

proof for the responder can be carried out along the same lines.

Weak authentication

First we show a weaker authentication property. If Alice has completed the

initiator role of the protocol, apparently with Bob then Bob was involved in the

protocol – he received the first message and sent out the corresponding second

message. The formal property proved about the initiator role is

�QCR
�[InitCR]XHonest(Ŷ) ∧ Ŷ �= X̂ ⊃ φweak−auth.

The actions in the modal formula are the actions of the initiator role of CR, given

in Section 2. The precondition imposes constraints on the free variables. In this

example, the precondition is simply “true”. The postcondition captures the security

property that is guaranteed by executing the actions starting from a state where

the precondition holds. In this specific example, the postcondition is a formula

capturing the notion of weak authentication. Intuitively, this formula means that

after executing the actions in the initiator role purportedly with Ŷ , X̂ is guaranteed

that Ŷ was involved in the protocol at some point (purportedly with X̂), provided

that Ŷ is honest (meaning that she always faithfully executes some role of the CR

protocol and does not, for example, send out her private keys).

φweak−auth ≡ ∃Y. (Receive(Y, (X̂, Ŷ ,m)) < Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |})))

A formal proof of the weak authentication property for the initiator guaranteed

by executing the CR protocol is presented in Table 5. First order logic reasoning

steps as well as applications of the generic rules are omitted for clarity. Details for

the application of the honesty rule are postponed until later in this Section. The

formal proof naturally breaks down into three parts:

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 331

AA1 �[verify s, (y,m, X̂), Ŷ]XVerify(X,SIG
Ŷ
{|y,m, X̂ |})(8)

8,P1,SEQ �[InitCR]XVerify(X,SIG
Ŷ
{|y,m, X̂ |})(9)

9,VER �[InitCR]X∃Y, t. Send(Y, t) ∧ Contains(t, SIG
Ŷ
{|y,m, X̂ |})(10)

HONQCR
(Honest(Ŷ) ∧ Send(Y, t) ∧ Contains(t, SIG

Ŷ
{|y,m, X̂ |})) ⊃(11)

(New(Y,m) ∨

(Receive(Y, (X̂, Ŷ ,m)) < Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))))

10, 11 �[InitCR]XHonest(Ŷ) ⊃ (∃Y. New(Y,m) ∨(12)

(Receive(Y, (X̂, Ŷ ,m)) < Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))))

AA1 �[new m]XNew(X, y)(13)

13,P1,SEQ�[InitCR]XNew(X, y)(14)

12, 14,AN1 �[InitCR]XHonest(Ŷ) ∧ Ŷ �= X̂ ⊃ (∃Y.(15)

Receive(Y, (X̂, Ŷ ,m)) < Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |})))

Table 5
Weak authentication for the initiator role of the CR protocol

• Lines (8)–(10) assert what actions were executed by Alice in the initiator role.

Specifically, in this part of the proof, it is proved that Alice has received and

verified Bob’s signature SIG
Ŷ
{|y,m, X̂ |}. We then use the fact that the signatures

of honest parties are unforgeable (axiom VER), to conclude that Bob must have

sent out some message containing his signature.

• In lines (11)–(12), the honesty rule is used to infer that whenever Bob generates a

signature of this form, he has either generated the nonce m (acting as an initiator)

or he sent it to Alice as part of the second message of the protocol and must have

previously received the first message from Alice (acting as a responder).

• Finally, in lines (13)–(15), we reason again about actions executed by Alice in

order to deduce that the nonce m could not have been created by Bob. Therefore,

combining the assertions, we show that the weak authentication property holds:

If Alice has completed the protocol as an initiator, apparently with Bob, then

Bob must have received the first message (apparently from Alice) and sent the

second message to Alice.

Strong authentication

To obtain the stronger authentication property we need to assert temporal order-

ing between actions of Alice and Bob. As mentioned before, the final authentication

property should state that: each message X̂ sent was received by Ŷ and vice versa,

each send event happened before the corresponding receive event, and moreover the

messages sent by each principal (X̂ or Ŷ) appear in the same order in both the

records. Similarly as before, the formal property proved about the initiator role is

�QCR
�[InitCR]XHonest(Ŷ) ∧ Ŷ �= X̂ ⊃ φauth, but φauth now models the stronger

property:

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358332

AN3 �[new m]XFresh(X,m)(16)

FS1 Fresh(X,m)[send X̂, Ŷ ,m]XFirstSend(X,m, (X̂, Ŷ ,m))(17)

16, 17,SEQ,P1 �[InitCR]XFirstSend(X,m, (X̂, Ŷ ,m))(18)

18,FS2 �[InitCR]XReceive(Y, (X̂, Ŷ ,m)) ∧ Ŷ �= X̂ ⊃(19)

Send(X, (X̂, Ŷ ,m)) < Receive(Y, (X̂, Ŷ ,m))

HONQCR
(Honest(Ŷ) ∧ Receive(Y, (X̂, Ŷ ,m)) ∧(20)

Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))) ⊃

FirstSend(Y, y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))

AA1,AR2,SEQ�[InitCR]XReceive(X, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))(21)

20, 21,FS2 �[InitCR]XHonest(Ŷ) ∧ Ŷ �= X̂ ∧(22)

Receive(Y, (X̂, Ŷ ,m)) ∧

Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |})) ⊃

Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |})) <

Receive(X, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))

AA4,P1 �[InitCR]XReceive(X, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |})) <(23)

Send(X, (X̂, Ŷ , SIG
X̂
{|y,m, Ŷ |}))

15, 19, 22, 23 �[InitCR]XHonest(Ŷ) ∧ Ŷ �= X̂ ⊃ φauth(24)

Table 6
Strong authentication for the initiator role of the CR protocol

φauth ≡∃Y. ((Send(X,msg1) < Receive(Y,msg1)) ∧

(Receive(Y,msg1) < Send(Y,msg2)) ∧

(Send(Y,msg2) < Receive(X,msg2)) ∧

(Receive(X,msg2) < Send(X,msg3)))

Here, we are using msg1, msg2 and msg3 as shortcuts for the corresponding messages

in the protocol: msg1 ≡ (X̂, Ŷ ,m), msg2 ≡ (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}), msg3 ≡

(X̂, Ŷ , SIG
X̂
{|y,m, Ŷ |}). Note that we cannot deduce that the responder Y has

received the third message as that property does not necessarily hold from the

point of view of the initiator.

A formal proof of the strong authentication property for the initiator guaranteed

by executing the CR protocol is presented in Table 6. Again, the formal proof

naturally breaks down into three parts:

• Lines (16)–(19) reason about actions executed by Alice in the initiator role.

Specifically, it is proved that the first occurrence of the nonce m on the net-

work is in the first message send by Alice. Hence, all actions involving that nonce

must happen after that send action.

• In lines (20)–(22), the honesty rule is used to infer the symmetrical property

about Bob’s nonce y. Hence, all actions involving that nonce must happen after

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 333

the send action by Bob in the second step of the protocol.

• In line (23) we reason from Alice’s actions that she sent out the third message

after receiving the second message.

• Finally, in line (24), the weak authentication property already proved is com-

bined with the newly established temporal assertions to infer the final strong

authentication property.

The proofs together are an instance of a general method for proving authentica-

tion results in the protocol logic. In proving that Alice, after executing the initiator

role of a protocol purportedly with Bob, is indeed assured that she communicated

with Bob, we usually follow these 3 steps:

(i) Prove the order in which Alice executed her send-receive actions. This is done

by examining the actions in Alice’s role.

(ii) Assuming Bob is honest, infer the order in which Bob carried out his send-

receive actions. This is done in two steps. First, use properties of cryptographic

primitives (like signing and encryption) to conclude that only Bob could have

executed a certain action (e.g., generate his signature). Then use the honesty

rule to establish a causal relationship between that identifying action and other

actions that Bob always does whenever he executes that action (e.g, send msg2

to Alice after having received msg1 from her).

(iii) Finally, use the temporal ordering rules to establish an ordering between the

send-receive actions of Alice and Bob. The causal ordering between messages

sent by the peers is typically established by exploiting the fact that messages

contain fresh data.

Proofs in the logic are therefore quite insightful. The proof structure often

follows a natural language argument, similar to one that a protocol designer might

use to convince herself of the correctness of a protocol.

Invariants

In both proofs the honesty rule is used to deduce that the other party in the

protocol has performed certain actions or not. Formulas proved by the application of

the honesty rule are called invariants and will play a crucial role in the composition

method described in Section 6. This proof uses two invariants Honest(Ŷ) ⊃ γ1 and

Honest(Ŷ) ⊃ γ2 where γ1 and γ2 are given by:

γ1 ≡ Send(Y, t) ∧ Contains(t, SIG
Ŷ
{|y,m, X̂ |})) ⊃

(Gen(Y,m) ∨

(Receive(Y, (X̂, Ŷ ,m)) < Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))))

γ2 ≡ (Receive(Y, (X̂, Ŷ ,m)) ∧ Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))) ⊃

FirstSend(Y, y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))

As described in Section 4.8, the honesty rule depends on the protocol being ana-

lyzed. Recall that the protocol QCR is just a set of roles QCR = {InitCR,RespCR}

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358334

each specifying a sequence of actions to be executed. The set of basic sequences of

protocol QCR is given below.

