Secure Protocol Composition

Anupam Datta John C. Mitchell Dusko Pavlovic

Ante Derek

Stanford University Kestrel Institute FMSE Oct 30, 2003

Motivation

 Divide-and-Conquer paradigm in security

IKE:

- Phase 1: 4 sub-protocols
- Phase 2: 2 sub-protocols
- ISO-9798-3:
 - Secrecy
 - Authentication

Contribution

Protocol Composition:

- A formal logic for proving properties of security protocols from their parts
- General composition operation, subsuming sequential and parallel composition

Examples:

- ISO-9798-3, NSL
- NSL | ISO

Central Issues

Non-destructive Combination:

- Ensure that the combined parts do not degrade each other's security
- Assumptions about the environment
 - In logic: invariance assertions
- Additive Combination:
 - Accumulate security properties of combined parts, assuming they do not interfere
 - Properties achieved by individual protocol roles
 - In logic: before-after formalism

Roadmap

- Motivating Example
- Compositional Logic
- Big Picture: Protocol Derivation
- Related Work
- Conclusions

Example

Authenticated Key Agreement Problem:

Construct protocol with properties:

- Shared secret
- Authentication

Diffie-Hellman

$$\begin{array}{rrrr} A & \rightarrow & B & g^a \\ B & \rightarrow & A & g^b \end{array}$$

- Shared secret (with someone)
 - A deduces:

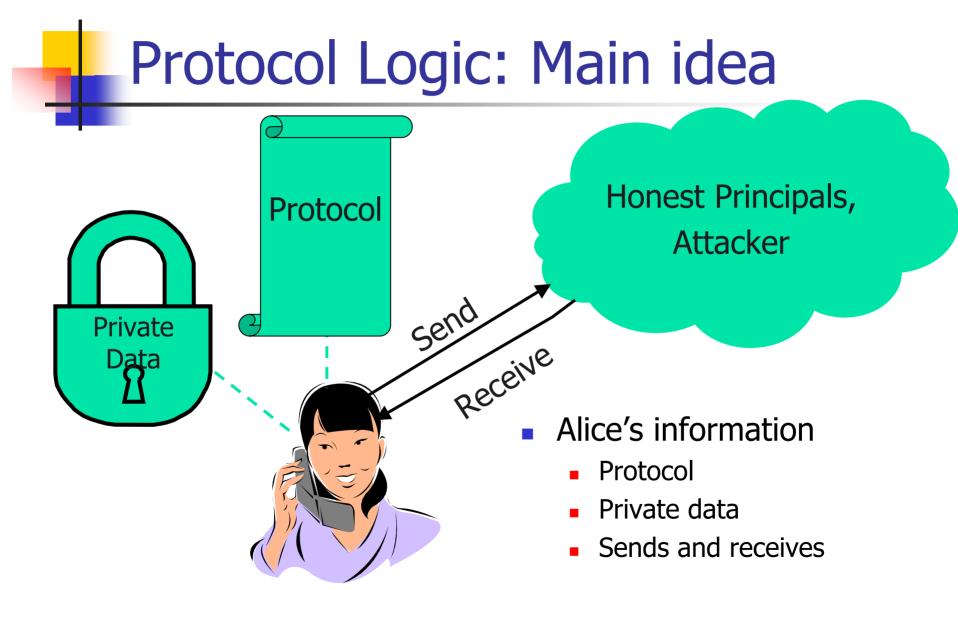
Knows(Y, g^{ab}) \supset (Y = A) V Knows(Y,b)

Authentication

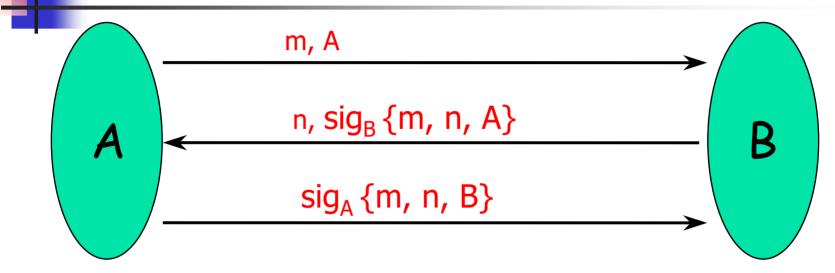
Challenge Response:

- Shared secret (with someone)
- Authentication
 - A deduces: Received (B, msg1) Λ Sent (B, msg2)

m := g^a n := g^b

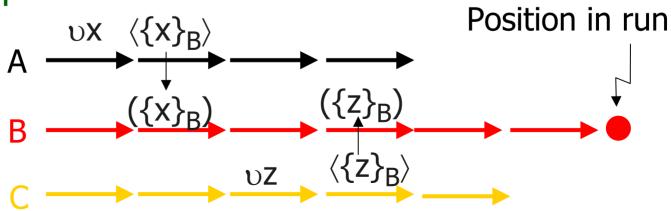

■ ISO 9798-3 protocol: $A \rightarrow B$: g^a , A $B \rightarrow A$: g^b , $sig_B \{g^a, g^b, A\}$ $A \rightarrow B$: $sig_A \{g^a, g^b, B\}$

- Shared secret: g^{ab}
- Authentication


Composition

Roadmap

- Motivating example
- Compositional Logic
- Big Picture: Protocol Derivation
- Related Work
- Conclusions


Example: Challenge-Response

- Alice reasons: if Bob is honest, then:
 - only Bob can generate his signature. [protocol independent]
 - if Bob generates a signature of the form sig_B {m, n, A},
 - he sends it as part of msg 2 of the protocol and
 - he must have received msg1 from Alice. [protocol specific]
- Alice deduces: Received (B, msg1) Λ Sent (B, msg2)

Execution Model

- Protocol
 - "Program" for each protocol role
- Initial configuration
 - Set of principals and key
 - Assignment of ≥ 1 role to each principal
- Run

Formulas true at a position in run

- Action formulas
 - a ::= Send(P,m) | Receive (P,m) | New(P,t) | Decrypt (P,t) | Verify (P,t)
- Formulas
 - $$\begin{split} \phi &::= a \mid \mathsf{Has}(\mathsf{P},\mathsf{t}) \mid \mathsf{Fresh}(\mathsf{P},\mathsf{t}) \mid \mathsf{Honest}(\mathsf{N}) \\ &\mid \quad \mathsf{Contains}(\mathsf{t}_1,\,\mathsf{t}_2) \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \exists \mathsf{X} \ \phi \\ &\mid \quad o\phi \mid \Diamond \phi \end{split}$$
- Example
 - After(a,b) = $(b \land o a)$

Modal Formulas

After actions, postcondition [actions] $_{P} \phi$ where $P = \langle princ, role id \rangle$ Before/after assertions φ [actions]_P ψ Composition rule φ [S]_P ψ ψ [T]_P θ Note: same P in all formulas φ [ST] _P θ

Diffie-Hellman: Property

- Formula
 - [new a] A Fresh(A, g^a)

Explanation

- Modal form: [actions] $_{P} \phi$
- Actions: [new a] A
- Postcondition: Fresh(A, g^a)