BS1 ≡ [new m; send X̂, Ŷ ,m;]X

BS2 ≡ [receive Ŷ , X̂, y, s; verify s, (y,m, X̂), Ŷ ;

r := sign (y,m, Ŷ), X̂ ; send X̂, Ŷ , r;]X

BS3 ≡ [receive X̂, Ŷ , x; new n; r := sign (n, x, X̂), Ŷ ; send Ŷ , X̂, n, r;]Y

BS4 ≡ [receive X̂, Ŷ , t; verify t, (n, x, Ŷ), X̂ ;]Y

Therefore to apply the honesty rule we need to show that the invariants (γ1,

γ2) are preserved by all the basic sequences (BS1, . . . , BS4). These proofs are

straightforward and we omit them here.

6 Protocol Composition

In this section, we explain sequential and parallel composition of protocols as syn-

tactic operations on cords and present associated methods for proving protocol

properties compositionally. Recall that a protocol is defined as a finite set of cords,

one for each role of the protocol.

Definition 6.1 (Parallel Composition) The parallel composition Q1 | Q2 of proto-

cols Q1 and Q2 is the union of the sets of cords Q1 and Q2.

For example, consider the protocol obtained by parallel composition of SSL 2.0

and SSL 3.0. The definition above allows an honest principal to simultaneously

engage in sessions of the two protocols. Clearly, a property proved about either

protocol individually might no longer hold when the two are run in parallel, since

an adversary might use information acquired by executing one protocol to attack

the other. Formally, some step in the logical proof of the protocol property is

no longer correct. Since all the axioms and inference rules in Section 4 hold for

all protocols, the only formulas used in the proof which might no longer be valid

are those proved using the honesty rule, i.e., the protocol invariants. In order

to guarantee that the security properties of the individual protocols are preserved

under parallel composition, it is therefore sufficient to verify that each protocol

respects the invariants of the other. This observation suggests the following four-

step methodology for proving properties of the parallel composition of two protocols.

(i) Prove separately the security properties of protocols Q1 and Q2.

�Q1
Ψ1 and �Q2

Ψ2

(ii) Identify the set of invariants used in the two proofs, Γ1 and Γ2. The formulas

included in these sets will typically be the formulas in the two proofs, that

were proved using the honesty rule. The proofs from the previous step can

be decomposed into two parts—the first part proves the protocol invariants

using the honesty rule for the protocol, while the second proves the protocol

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 335

property using the invariants as hypotheses, but without using the honesty

rule. Formally,

�Q1
Γ1 and Γ1 � Ψ1 and �Q2

Γ2 and Γ2 � Ψ2

(iii) Notice that it is possible to weaken the hypotheses to Γ1 ∪ Γ2. The proof of

the protocol properties is clearly preserved under a larger set of assumptions.

Γ1 ∪ Γ2 � Ψ1 and Γ1 ∪ Γ2 � Ψ2

(iv) Prove that the invariants, Γ1 ∪ Γ2, hold for both the protocols. This step uses

the transitivity of entailment in the logic: if �Q Γ and Γ � γ, then �Q γ. Since

�Q1
Γ1 was already proved in Step 1 - in this step it is sufficient to show that

�Q1
Γ2 and similarly that �Q2

Γ1. By Lemma 6.2 below, we therefore have

�Q1|Q2
Γ1 ∪ Γ2. From this and the formulas from step 3, we can conclude

that the security properties of Q1 and Q2 are preserved under their parallel

composition.

�Q1|Q2
Ψ1 and �Q1|Q2

Ψ2

Lemma 6.2 If �Q1
ψ and �Q2

ψ, then �Q1|Q2
ψ, where the last step in the proof

of ψ in both Q1 and Q2 uses the honesty rule and no previous step uses the honesty

rule.

Proof. Following the conclusion of the honesty rule, ψ must be of the form Honest(X̂)

⊃ φ for some formula φ. Suppose that the formula Honest(X̂) ⊃ φ can be proved

for both Q1 and Q2 using the honesty rule. By the definition of the honesty rule,

it has to be that � Start(X)[]Xφ and ∀ρ ∈ Q1 ∪ Q2.∀PεBS(ρ). � φ [P]X φ. Every

basic sequence P of a role in Q1 | Q2 is a basic sequence of a role in Q1, or a

basic sequence of a role in Q2. It follows that � φ [P]X φ and, therefore, by the

application of the honesty rule, �Q1|Q2
Honest(X̂) ⊃ φ. �

Theorem 6.3 If �Q1
Γ and Γ � Ψ and �Q2

Γ, then �Q1|Q2
Ψ.

Definition 6.4 (Sequential Composition of Cords) Given cords

r = (x0 . . . x�−1)[R]X(u0 . . . um−1),

s = (y0 . . . ym−1)[S]Y (t0 . . . tn−1),

their sequential composition is defined by

r; s = (x0 . . . x�−1)[RS′]X(t′0 . . . t′n−1),

where S′ and t′i are the substitution instances of S and ti respectively, such that

each variable yk is replaced by the term uk. Furthermore, under this substitution,

Y is mapped to X. Variables are renamed so that free variables of S, tj and uk do

not become bound in r; s. RS′ is the strand obtained by concatenating the actions

in R with those in S′.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358336

Definition 6.5 (Sequential Composition) A protocol Q is the sequential compo-

sition of two protocols Q1 and Q2 if each role of Q is obtained by the sequential

composition of a cord of Q1 with a cord of Q2.

It is clear that the sequential composition of protocols does not yield a unique

result. Typically, when we sequentially compose protocols we have a specific com-

position of roles in mind. For example, if we compose two two-party protocols, we

might compose the corresponding initiator and responder roles.

The sequencing rule, S1 (see Section 4), is the main rule used to construct a

modular correctness proof of a protocol that is a sequential composition of several

smaller subprotocols. It gives us a way of sequentially composing two roles P and P ′

when the logical formula guaranteed by the execution of P , i.e., the post-condition

of P , matches the pre-condition required in order to ensure that P ′ achieves some

property. In addition, just like in parallel composition, it is essential that the

composed protocols respect each other’s invariants. Our methodology for proving

properties of the sequential composition of two protocols involves the following steps.

(i) Prove separately the security properties of protocols Q1 and Q2.

�Q1
Ψ1 and �Q2

Ψ2

(ii) Identify the set of invariants used in the two proofs, Γ1 and Γ2. The formulas

included in these sets will typically be the formulas in the two proofs, which

were proved using the honesty rule. The proofs from the previous step can

be decomposed into two parts—the first part proves the protocol invariants

using the honesty rule for the protocol, while the second proves the protocol

property using the invariants as hypotheses, but without using the honesty

rule. Formally,

�Q1
Γ1,Γ1 � Ψ1 and �Q2

Γ2,Γ2 � Ψ2

(iii) Weaken the hypotheses to Γ1 ∪ Γ2. The proof of the protocol properties is

clearly preserved under a larger set of assumptions.

Γ1 ∪ Γ2 � Ψ1 and Γ1 ∪ Γ2 � Ψ2

(iv) If the post-condition of the modal formula Ψ1 matches the pre-condition of Ψ′
2,

then the two can be sequentially composed by applying the sequencing rule S1.

Here Ψ′
2 is obtained from Ψ2 by a substitution of the free variables determined

by the sequential composition of the corresponding cords. This preserves the

formulas proved in the previous steps since those formulas are true under all

substitutions of the free variables. Assuming that Ψ1 and Ψ′
2 are respectively

θ[P1]Xφ and φ[P2]Xψ, we have:

Γ1 ∪ Γ′
2 � θ[P1P2]Xψ

(v) Prove that the invariants used in proving the properties of the protocols, Γ1 ∪
Γ′

2, hold for both the protocols. Since �Q1
Γ1 was already proved in Step 1,

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 337

in this step, it is sufficient to show that �Q1
Γ′

2 and similarly that �Q2
Γ1.

By Lemma 6.6, we therefore have �Q3
Γ1 ∪ Γ′

2, where Q3 is their sequential

composition. From this and the formulas from steps 3 and 4, we can conclude

that the security properties of Q1 and Q2 are preserved under their sequential

composition and furthermore the following formula is provable.

�Q3
θ[P1P2]Xψ

Lemma 6.6 If �Q1
ψ and �Q2

ψ, then �Q3
ψ, where Q3 is a sequential composition

of Q1 and Q2, and the last step in the proof of ψ in both Q1 and Q2 uses the honesty

rule and no previous step uses the honesty rule.

Proof. Following the conclusion of the honesty rule, ψ must be of the form Honest(X̂)

⊃ φ for some formula φ. Suppose that the formula Honest(X̂) ⊃ φ can proved in

both Q1 and Q2 using the honesty rule. By the definition of the honesty rule, it

has to be that � Start(X) []X φ and ∀ρ ∈ Q1 ∪ Q2.∀PεBS(ρ). � φ [P]X φ. Let Q
be a protocol obtained by the sequential composition of Q1 and Q2. Every basic

sequence P of a role in Q has to be a basic sequence of a role in Q1, or a basic

sequence of a role in Q2, or a concatenation of a basic sequence of a role in Q1 and

a basic sequence of a role in Q2. In the first two cases, � φ [P]X φ holds trivially,

in the third case � φ [P]X φ follows by one application of the sequencing rule S1.

Therefore, by the application of the honesty rule, �Q Honest(X̂) ⊃ φ. �

Theorem 6.7 If �Q1
Γ1, Γ1 � θ[P1]Xφ; �Q2

Γ2, Γ2 � φ[P2]Xψ; and �Q1
Γ2,

�Q2
Γ1, then �Q3

θ[P1P2]Xψ, where Q3 is a sequential composition of Q1 and Q2.