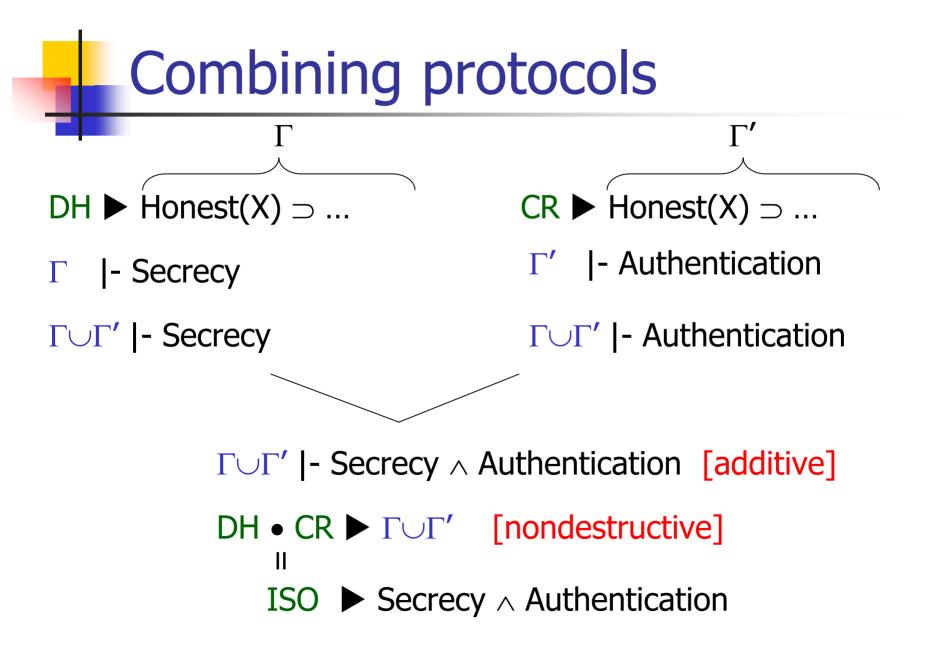
Challenge Response: Property

- Modal form: ϕ [actions]_P ψ
 - precondition: Fresh(A,m)
 - actions: [Initiator role actions]_A
 - postcondition:

Honest(B) \supset ActionsInOrder(send(A, {A,B,m}), receive(B, {A,B,m}), send(B, {B,A,{n, sig} {m, n, A}}), receive(A, {B,A,{n, sig} {m, n, A}})),)

Composition: DH+CR = ISO-9798-3

- DH postcondition matches CR precondition
- Combination:
 - Substitute g^a for m in CR to obtain ISO.
 - Apply composition rule, persistence.
 - ISO initiator role inherits CR authentication.
- DH secrecy is also preserved
 - Proved using another application of composition rule.


Additive Combination

Critical issues

- Reasoning about honest principals
 - Invariance rule, called "honesty rule"
- Preservation of invariants under composition
 - If we prove Honest(X) $\supset \phi$ for protocol 1 and compose with protocol 2, is formula still true?

Honesty Rule

- Definition
 - A basic sequence of actions begins with receive, ends before next receive
- Rule
- Example
 - $\begin{array}{l} \mathsf{CR} \blacktriangleright \mathsf{Honest}(\mathsf{X}) \supset \\ (\mathsf{Sent}(\mathsf{X}, \, \mathsf{m}_2) \supset \mathsf{Recd}(\mathsf{X}, \, \mathsf{m}_1)) \end{array}$

Composition Rules

- Invariant weakening rule
 - Γ|- φ[...]_Pψ
 - $\Gamma \cup \Gamma' \mid \textbf{-} \phi [...]_P \psi$
- Sequential Composition

 Γ [- ϕ [ST] $_{\text{P}}$ θ

Prove invariants from protocol

Roadmap

- Motivating example
- Compositional Logic
- Big Picture: Protocol Derivation
- Related Work
- Conclusions

Derivation Framework

- Protocols are constructed from:
 - components
 - by applying a series of:
 - composition, refinement and transformation operations.
- Properties accumulate as a derivation proceeds.
- Examples in previous paper [DDMP; CSFW03]:
 - STS, ISO-9798-3, JFKi, JFKr, IKE

Roadmap

- Motivating example
- Compositional Logic
- Big Picture: Protocol Derivation
- Related Work
- Conclusions

Previous Work

- Formal Model:
 - Disjoint Encryption [THG99]
 - Environmental Requirements [CMS03]
- Computational Model:
 - Probabilistic Polytime Process Calculus [LMMS98]
 - Probabilistic Polytime I/O Automata [PW01]
 - Probabilistic Polytime TM's: UC [C01]

Roadmap

- Motivating example
- Compositional Logic
- Big Picture: Protocol Derivation
- Related Work
- Conclusions

Conclusions

- Successfully extended protocol logic to compositional reasoning
- Central Issues:
 - Additive combination [before-after assertions]
 - Nondestructive combination [invariants]
- Examples:
 - ISO = DH; CR
 - NSL = NSL(init); NSL(KE)
 - NSL | ISO
- Part of bigger program on protocol derivation

Questions?