In the proof technique just described, the invariants sufficient for the proofs are

independent of the order of the roles in the sequential composition. However, in

many situations the knowledge of the information flow induced by the particular

ordering facilitates proofs in an intuitive and effective way. SupposeQ is a sequential

composition of protocols Q1 and Q2, and r1; r2 is a role of Q where r1 and r2 are

roles of Q1 and Q2 respectively. In proving the invariance of a formula φ over the

protocol segment r2 we will use some history information from the prior execution

of r1. In the technical presentation below this history information appears as the

preconditions θri
. The invariant induction is the usual induction for the honesty

rule strengthened by the preconditions. The precondition induction ensures that

the preconditions employed actually hold at the corresponding state of protocol

execution. This theorem builds on ideas developed in [38,68,67]to prove security

properties over the complex control flow architectures of IEEE 802.11i and Kerberos

V5.

Theorem 6.8 If Q is a sequential composition of protocols Q1 and Q2 then we

can conclude �Q Honest(X̂) ⊃ φ if the following conditions hold for all r1; r2 in Q,

where r1 ∈ Q1 and r2 ∈ Q2:

(i) (Invariant induction)
• ∀P ∈ BS(r1). � θr1

∧ φ [P]X φ and ∀P ∈ BS(r2). � θr2
∧ φ [P]X φ

(ii) (Precondition induction)

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358338

• � Start(X)[]Xθr1
and � θr1

r1 θr2

• ∀P ∈ BS(r1). � θr1
[P]X θr1

and ∀P ∈ BS(r2). � θr2
[P]X θr2

With this background, the modified proof method can be divided into the fol-

lowing stages:

(i) Prove separately the security properties Ψ1 and Ψ2 assuming the set of invari-

ants Γ1 and Γ2 respectively. Formally,

Γ1 � Ψ1 and Γ2 � Ψ2

(ii) Weaken the hypotheses to Γ1 ∪ Γ2. The proof of the protocol properties is

clearly preserved under a larger set of assumptions.

Γ1 ∪ Γ2 � Ψ1 and Γ1 ∪ Γ2 � Ψ2

(iii) If the post-condition of the modal formula Ψ1 matches the pre-condition of Ψ′
2,

then the two can be sequentially composed by applying the sequencing rule S1.

Here Ψ′
2 is obtained from Ψ2 by a substitution of the free variables determined

by the sequential composition of the corresponding cords. This preserves the

formulas proved in the previous steps since those formulas are true under all

substitutions of the free variables. Assuming that Ψ1 and Ψ′
2 are respectively

θ[P1]Xφ and φ[P2]Xψ, we have:

Γ1 ∪ Γ′
2 � θ[P1P2]Xψ

(iv) Prove that the invariants used in proving the properties of the protocols, Γ1∪Γ′
2,

hold for Q using theorem 6.8. From this and step (iii), we can conclude:

�Q θ[P1P2]Xψ

6.1 An Example of Protocol Composition

In this section we demonstrate the protocol composition methodology with an ex-

ample. First we show how the ISO-9798-3 key exchange protocol can be obtained

by composing an abstract signature-based challenge-response protocol and a simple

protocol based on Diffie-Hellman key exchange. Next we show how the authen-

tication properties and secrecy properties of the ISO-9798-3 protocol are proved

from properties of its parts. Extensions to the logic for handling Diffie-Hellman

primitives are presented in Appendix A.

6.1.1 ISO-9798-3 Protocol as a Sequential Composition

Figure 3 shows the ISO-9798-3 protocol in the informal arrows-and-messages no-

tation. The goal of the protocol is to obtain an authenticated shared secret be-

tween the two parties. Mutual authentication is provided using exactly the same

mechanism as in the CR protocol except two fresh Diffie-Hellman exponentials are

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 339

A → B : ga

B → A : gb, SIGB{|g
b, ga, A|}

A → B : SIGA{|g
b, ga, B|}

Fig. 3. ISO-9798-3 protocol as arrows-and-messages

exchanged instead of nonces. Authenticated shared secret is obtained combining

the authentication property with the properties of the Diffie-Hellman key exchange

primitive.

The CR0 protocol can be thought of as an abstraction of the CR protocol

described in Section 2 and analyzed in Section 5. While the CR protocol generates

new nonces in each role, the roles of the CR0 protocol obtains terms m and n via

the input interface and use them in place of nonces. Intuition here is that the

authentication property of the CR protocol only depends on the fact that m and n

are fresh in the sense that no other threads may use them until they are send by

the originating threads, while the exact structure of terms m and n is irrelevant.

Roles of the CR0 protocol are given below:

InitCR0
≡ (Ŷ ,m)[

send X̂, Ŷ ,m;

receive Ŷ , X̂, y, s;

verify s, (y,m, X̂), Ŷ ;

r := sign (y,m, Ŷ), X̂ ;

send X̂, Ŷ , r;

]X()

RespCR0
≡ (n)[

receive X̂, Ŷ , x;

r := sign (n, x, X̂), Ŷ ;

send Ŷ , X̂, n, r;

receive X̂, Ŷ , t;

verify t, (n, x, Ŷ), X̂ ;

]Y ()

The DH0 protocol involves generating a fresh random number and computing

its Diffie-Hellman exponential. It is therefore the initial part of the standard Diffie-

Hellman key exchange protocol. It can be represented by a single role that computes

the new exponent and outputs the corresponding nonce via the output interface.

InitDH0
≡ RespDH0

≡ [new x; gx := expg x]X(gx)

The ISO-9798-3 protocol is a sequential composition of these two protocols. The

cords of ISO-9798-3 are obtained by sequential composition of the cord of DH0 with

the two cords of CR0. When sequentially composing cords, we substitute the output

parameters of the first cord for the input parameters of the second and α-rename

bound variables to avoid variable capture. The roles of the ISO-9798-3 protocol

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358340

are therefore:

InitISO ≡ (Ŷ ,m)[

new x;

gx := expg x;

send X̂, Ŷ , gx;

receive Ŷ , X̂, y, s;

verify s, (y, gx, X̂), Ŷ ;

r := sign (y, gx, Ŷ), X̂ ;

send X̂, Ŷ , r;

]X()

RespISO ≡ (n)[

new y;

gy := expg y;

receive X̂, Ŷ , x;

r := sign (gy, x, X̂), Ŷ ;

send Ŷ , X̂, gy, r;

receive X̂, Ŷ , t;

verify t, (gy, x, Ŷ), X̂ ;

]Y ()

6.1.2 Compositional Proof Sketch

As we just demonstrated, the ISO-9798-3 protocol can be constructed by a se-

quential composition of DH0 and CR0. Here, we describe the key secrecy property

of DH0 and the mutual authentication property of CR0. We then prove that the

ISO-9798-3 protocol can be used to establish an authenticated shared secret by

composing the correctness proofs of these two protocols. In doing so, we follow the

method for proving sequential composition results presented in the previous section.

Challenge Response Protocol, CR

A proof of the mutual authentication property guaranteed by executing the

CR0 protocol is essentially the same as the proof for the CR protocol presented in

Section 5. The difference is that we use preconditions instead of the explicit new

actions to deduce the freshness of m. The property proved for the CR0 protocol is:

Γ2 � Fresh(X,m)[InitCR0
]XHonest(Ŷ) ∧ Ŷ �= X̂ ⊃ φauth

Here, φauth models the authentication property, while Γ2 contains an appropriate

modification of the two invariants γ1 and γ2 used in the proof as described in

Section 5:

γ1 ≡ Send(Y, t) ∧ Contains(t, SIG
Ŷ
{|y,m, X̂ |}) ⊃

(Gen(Y,m) ∨

(Receive(Y, (X̂, Ŷ ,m)) < Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))))

γ2 ≡ (Receive(Y, (X̂, Ŷ ,m)) ∧ Send(Y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))) ⊃

FirstSend(Y, y, (Ŷ , X̂, y, SIG
Ŷ
{|y,m, X̂ |}))

Base Diffie-Hellman Protocol, DH0

The property of the initiator role of the DH0 protocol is given by the formula

below. We use HasAlone as a shortcut expressing that a term is private to a thread,

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 341

i.e. HasAlone(X, t) ≡ Has(X, t) ∧ (Has(Y, t) ⊃ X = Y .

Γ1 � Start(X)[new x; gx := expg x]XHasAlone(X,x) ∧ Fresh(X, gx)

This formula follows easily from the axioms and rules of the logic. It states that

after carrying out the initiator role of DH0, X possesses a fresh Diffie-Hellman

exponential gx and is the only one who possesses the exponent x. This property

will be useful in proving the secrecy condition of the ISO-9798-3 protocol. The set

of invariants used in this proof, Γ1, is empty.

Composing the Protocols

We now prove the security properties of the ISO-9798-3 protocol by composing

the correctness proofs of DH0 and CR0. In doing so, we follow the methodology

for proving sequential composition results outlined in Section 6. Let us go back and

look at the form of the logical formulas characterizing the initiator roles of DH0

and CR0. We have:

Γ1 � Start(X) [InitDH0
]X Fresh(X, gx)

Γ2 � Fresh(X,m) [InitCR0
]X Honest(Ŷ) ∧ Ŷ �= X̂ ⊃ φauth

At this point, Step 1 and Step 2 of the proof method are complete. For Step 3, we

note that since Γ1 is empty, Γ2 ∪ Γ1 is simply Γ2.

Γ2 � Start(X) [InitDH0
]X Fresh(X, gx)(25)

Γ2 � Fresh(X,m) [InitCR0
]X Honest(Ŷ) ∧ Ŷ �= X̂ ⊃ φauth(26)

We are ready to move on to Step 4. We first substitute the output parameters of the

initiator cord for DH0 for the input parameters of the initiator cord of CR0. This

involves substituting gx for m. We refer to the modified protocol as CR′
0. Since the

validity of formulas is preserved under substitution, the following formula is valid.

Γ2[gx/m] � Fresh(X, gx)
[
InitCR′

0

]
X

Honest(Ŷ) ∧ Ŷ �= X̂ ⊃ φauth[gx/m]

Note that the post-condition of 25 matches the pre-condition of 26. We can therefore

compose the two formulas by applying the sequencing rule S1. The resulting formula

is:

Γ2[gx/m] � Start(X)
[
InitDH0

; InitCR′

0

]
X

Honest(Ŷ) ∧ Ŷ �= X̂ ⊃ φauth[gx/m]

The result of composing the two roles is that the freshly generated Diffie-Hellman

exponential is substituted for the nonce in the challenge-response cord. The result-

ing role is precisely the initiator role of the ISO-9798-3 protocol. The formula above

states that the mutual authentication property of CR0 is guaranteed assuming that

the invariants in Γ2 are satisfied. Finally, we use theorem 6.8 with the following

preconditions to establish the invariants Γ2:

For γ1 :

θInitDH0
≡ θRespDH0

≡ θRespCR0
≡ �

θInitCR0
≡ Gen(X,m)

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358342

For γ2 :

θInitDH0
≡ θRespDH0

≡ θInitCR0
≡ �

θRespCR0
≡ Fresh(Y, n)

Therefore, we conclude that the protocol ISO-9798-3 , a sequential composition

of DH0 and CR0 respects the invariants in Γ2. This completes the compositional

proof for the mutual authentication property.

�QISO
Start(X) [InitISO]X Honest(Ŷ) ∧ Ŷ �= X̂ ⊃ φauth[gx/m]

The other main step involves proving that the secrecy property of DH0 is pre-

served under sequential composition with CR0, since CR′
0 does not reveal the Diffie-

Hellman exponents. The following two formulas are easily provable.

� Start(X) [InitDH0
]X HasAlone(X,x)

�HasAlone(X,x)
[
InitCR′

0

]
X

HasAlone(X,x)

Therefore, by applying the sequencing rule S1 again, we have the secrecy condition

for the ISO-9798-3 protocol:

� Start(X)
[
InitDH0

; InitCR′

0

]
X

HasAlone(X,x)

Since the set of invariants is empty, Step 2, Step 3 and Step 5 follow trivially. The

rest of the proof uses properties of the Diffie-Hellman method of secret computation

to prove the following logical formula:

�QISO
Start(X)

[
InitDH0

; InitCR′

0

]
X

Honest(Ŷ) ⊃(27)

∃Y, y. (Has(X, gxy) ∧ (Has(Z, gxy) ⊃ (Z = X ∨ Z = Y)))

Intuitively, the property proved is that if Ŷ is honest, then X̂ and Ŷ are the

only people who know the Diffie-Hellman secret gxy. In other words, the ISO-9798-3

protocol can be used to compute an authenticated shared secret.

7 Other Results

In this section, we summarize other results associated with PCL and point the

interested reader to the relevant articles for further details.

7.1 PCL Proof Methods

In [22], we extend PCL with higher-order features (function variables) and present

an abstraction-refinement proof method for reasoning about security protocols. The

main idea is to view changes in a protocol as a combination of finding a meaningful

“protocol template” that contains function variables in messages, and producing the

refined protocol as an instance of the template. Using higher-order protocol logic,

we can develop a single proof for all instances of a template. A template can also be

instantiated to another template, or a single protocol may be an instance of more

than one template, allowing separate protocol properties to be proved modularly.

To give a simple example, suppose we have a protocol containing messages that use

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 343

symmetric encryption, and suppose that some useful property of this protocol is

preserved if we replace symmetric encryption by use of a keyed hash. We can capture

the relationship between these two protocols by writing an “abstract” protocol

template with function variables in the positions occupied by either encryption or

keyed hash. Then the two protocols of interest become instances of the template. In

addition, a similar relationship often works out for protocol proofs. If we start with

a proof of some property of the protocol that contains symmetric encryption, some

branches of the proof tree will establish properties of symmetric encryption that

are used in the proof. If we replace symmetric encryption by a function variable,

then the protocol proof can be used to produce a proof about the protocol template

containing function variables. This is accomplished by replacing each branch that

proves a property of symmetric encryption by a corresponding hypothesis about

the function variable. Once we have a proof for the protocol template obtained

by abstracting away the specific uses of symmetric encryption, we can consider

replacing the function variable with keyed hash. If keyed hash has the properties of

symmetric encryption that were used in the initial proof, we can use proofs of these

properties of keyed hash in place of the assumptions about the function variable.

Thus an abstraction step and an instantiation step bring us both from a protocol

with symmetric encryption to a protocol with keyed hash, and from a proof of the

initial protocol to a proof of the final one. The role of the protocol template in

this process is to provide a unified proof that leads from shared properties of two

primitives (symmetric encryption or keyed hash) to a protocol property that holds

with either primitive.

While the current paper focuses on authentication proofs, we have also devel-

oped a proof method for establishing secrecy properties [68]. Our general approach

involves showing that every protocol agent that receives data protected by one of

a chosen set of encryption keys only sends sensitive data out under encryption by

another key in the set. This reduces a potentially complicated proof about arbitrary

runs involving arbitrarily many agents and a malicious attacker to a case-by-case

analysis of how each protocol step might save and send data. We formalize this form

of inductive reasoning about secrecy in a set of new axioms and inference rules that

are added to PCL and prove soundness of the system over a conventional symbolic

protocol execution model. The extended logic may be used to prove authentication

or secrecy, independently and in situations where one property may depend upon

the other. Among other challenges, the inductive secrecy rule presented here is

carefully designed to be sound for reasoning about arbitrarily many simultaneous

protocols sessions, and powerful enough to prove meaningful properties about com-

plex protocols used in practice. While the reasoning principles are similar to the

“rank function method” [71] and work using the strand space execution model [74],

our main technical contribution is a set of mechanizable formal rules that codify

the non-formal mathematical arguments in these earlier papers. Another point of

technical difference is that we carry out our induction only over the steps of the

protocol without requiring any explicit reasoning over possible actions of a malicious

attacker.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358344

7.2 PCL Applications

PCL has been used to analyze a number of industrial security protocols includ-

ing the IEEE 802.11i wireless LAN security standard [38] (of which SSL/TLS is

a component), Kerberos V5 [68], and the IETF GDOI standard for secure group

communication [56].

The IEEE 802.11i standard allows a network access point to mutually authen-

ticate itself with user devices before providing connectivity. The protocol consists

of several parts, including an 802.1X authentication phase using TLS over EAP, a

4-Way Handshake to establish a fresh session key, and an optional Group Key Hand-

shake for group communications. Motivated by previous vulnerabilities in related

wireless protocols and evolution in 802.11i to provide better security, we carry out a

formal proof of correctness using PCL. Our proof consists of separate proofs of spe-

cific security properties for 802.11i components - the TLS authentication phase, the

4-Way Handshake protocol and the Group Key Handshake protocol. Using a new

form of PCL composition principle, formulated as staged composition in this paper,

we combine the component proofs to show that any staged use of the protocol com-

ponents achieves the stated security goals. It follows that the components compose

securely for a range of failure recovery control flows, including the improvements

proposed in [37]. The general result also proves security for other configurations

presented in the 802.11i Standards document, including the use of a Pre-Shared

Key (PSK) or cached Pair-wise Master Key (PMK). In addition to devising a new

composition principle for PCL, we also extend the logic to handle local memory

associated with reusing generated nonces. The memory feature is needed to prove

correctness of an unusual feature of the improved 4-Way Handshake protocol [37]

that involves reusing a nonce to avoid a Denial of Service (DoS) attack. Further-

more, the formal proof for the TLS protocol has independent interest since TLS is

widely used independent of 802.11i (e.g. [75]).

Kerberos [43] is widely used for authenticated client-server interaction in local

area networks. The basic protocol has three sections, each involving an exchange

between the client and a different service. In recent work [68], we develop a formal

proof that is modular, with the proof for each section assuming a precondition and

establishing a postcondition that implies the precondition of the following section.

One advantage of this modular structure is illustrated by our proof for the PKINIT

[18] version that uses public-key infrastructure instead of shared secret keys in the

initial steps. Since only the first section of PKINIT is different, the proofs for the

second and third sections of the protocol remain unchanged. While lengthy machine-

checked proofs of Kerberos were previously given [7], and non-formal mathematical

proofs have been developed for other abstractions of Kerberos [15], this is the first

concise formal logic proof of secrecy and authentication for Kerberos and PKINIT.

7.3 Computational PCL

While the work described so far is in the symbolic model of protocol execution and

attack (also called the “Dolev-Yao” model), we have also developed Computational

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 345

PCL—a logic which is sound wrt the complexity-theoretic model of modern cryp-

tography [25,26,67]. Computational PCL inherits its syntax and reasoning methods

from PCL. However, the semantics of the logic is defined wrt to a probabilistic

polynomial time model of protocol execution and attack.

Our central organizing idea (cf. [25]) is to interpret formulas as operators on

probability distributions on traces. Informally, representing a probability distribu-

tion by a set of equi-probable traces (each tagged by the random sequence used to

produce it), the meaning of a formula φ on a set T of traces is the subset T ′ ⊆ T in

which φ holds. This interpretation yields a probability: the probability that φ holds

is the ratio |T ′|/|T |. Conjunction and disjunction are simply intersection and union.

There are several possible interpretations for implication, and it is not clear at this

point which will prove most fruitful in the long run. Currently, we interpret φ ⇒ ψ

as the union of ¬φ and the composition of ψ with φ; the latter uses the conditional

probability of ψ given φ. This interpretation supports a soundness proof for a siz-

able fragment of the protocol logic, and resembles the probabilistic interpretation

of implication in [62]. Since the logic does not mention probability explicitly, we

consider a formula “true” if it holds with asymptotically overwhelming probability.

In subsequent work, we formulate a specification of secure key exchange that

is closed under general composition with steps that use the key and use the logic

to establish security properties of the ISO-9798-3 protocol [26]. We also develop a

proof method for establishing computational secrecy properties and apply it to the

Kerberos V5 protocol [67].

8 Related Work

A variety of methods and tools have been developed for analyzing the security guar-

antees provided by network protocols. The main lines of work include specialized

logics [13,73,32], process calculi [2,1,44,65] and tools [53,72], as well as theorem-

proving [64,63] and model-checking methods [45,59,66,70,10,3] using general pur-

pose tools. (The cited papers are representative but not exhaustive; see [55] for a

more comprehensive survey.)

There are several points of difference among these approaches. While most

model-checking tools can only analyze a finite number of concurrent sessions of a

protocol, some of the logics, process calculi, and theorem-proving techniques yield

protocol security proofs without bounding the number of sessions. With the excep-

tion of the BAN family of logics [13], most approaches involve explicit reasoning

about possible attacker actions. Finally, while security properties are interpreted

over individual traces in the majority of these methods, in the process calculi-based

techniques, security is defined by an equivalence relation between a real protocol

and an ideal protocol, which is secure by construction. Inspite of these differences,

all of these approaches use the same symbolic model of protocol execution and

attack. This model seems to have developed from positions taken by Needham-

Schroeder [61], Dolev-Yao [28], and much subsequent work by others.

PCL shares several features with BAN [13], a specialized protocol logic. It is

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358346

designed to be a logic for authentication, with relevant secrecy concepts. Both logics

annotate programs with assertions and use formulas for concepts like “freshness”,

“sees”, “said”, and “shared secret”. Furthermore, neither logic requires explicit

reasoning about the actions of an attacker.

On the other hand, PCL differs from BAN on some aspects since it addresses

known problems with BAN. BAN had an abstraction step in going from the pro-

gram for the protocol to its representation as a logical formula. PCL avoids the

abstraction phase since formulas contain the program for the protocol. PCL uses a

dynamic logic set-up: after a sequence of actions is executed, some property holds in

the resulting state. It is formulated using standard logical concepts: predicate logic

and modal operators, with more or less standard semantics for many predicates

and modalities. Temporal operators can be used to refer specifically to actions that

have happened and the order in which they occurred. Formulas are interpreted over

traces and the proof system is sound with respect to the standard symbolic model

of protocol execution and attack. On the other hand, BAN was initially presented

without semantics. Although subsequently, model-theoretic semantics was defined,

the interpretation and use of concepts like “believes” and “jurisdiction” remained

unclear. Finally, PCL formulas refer to specific states in protocol. For example, x

may be fresh at one step, then no longer fresh. In contrast, BAN statements are

persistent making it less expressive.

PCL also shares several common points with the Inductive Method [64]. Both

methods use the same trace-based model of protocol execution and attack; proofs

use induction and provable protocol properties hold for an unbounded number of

sessions. One difference is the level of abstraction. Paulson reasons explicitly about

traces including possible intruder actions whereas basic reasoning principles are

codified in PCL as axioms and proof rules. Proofs in PCL are significantly shorter

and do not require any explicit reasoning about an intruder. Finally, while Paulson’s

proofs are mechanized using Isabelle, most proofs in PCL are hand-proofs. However,

PCL is amenable to automation and a tool implementation effort is underway. An

interesting recent effort that is similar to PCL, and the use of templates for abstract

protocols mentioned in Section 7.1, is reported in [4].

Early work on the protocol composition problem concentrated on designing pro-

tocols that would be guaranteed to compose with any other protocol. This led to

rather stringent constraints on protocols: in essence, they required the fail-stop

property [33] or something very similar to it [39]. Since real-world protocols are not

designed in this manner, these approaches did not have much practical application.

More recent work has therefore focussed on reducing the amount of work that is

required to show that protocols are composable. Meadows, in her analysis of the

IKE protocol suite using the NRL Protocol Analyzer [54], proved that the different

sub-protocols did not interact insecurely with each other by restricting attention to

only those parts of the sub-protocols, which had a chance of subverting each other’s

security goals. Independently, Thayer, Herzog and Guttman used a similar insight

to develop a technique for proving composition results using their strand space

model [74]. Their technique consisted in showing that a set of terms generated by

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 347

one protocol can never be accepted by principals executing the other protocol. The

techniques used for choosing the set of terms, however, is specific to the protocols

in [31]. A somewhat different approach is used by Lynch [46] to prove that the

composition of a simple shared key communication protocol and the Diffie-Hellman

key distribution protocol is secure. Her model uses I/O automata and the protocols

are shown to compose if adversaries are only passive eavesdroppers.

In a recent paper [17], Canetti, Meadows and Syverson, revisit the protocol

composition problem. They show how the interaction between a protocol and its

environment can have a major effect on the security properties of the protocol. In

particular, they demonstrate a number of attacks on published and widely used

protocols that are not feasible against the protocol running in isolation but become

feasible when they are run in parallel with certain other protocols. This study

further reinforces the importance of methods for reasoning about the composability

of protocols. We believe that the results presented in this dissertation represent

significant progress in this direction. The methods presented in Section 6 provide

a way to implicitly characterize, using invariants, a class of protocols with which a

specific protocol can be safely composed. In particular, our formalism justifies some

of the design principles discussed by the authors. One recommendation is that the

environment should not use keys or other secrets in unaltered form. Specifically,

the protocol under consideration should not encrypt messages with a key used to

encrypt messages by any protocol in its environment. The reason this makes sense

is that if two protocols use a particular form of encrypted message as a test to

authenticate a peer, then the attacker might be able to make a principal running

the first protocol accept a message which actually originated in a run of the second

protocol. If this is indeed the case, then in our formalism, the invariant for the

protocol under consideration would fail to hold in such an environment, and the

composition proof would therefore not go through. However, this seems like an

overly conservative design approach since not every two protocols which use the

same encryption keys interfere with each other’s security. The invariant-preservation

method can help identify protocols which can run safely in parallel even if they share

keys. We note that the above principle has been followed in the design of real-world

protocols like IKE [36]. Also, Guttman and Fábrega have proved a theoretical result

to the same effect in their strand space model [34]. Another rule of thumb (also

recommended by Kelsey, Schneier and Wagner in [42]), is the use of unique protocol

identifiers to prevent a message intended for use in one protocol to be mistaken for

use in another protocol. This idea is also founded on similar intuition. To give

an example, in our logic, an invariant in proving an authentication property could

be: “if Bob generated a signature of a particular form, he sent it in response to a

particular message of a protocol”; adding the unique protocol identifier inside the

signature will ensure that this invariant is trivially satisfied for all other protocols,

thereby allowing composability. However, many existing protocols do not follow

this principle.

It is well known that many natural security properties (e.g., noninterference)

are not preserved either under composition or under refinement. This has been

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358348

extensively explored using trace-based modelling techniques [48,49,50,51,52], using

properties that are not first-order predicates over traces, but second-order pred-

icates over sets of traces that may not have closure properties corresponding to

composition and refinement. In contrast, our security properties are safety proper-

ties over sets of traces that satisfy safety invariants, thus avoiding these negative

results about composability.

There are some important differences between the way that we reason about

incremental protocol construction and alternative approaches such as “universal

composability” [16]. In universal composability, properties of a protocol are stated

in a strong form so that the property will be preserved under a wide class of composi-

tion operations. In contrast, our protocol proofs proceed from various assumptions,

including invariants that are assumed to hold in any environment in which the

protocol operates. The ability to reason about protocol parts under assumptions

about the way they will be used offers greater flexibility and appears essential for

developing modular proofs about certain classes of protocols.

Finally, we note that although there are some similarities between the composi-

tion paradigm of PCL and the assume-guarantee paradigm in distributed comput-

ing [58], there is also one important difference. In PCL, while composing protocols,

we check that each protocol respects the invariants of the other. This step involves

an induction argument over the steps of the two protocols. There is no reasoning

about attacker actions. One way to see the similarity with assume-guarantee is that

each protocol is proved secure assuming some property of the other protocol and

then discharging this assumption. The difference lies in the fact that the assumption

made does not depend on the attacker although the environment for each protocol

includes the attacker in addition to the other protocol.

9 Conclusions

Proving security properties of network protocols is a hard problem. One source

of difficulty is concurrency—security properties have to be guaranteed in an envi-

ronment where many sessions of multiple protocols simultaneously execute and the

attacker can use information acquired from one session to defeat the security goals

of another. Existing methods based on model-checking are useful for finding bugs,

but do not guarantee protocol security for an unbounded number of sessions. On

the other hand, explicit reasoning about traces containing honest principals’ and

attacker’s actions using theorem-proving approaches require considerable effort and

expertise. We have therefore developed PCL—a logic for proving security proper-

ties of protocols. The proof system for PCL codifies high-level reasoning principles

for security protocols and thereby allows succinct proofs of practical protocols (2–3

pages). PCL supports compositional reasoning about security protocols and has

been applied to a number of industry standards including SSL/TLS, IEEE 802.11i,

Kerberos V5, and GDOI, in several cases identifying serious security vulnerabili-

ties. While the logic was originally developed for the symbolic “Dolev-Yao” model

of protocol execution and attack, a variant of the logic with similar reasoning prin-

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 349

ciples has also been developed for the computational model used by cryptographers.

We believe that this logic will prove useful in analyzing other protocols of practical

import as well as in the education of students on topics related to security protocols

and their design and analysis. One significant direction for future work is to develop

useful tool support for the logic.

Acknowledgements

We would like to thank our collaborators on this project. We thank Nancy

Durgin and Dusko Pavlovic for contributing towards the formulation of PCL, and

Michael Backes, Changhua He, Jean-Pierre Seifert, Mukund Sundarajan and Math-

ieu Turuani for collaborations on case studies. The variant of PCL developed for

the computational model is joint work with Vitaly Shmatikov, Mathieu Turuani,

and Bogdan Warinschi.

References

[1] Abadi, M. and C. Fournet, Mobile values, new names, and secure communication, in: 28th ACM
Symposium on Principles of Programming Languages, 2001, pp. 104–115.

[2] Abadi, M. and A. Gordon, A calculus for cryptographic protocols: the spi calculus, Information and
Computation 148 (1999), pp. 1–70, expanded version available as SRC Research Report 149 (January
1998).

[3] Armando, A., D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H. Drielsma, P.-C.
Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago,
M. Turuani, L. Viganò and L. Vigneron, The AVISPA tool for the automated validation of internet
security protocols and applications., in: Computer Aided Verification, 17th International Conference,
CAV 2005, Proceedings, Lecture Notes in Computer Science 3576 (2005), pp. 281–285.

[4] Auty, M. and G. Lowe, A calculus for security protocol development, Submitted for publication (2006).
URL http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Papers/synthesis.pdf

[5] Backes, M., A. Datta, A. Derek, J. C. Mitchell and M. Turuani, Compositional analysis of contract
signing protocols, in: Proceedings of 18th IEEE Computer Security Foundations Workshop (2005).

[6] Beauxis, R. and C. Palamidessi, On the asynchronous nature of the asynchronous π-calculus (2006),
manuscript.

[7] Bella, G. and L. C. Paulson, Kerberos version IV: Inductive analysis of the secrecy goals, in: J.-J.
Quisquater, editor, Proceedings of the 5th European Symposium on Research in Computer Security
(1998), pp. 361–375.

[8] Bellare, M. and P. Rogaway, Entity authentication and key distribution, in: Advances in Cryprtology -
Crypto ’93 Proceedings, pp. 232–249.

[9] Berry, G. and G. Boudol, The chemical abstract machine, Theoretical Computer Science 96 (1992),
pp. 217–248.

[10] Blanchet, B., An Efficient Cryptographic Protocol Verifier Based on Prolog Rules, in: 14th IEEE
Computer Security Foundations Workshop (CSFW-14) (2001), pp. 82–96.

[11] Borisov, N., I. Goldberg and D. Wagner, Intercepting mobile communications: the insecurity of 802.11,
in: Proceedings of the 7th Annual International Conference on Mobile Computing and Networking,
2001, pp. 180–189.

[12] Boyd, C. and A. Mathuria, “Protocols for Authentication and Key Establishment,” Springer-Verlag,
2003.

[13] Burrows, M., M. Abadi and R. Needham, A logic of authentication, ACM Transactions on Computer
Systems 8 (1990), pp. 18–36.

[14] Butler, F., I. Cervesato, A. Jaggard, A. Scedrov and C. Walstad, Formal analysis of Kerberos 5 (2006),
Theoretical Computer Science, in press.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358350

http://web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Papers/synthesis.pdf

[15] Butler, F., I. Cervesato, A. D. Jaggard and A. Scedrov, Verifying confidentiality and authentication
in kerberos 5., in: Software Security - Theories and Systems, Second Mext-NSF-JSPS International
Symposium, ISSS 2003, Lecture Notes in Computer Science 3233 (2003), pp. 1–24.

[16] Canetti, R., Universally composable security: A new paradigm for cryptographic protocols, in: Proc.
42nd IEEE Symp. on the Foundations of Computer Science, IEEE, 2001, full version available at
http://eprint.iacr.org/2000/067/.

[17] Canetti, R., C. Meadows and P. Syverson, Environmental requirements for authentication protocols, in:
Proceedings of Software Security - Theories and Systems, Mext-NSF-JSPS International Symposium,
ISSS, LNCS 2609 (2003), pp. 339–355.

[18] Cervesato, I., A. Jaggard, A. Scedrov, J.-K. Tsay and C. Walstad, Breaking and fixing public-key
kerberos, Technical report.
URL ftp://ftp.cis.upenn.edu/pub/papers/scedrov/pkinit.pdf

[19] Cervesato, I., A. Jaggard, A. Scedrov, J.-K. Tsay and C. Walstad, Breaking and fixing public-key
Kerberos, in: Proc. 11-th Asian Computing Science Conference (ASIAN’06), Springer LNCS, to
appear., 2006, preliminary report on http://eprint.iacr.org/2006/009 .

[20] Datta, A., A. Derek, J. C. Mitchell and D. Pavlovic, A derivation system for security protocols and its
logical formalization, in: Proceedings of 16th IEEE Computer Security Foundations Workshop (2003),
pp. 109–125.

[21] Datta, A., A. Derek, J. C. Mitchell and D. Pavlovic, Secure protocol composition (extended abstract),
in: Proceedings of ACM Workshop on Formal Methods in Security Engineering, 2003, pp. 11–23.

[22] Datta, A., A. Derek, J. C. Mitchell and D. Pavlovic, Abstraction and refinement in protocol derivation,
in: Proceedings of 17th IEEE Computer Security Foundations Workshop (2004), pp. 30–45.

[23] Datta, A., A. Derek, J. C. Mitchell and D. Pavlovic, Secure protocol composition, in: Proceedings of
19th Annual Conference on Mathematical Foundations of Programming Semantics (2004).

[24] Datta, A., A. Derek, J. C. Mitchell and D. Pavlovic, A derivation system and compositional logic for
security protocols, Journal of Computer Security 13 (2005), pp. 423–482.

[25] Datta, A., A. Derek, J. C. Mitchell, V. Shmatikov and M. Turuani, Probabilistic polynomial-time
semantics for a protocol security logic., in: Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP ’05), Lecture Notes in Computer Science (2005),
pp. 16–29.

[26] Datta, A., A. Derek, J. C. Mitchell and B. Warinschi, Computationally sound compositional logic for
key exchange protocols, in: Proceedings of 19th IEEE Computer Security Foundations Workshop (2006),
pp. 321–334.

[27] Diffie, W., P. C. V. Oorschot and M. J. Wiener, Authentication and authenticated key exchanges,
Designs, Codes and Cryptography 2 (1992), pp. 107–125.

[28] Dolev, D. and A. Yao, On the security of public-key protocols, IEEE Transactions on Information
Theory 2 (1983).

[29] Durgin, N., J. C. Mitchell and D. Pavlovic, A compositional logic for protocol correctness, in: Proceedings
of 14th IEEE Computer Security Foundations Workshop (2001), pp. 241–255.

[30] Durgin, N., J. C. Mitchell and D. Pavlovic, A compositional logic for proving security properties of
protocols, Journal of Computer Security 11 (2003), pp. 677–721.

[31] Fábrega, F. J. T., J. C. Herzog and J. D. Guttman, Strand spaces: Why is a security protocol correct?,
in: Proceedings of the 1998 IEEE Symposium on Security and Privacy (1998), pp. 160–171.

[32] Gong, L., R. Needham and R. Yahalom, Reasoning About Belief in Cryptographic Protocols, in:
D. Cooper and T. Lunt, editors, Proceedings 1990 IEEE Symposium on Research in Security and
Privacy (1990), pp. 234–248.

[33] Gong, L. and P. Syverson, Fail-stop protocols: An approach to designing secure protocols, Dependable
Computing for Critical Applications 5 (1998), pp. 79–100.

[34] Guttman, J. D. and F. J. T. Fábrega, Protocol independence through disjoint encryption, in: Proceedings
of 13th IEEE Computer Security Foundations Workshop (2000), pp. 24–34.

[35] Harel, D., D. Kozen and J. Tiuryn, “Dynamic Logic,” Foundations of Computing, MIT Press, 2000.

[36] Harkins, D. and D. Carrel, The Internet Key Exchange (IKE) (1998), rFC 2409.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 351

ftp://ftp.cis.upenn.edu/pub/papers/scedrov/pkinit.pdf
http://eprint.iacr.org/2006/009

[37] He, C. and J. C. Mitchell, Security analysis and improvements for IEEE 802.11i., in: Proceedings of
the Network and Distributed System Security Symposium, NDSS 2005 (2005).

[38] He, C., M. Sundararajan, A. Datta, A. Derek and J. C. Mitchell, A modular correctness proof of
IEEE 802.11i and TLS, in: CCS ’05: Proceedings of the 12th ACM conference on Computer and
communications security, 2005, pp. 2–15.

[39] Heintze, N. and J. D. Tygar, A model for secure protocols and their composition, IEEE Transactions
on Software Engineering 22 (1996), pp. 16–30.

[40] Hoare, C. A. R., An axiomatic basis for computer programming, Communications of the ACM 12
(1969), pp. 576–580.

[41] Hoare, C. A. R., Communicating sequential processes, Commun. ACM 21 (1978), pp. 666–677.

[42] Kelsey, J., B. Schneier and D. Wagner, Protocol interactions and the chosen protocol attack, in:
Proceedings of the International Workshop on Security Protocols, 1997.

[43] Kohl, J. and B. Neuman, The Kerberos network authentication service (version 5), IETF RFC 1510
(1993).

[44] Lincoln, P. D., J. C. Mitchell, M. Mitchell and A. Scedrov, Probabilistic polynomial-time equivalence
and security protocols, in: Formal Methods World Congress, vol. I, number 1708 in Lecture Notes in
Computer Science (1999), pp. 776–793.

[45] Lowe, G., Some new attacks upon security protocols, in: Proceedings of 9th IEEE Computer Security
Foundations Workshop (1996), pp. 162–169.

[46] Lynch, N., I/O automata models and proofs for shared-key communication systems, in: Proceedings of
12th IEEE Computer Security Foundations Workshop (1999), pp. 14–29.

[47] Manna, Z. and A. Pnueli, “Temporal Verification of Reactive Systems: Safety,” Springer-Verlag, 1995.

[48] Mantel, H., On the Composition of Secure Systems, in: Proceedings of the IEEE Symposium on Security
and Privacy (2002), pp. 88–101.

[49] McCullough, D., Noninterference and the composability of security properties, in: Proceedings of the
IEEE Symposium on Security and Privacy (1988), pp. 177–186.

[50] McCullough, D., A hookup theorem for multilevel security, IEEE Transactions on Software Engineering
16 (1990), pp. 563–568.

[51] McLean, J., Security models and information flow, in: Proceedings of the IEEE Symposium on Security
and Privacy (1990).

[52] McLean, J., A general theory of composition for a class of “possibilistic” properties, IEEE Transactions
on Software Engineering 22 (1996), pp. 53–67.

[53] Meadows, C., The NRL protocol analyzer: An overview, Journal of Logic Programming 26 (1996),
pp. 113–131.

[54] Meadows, C., Analysis of the Internet Key Exchange protocol using the NRL protocol analyzer, in:
Proceedings of the IEEE Symposium on Security and Privacy (1998).

[55] Meadows, C., Open issues in formal methods for cryptographic protocol analysis, in: Proceedings of
DISCEX 2000 (2000), pp. 237–250.

[56] Meadows, C. and D. Pavlovic, Deriving, attacking and defending the GDOI protocol., in: Computer
Security - ESORICS 2004, 9th European Symposium on Research Computer Security, Proceedings,
Lecture Notes in Computer Science 3193 (2004), pp. 53–72.

[57] Milner, R., “A Calculus of Communicating Systems,” Springer-Verlag, 1982.

[58] Misra, J. and K. M. Chandy, Proofs of networks of processes, IEEE Transactions on Software
Engineering 7 (1981), pp. 417–426.

[59] Mitchell, J., M. Mitchell and U. Stern, Automated analysis of cryptographic protocols using Murϕ, in:
Proc. IEEE Symp. Security and Privacy, 1997, pp. 141–151.

[60] Mitchell, J. C., V. Shmatikov and U. Stern, Finite-state analysis of ssl 3.0, in: Proceedings of the
Seventh USENIX Security Symposium, 1998, pp. 201–216.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358352

[61] Needham, R. and M. Schroeder, Using encryption for authentication in large networks of computers,
Communications of the ACM 21 (1978), pp. 993–999.

[62] Nilsson, N. J., Probabilistic logic, Artificial Intelligence 28 (1986), pp. 71–87.

[63] Paulson, L., Mechanized proofs for a recursive authentication protocol, in: Proceedings of 10th IEEE
Computer Security Foundations Workshop, 1997, pp. 84–95.

[64] Paulson, L., Proving properties of security protocols by induction., in: Proceedings of 10th IEEE
Computer Security Foundations Workshop, 1997, pp. 70–83.

[65] Ramanathan, A., J. C. Mitchell, A. Scedrov and V. Teague, Probabilistic bisimulation and equivalence
for security analysis of network protocols, in: Foundations of Software Science and Computation
Structures, 7th International Conference, FOSSACS 2004, Proceedings, Lecture Notes in Computer
Science 2987 (2004), pp. 468–483.

[66] Roscoe, A. W., Modelling and verifying key-exchange protocols using CSP and FDR, in: 8th IEEE
Computer Security Foundations Workshop (1995), pp. 98–107.

[67] Roy, A., A. Datta, A. Derek and J. C. Mitchell, Inductive proof method for computational secrecy
(2006), manuscript.

[68] Roy, A., A. Datta, A. Derek, J. C. Mitchell and J.-P. Seifert, Secrecy analysis in protocol composition
logic. (2006), to appear in Proceedings of 11th Annual Asian Computing Science Conference, December
2006.

[69] Ryan, P., S. Schneider, M. Goldsmith, G. Lowe and B. Roscoe, “Modelling and Analysis of Security
Protocols,” Addison-Wesley, 2001.

[70] Schneider, S., Security properties and CSP, in: IEEE Symp. Security and Privacy, 1996.

[71] Schneider, S., Verifying authentication protocols with csp, IEEE Transactions on Software Engineering
(1998), pp. 741–58.

[72] Song, D., Athena: a new efficient automatic checker for security protocol analysis, in: Proceedings of
12th IEEE Computer Security Foundations Workshop (1999), pp. 192–202.

[73] Syverson, P. and P. van Oorschot, On unifying some cryptographic protocol logics, in: Proceedings of
7th IEEE Computer Security Foundations Workshop, 1994, pp. 14–29.

[74] Thayer, F. J., J. C. Herzog and J. D. Guttman, Mixed strand spaces, in: Proceedings of 12th IEEE
Computer Security Foundations Workshop (1999), pp. 72–82.

[75] “Verified by Visa” security program, Internet Resource.
URL https://usa.visa.com/personal/security/vbv/

[76] Wagner, D. and B. Schneier, Analysis of the ssl 3.0 protocol, in: Proceedings of the 2nd USENIX
Workshop on Electronic Commerce, 1996.

[77] Woo, T. Y. C. and S. C. Lam, A semantic model for authentication protocols, in: Proceedings IEEE
Symposium on Research in Security and Privacy, 1993.

A Extending the Logic with Diffie-Hellman Primitive

In order to keep the description of the core PCL simple, we introduce Diffie-Hellman

primitive as well as the associated proof rules and axioms as extension to the logic.

Our treatment of Diffie-Hellman primitive in this symbolic model is straight forward.

Exponentials such as ga mod p and shared secret gab mod p will be represented by

special terms g(a) and h(a, b) respectively. Similarly to the black-box model of

encryption and signature, we will assume that the only way to compute these terms

is via specified symbolic actions. Therefore, abstract away the number-theoretic

properties of Diffie-Hellman key exchange scheme.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 353

https://usa.visa.com/personal/security/vbv/

DH1 Computes(X, gab) ⊃ Has(X, gab)

DH2 Has(X, gab) ⊃

(Computes(X, gab) ∨ ∃m.(Receive(X,m) ∧ Contains(m, gab)))

DH3 (Receive(X,m) ∧ Contains(m, gab)) ⊃

∃Y,m′.(Computes(Y, gab) ∧ Send(Y,m′) ∧ Contains(m′, gab))

DH4 Fresh(X,a) ⊃ Fresh(X, ga)

Computes(X, gab) ≡ ((Has(X,a) ∧ Has(X, gb)) ∨ (Has(X, b) ∧ Has(X, ga)))

Table A.1
Diffie-Hellman Axioms

Programming Language and the Execution Model

Set of terms of PCL (see Table 1 in Section 2) is extended with constructs g(n)

and h(n, n), where n is a nonce. Informally, g(a) and h(a, b) will stand for ga mod p

and gab mod p respectively. To improve readability will often use ga and gab instead

of g(a) and h(a, b).

Set of actions of PCL (see Table 1 in Section 2) is extended with constructs

x := expg n and x := dhkeyken t, n modelling creation of the exponential ga given

a nonce a and the creation of the shared secret gab given an exponential gb and a

nonce a. Operational semantics of these two actions is defined in a straight forward

manner, terms g(n) and h(a, b) respectively are substituted for the variable x.

Protocol Logic

We do not introduce additional formulas to the logic, we do need, however to

redefine semantics of a few predicates. Semantics of predicate Fresh is extended so

that Fresh(X, gx) is true if and only if Fresh(X,x) is true. Semantics of predicate Gen

is redefined in a similar fashion. Semantics of predicate Has is redefined to model

the Diffie-Hellman property (ga)b = (gb)a, formally if Has(X,a) and Has(X, gb) are

true then Has(gab) and Has(X, gba are both true.

Proof System

Table A.1 presents the rules specific to the way that Diffie-Hellman secrets are

computed. The predicate Computes() is used as a shorthand to denote the fact that

the only way to compute a Diffie-Hellman secret is to possess one exponent and the

other exponential. Axiom DH1 states that if X can compute the Diffie-Hellman

secret, then she also possesses it. Axiom DH2 captures the intuition that the only

way to possess a Diffie-Hellman secret is to either compute it directly or obtain

it from a received message containing it. Axiom DH3 states that if a principal

receives a message containing a Diffie-Hellman secret, someone who has computed

the secret must have previously sent a (possibly different) message containing it.

Axiom DH4 captures the intuition that if a is fresh at some point of a run, then

ga is also fresh at that point.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358354

B Soundness of Axioms and Proof Rules

In this section we prove the soundness of the axioms and proof rules used in the

proof system, hence proving Theorem 4.1. We omit proofs for standard axioms and

rules of temporal logic.

B.1 Axioms for protocol actions

AA1 �[a]X a

Informally, this axiom says that if a is an action, and a the corresponding action

predicate, when thread X executes a, in the resulting state a holds. Let Q be a

protocol, and let R = R0R1R2 be a run such that R1|X matches a under substitution

σ and Q, R0 |= σφ, we need to prove that Q, R0R1 |= σa. Since R1|X matches a

under substitution σ, R1 has to contain action σa, and therefore, by the semantics

of the action predicates it has to be that Q, R0R1 |= a. Now, by the definition of

modal formulas we have Q |= �[a]Xa.

AA2 Start(X)[]X ¬a(X)

AA3 ¬Send(X, t)[b]X¬Send(X, t) if σSend(X, t) �= σb for all substitutions σ

AA4 �[a; · · · ; b]Xa < b

Axiom AA2 simply says that no action predicate can hold if thread X executed no

actions. Axiom AA3 says that ¬Send(X, t) is preserved as long as no send actions

is performed that unifies with the term t. Soundness of these two axioms trivially

follows from the semantics of action predicates and predicate Start. Soundness of

axiom AA4 directly follows from the semantics of modal formula and the temporal

ordering operator.

AN1 New(X,x) ∧ New(Y, x) ⊃ X = Y

AN2 φ[(νn)]X Has(Y, n) ⊃ (Y = X)

AN3 φ[(νn)]X Fresh(X,n)

AN4 Fresh(X,x) ⊃ Gen(X,x)

Informally, axioms AN1 and AN2 say that fresh nonces are unique and initially

secret to the originating thread. If a process X generates a new value m and takes

no further actions, then X is the only thread who knows m. The soundness of this

axiom follows from the definition of the execution model and the semantics of the

predicate “Has”. For a detailed proof see [30]. Axiom AN3 states that the newly

created value is fresh exactly after creation. The soundness of this axiom follows

directly from the semantics of the predicate Fresh. Axiom AN4 is trivially sound

by the semantics of predicate Gen.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 355

B.2 Possession axioms

PROJ Has(X, (x, y)) ⊃ Has(X,x) ∧ Has(X, y)

TUP Has(X,x) ∧ Has(X, y) ⊃ Has(X, (x, y))

ENC Has(X,x) ∧ Has(X,K) ⊃ Has(X,ENCK{|x|})

DEC Has(X,ENCK{|x|}) ∧ Has(X,K) ⊃ Has(X,x)

This set of axioms describes ways in which a thread can accumulate knowledge.

Informally, these axioms say that if a thread has all the necessary parts to build

some term then he has the term itself. Also, a thread can decompose tuples and

decrypt messages encrypted with a known key. Soundness of these axioms follows

directly from the semantics of the predicate “Has”. Here, we prove the soundness

of axiom ENC, proofs for other axioms are similar.

When Q,R �|= Has(X,x) ∧Has(X,K) then Q,R |= ENC holds trivially. Other-

wise, by the semantics of “∧”, Q,R |= Has(X,x) and Q,R |= Has(X,K) both hold.

That means, that Hasi(X,x) and Hasj(X,K) for some i and j. Assuming i ≥ j, we

have Hasi(X,K) and therefore Hasi+1(X,ENCK{|x|}).

ORIG New(X,n) ⊃ Has(X,n)

REC Receive(X,x) ⊃ Has(X,x)

Informally, these axioms make connection between knowledge of a thread and the

actions executed by that thread in the past. A thread has all terms it creates

or receives. Soundness of these axioms follows directly from the semantics of the

predicate “Has”.

AR1 a(x)[match q(x)/q(t)]X a(t)

AR2 a(x)[verify x, t,K]X a(SIGK{|t|})

AR3 a(x)[y := dec x,K]X a(ENCK{|y|})

Axioms AR1, AR2 and AR2 are used to model obtaining information about

structure of terms as they are being parsed. We prove soundness of axiom AR1,

proofs for other two axioms are similar. Let Q be a protocol, and let R = R0R1R2 be

a run such that R1|X matches (q(x)/q(t)) under substitution σ and Q, R0 |= σa(x),

we need to prove that Q, R0R1 |= σ a(t). Since R1|X matches (q(x)/q(t)) under

substitution σ, and events of R1 only contain ground terms, it has to be that σx is

same as σt, and therefore Q, R0 |= a(t). Clearly, formulas of the form a(t) remain

valid as new actions are executed, hence Q, R0R1 |= σa(t).

B.3 Encryption and signature

SEC Honest(X̂) ∧ Decrypt(Y,ENCX{|n|}) ⊃ (Ŷ = X̂)

Informally, SEC says that if an agent X̂ is honest, and some thread Y executed by

principal Ŷ has decrypted a message ENCX{|n|} (i.e. a message encrypted with X̂ ’s

public key), then Ŷ must be X̂. In other words, if X̂ is honest, then only threads

executed by X̂ can decrypt messages encrypted X̂ ’s private key. For a detailed

soundness proof of this axiom see [30].

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358356

B.4 Preservation axioms

P1 Persist(X, t)[a]XPersist(X, t) where Persist ∈ {Has,FirstSend, a,Gen}

Informally this axiom says that the for some formulas stay valid when a thread

does additional actions. Since the semantics of the predicate “Has” is based on the

existence of a certain event in a run, adding additional events to the run cannot

make this predicates false. Also, action predicates, predicates FirstSend and Gen are

trivially preserved when additional actions are added to the run.

P2 Fresh(X, t)[a]XFresh(X, t) where t �⊆ a

Informally this axiom says that a nonce n remains fresh as long as it is not explicitly

used as a parameter in any action send out as a part of some message m. The

soundness of this axiom follows from the semantics of the predicate Fresh.

B.5 Temporal ordering of actions

FS1 Fresh(X, t)[send t′]XFirstSend(X, t, t′) where t ⊆ t′

FS2 FirstSend(X, t, t′)∧a(Y, t′′) ⊃ Send(X, t′) < a(Y, t′′) where X �= Y and t ⊆ t′′

Axiom FS1 says that the FirstSend(X, t, t’) predicate holds if a thread X sends

the term t′ containing t starting from a state where t is fresh. Soundness of this

axiom follows directly from the semantics of predicates Fresh and FirstSend. Axiom

FS2 says that the all actions a involving the term t which was fresh at some point,

must have happened after the first time that t was send out. The soundness of this

axioms follows from the semantics of the predicate FirstSend, semantics of temporal

operator and Lemmas 2.1 and 2.3.

B.6 Axioms for Diffie-Hellman key exchange

Computes(X, gab) ≡ ((Has(X,a) ∧ Has(X, gb)) ∨ (Has(X, b) ∧ Has(X, ga)))

DH1 Computes(X, gab) ⊃ Has(X, gab)

Informally, this axiom says that if some thread has all necessary information to

compute the Diffie-Hellman secret, then he also has the Diffie-Hellman secret itself.

The soundness of this axiom follows directly from the semantics of the predicate

“Has”.

DH2 Has(X, gab) ⊃ (Computes(X, gab) ∨ ∃m.(Receive(X,m) ∧ Contains(m, gab)))

Informally, this axiom says that the only way to have a Diffie-Hellman secret is to

compute it from one exponent and one exponential or receive it as a part of some

message. To prove the axiom we have to check all the cases in the semantics of the

predicate “Has”.

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358 357

DH3 (Receive(X,m) ∧ Contains(m, gab)) ⊃
∃Y,m′.(Computes(Y, gab) ∧ Send(Y,m′) ∧ Contains(m′, gab))

Informally, this axiom says that if someone receives a Diffie-Hellman shared secret

then there must be some thread that send it and computed it himself. Let R be a

run in which X receives a message m containing gab at some point. By Lemma 2.3,

that means that in the run R there exists someone who send a message m containing

gab. Let R′ be a shortest prefix of R in which some agent Y sends some message m′

containing gab at some point. Since R′ is a shortest such prefix, that means that Y

could not receive a message m′′ containing gab. By axiom DH2 that means that Y

must have computed gab himself.

DH4 Fresh(X,a) ⊃ Fresh(X, ga)

Informally, this axiom states that a Diffie-Hellman exponential is fresh as long as the

exponent is fresh. The soundness of this axiom follows directly from the semantics

of the predicate “Fresh”.

B.7 Generic rules

G1 follows from the semantics of “∧” and “θ[P]Xφ”. Let R = R0R1R2. If R1 does

not match P |X or Q,R0 �|= θ then trivially Q,R |= θ[P]Xφ∧ψ. Otherwise, it has to

be that Q,R0R1 |= φ and Q,R0R1 |= ψ, and Q,R |= θ[P]Xφ ∧ ψ follows from the

semantics of “∧”. Validity of axioms G2 and G3 can be verified similarly. Axiom

G4 is trivially valid because if φ is true after any run, then φ is true after a specific

run that contains actions P .

A. Datta et al. / Electronic Notes in Theoretical Computer Science 172 (2007) 311–358358

	Introduction
	Modelling Protocols
	Protocol Programming Language
	Execution Model

	Protocol Logic
	Syntax
	Semantics

	Proof System
	Axioms for Protocol Actions
	Possession Axioms
	Encryption and Signature
	Generic Rules
	Sequencing Rule
	Preservation Axioms
	Axioms and Rules for Temporal Ordering
	The Honesty Rule
	Soundness

	Example
	Protocol Composition
	An Example of Protocol Composition

	Other Results
	PCL Proof Methods
	PCL Applications
	Computational PCL

	Related Work
	Conclusions
	References
	Extending the Logic with Diffie-Hellman Primitive
	Soundness of Axioms and Proof Rules
	Axioms for protocol actions
	Possession axioms
	Encryption and signature
	Preservation axioms
	Temporal ordering of actions
	Axioms for Diffie-Hellman key exchange
	Generic rules

