
Abstraction and Refinement in Protocol Derivation

Anupam Datta Ante Derek John C. Mitchell Dusko Pavlovic

Computer Science Department Kestrel Institute

Stanford University Palo Alto, CA 94304

Stanford, CA 94305-9045

{danupam,aderek,jcm}@cs.stanford.edu dusko@kestrel.edu

Abstract

Protocols may be derived from initial components by
composition, refinement, and transformation. Adding
function variables to a previous protocol logic, we develop
an abstraction-instantiation method for reasoning about
a class of protocol refinements. The main idea is to view
changes in a protocol as a combination of finding a mean-
ingful “protocol template” that contains function vari-
ables in messages, and producing the refined protocol as
an instance of the template. Using higher-order proto-
col logic, we can develop a single proof for all instances
of a template. A template can also be instantiated to an-
other template, or a single protocol may be an instance of
more than one template, allowing separate protocol prop-
erties to be proved modularly. These methods are illus-
trated using some challenge-response and key exchange
protocol templates and an exploration of the design space
surrounding JFK (Just Fast Keying) and related proto-
cols from the IKE (InternetKeyExchange) family, which
produces some interesting protocols not previously stud-
ied in the open literature.

1. Introduction

Many network protocols with security objectives are
designed using a smaller set of common protocol con-
cepts, such as challenge-response, Diffie-Hellman-like
key agreement, and “cookies” to reduce potential de-
nial of service attacks. In previous work [6, 7, 8], we
proposed a protocol derivation framework, based on
the use of composition, refinement, and transforma-
tion, and a formal logic for stating and proving prop-
erties of protocols. In this framework, a protocol de-
signer may choose two initial protocol components, re-
fine each of them, compose the results to get a candi-
date protocol, then apply one or more transformations

to improve efficiency or resist particular forms of at-
tack. While properties of the resulting protocol may
be proved formally in our logic, the structure of pro-
tocol proofs we have previously devised have not al-
ways followed the structure of the protocol derivation.
This paper extends the previous protocol logic with
higher-order features, making it possible to define pro-
tocol templates and reason about their instances. Using
protocol templates, we are able to characterize the cor-
rectness properties of a class of protocol refinements,
furthering our long-term effort toward a framework for
systematically deriving verified security protocols.

Composition combines separate protocols, refine-
ments change the content or structure of individual
messages, and transformations alter the structure of
a protocol. In our formal logic, we may prove proper-
ties about a composed protocol from its parts, using a
set of composition inference rules [7, 8]. The composi-
tion rules involve local reasoning about steps in each
role and global reasoning about invariants in the proto-
col or set of protocols in use. In a protocol refinement,
a message or portion of a message is systematically re-
fined by, for example, adding additional data or other-
wise changing the data contained in one or more mes-
sages. For example, replacing a plaintext nonce by an
encrypted nonce, in both the sending and receiving pro-
tocol roles, is a protocol refinement. While refinements
seem to arise naturally in contemporary practical pro-
tocols [2, 19], they provide more of a challenge for for-
mal reasoning. One reason is that refinements may in-
volve replacement, and replacement of one expression
by another does not have a clean formulation in stan-
dard mathematical logic. This immediate problem is
solved by introducing protocol templates and decom-
posing term replacement into an abstraction step of
selecting an appropriate template and an instantiation
step that replaces template variables with protocol ex-
pressions. Another issue, addressed by associating hy-

potheses with a proof about a template, is that a re-
finement may not apply to all protocols, but only to
protocols that satisfy certain hypotheses.

To give a simple example, suppose we have a proto-
col containing messages that use symmetric encryption,
and suppose that some useful property of this proto-
col is preserved if we replace symmetric encryption by
use of a keyed hash. We can capture the relationship
between these two protocols by writing an “abstract”
protocol template with function variables in the po-
sitions occupied by either encryption or keyed hash.
Then the two protocols of interest become instances
of the template. In addition, a similar relationship of-
ten works out for protocol proofs. If we start with a
proof of some property of the protocol that contains
symmetric encryption, some branches of the proof tree
will establish properties of symmetric encryption that
are used in the proof. If we replace symmetric encryp-
tion by a function variable, then the protocol proof can
be used to produce a proof about the protocol template
containing function variables. This is accomplished by
replacing each branch that proves a property of sym-
metric encryption by a corresponding hypothesis about
the function variable. Once we have a proof for the pro-
tocol template obtained by abstracting away the spe-
cific uses of symmetric encryption, we can consider re-
placing the function variable with keyed hash. If keyed
hash has the properties of symmetric encryption that
were used in the initial proof, we can use proofs of
these properties of keyed hash in place of the assump-
tions about the function variable. Thus an abstraction
step and an instantiation step bring us both from a
protocol with symmetric encryption to a protocol with
keyed hash, and from a proof of the initial protocol to
a proof of the final one. The role of the protocol tem-
plate in this process is to provide a unified proof that
leads from shared properties of two primitives (sym-
metric encryption or keyed hash) to a protocol prop-
erty that holds with either primitive.

After describing the formal framework, we illustrate
the use of protocol templates with several examples. As
an example of multiple instantiations of a single tem-
plate, we prove an authentication property of a generic
challenge-response protocol, and then show how to in-
stantiate the template to ISO-9798-2, ISO-9798-3, or
SKID3 [26]. As an example of one protocol that is
an instance of two templates, we show how to rea-
son about an identity-protection refinement using an
authentication template and an encryption template.
The third example compares two key exchange proto-
col templates, one that can be instantiated to the ISO-
9798 family of protocols, and one that can be instan-
tiated to STS [10] and SIGMA [19]. The first reflects

the key exchange mechanism used in JFKi [2], while
the second corresponds to that of IKE [15], JFKr [2],
and IKEv2 [17]. While there has been considerable de-
bate and discussion in the IETF community about the
tradeoffs offered by these two protocols, previous anal-
yses are relatively low-level and do not illustrate the
design principles involved. However, it is possible to
compare the authentication and non-repudiation prop-
erties of the two approaches by comparing the tem-
plates.

While our past work on protocol derivation
has given rational reconstructions of known pro-
tocols, we can also use protocol derivation to
combine known protocols in new ways. We be-
gin with two well-known protocol families: the
first includes Diffie-Hellman key exchange and sev-
eral variants that enhance the key derivation function
(MTI/A [23], UM [3] and MQV [20]); the sec-
ond is the IKE family – STS being the base protocol
and a few steps further on is JFKr. These two pro-
tocol derivations provide a two-dimensional matrix of
protocols that have not been explored, to our knowl-
edge. The most sophisticated is a form of JFK, us-
ing MQV in place of Diffie-Hellman as its key-exchange
component. This protocol provides forms of key se-
crecy, mutual authentication, forward secrecy,
known-key security, computational efficiency, iden-
tity protection, and denial-of-service protection, inher-
iting these qualities from the parent derivations. The
abstraction-instantiation method proves useful to rea-
son formally about a subset of these protocols and
associated security properties.

There are several differences between the work de-
scribed in this paper and some other protocol analy-
sis efforts. To begin with, our basic model of proto-
col execution and possible attacker actions is the tra-
ditional “Dolev-Yao model” [11, 29] that has been used
in many other efforts [18, 28, 24, 30]. In particular, the
protocol refinements we consider all replace symbolic
operations of one form with symbolic operations of an-
other; we do not consider “refining” a symbolic opera-
tion on message strings to a computable operation on
bit sequences. While it is an important research direc-
tion to relate our model to computational models such
as [5, 33, 27, 34], we currently believe that “computa-
tional soundness” of symbolic methods is a separable
goal that will lead to greater use of the kind of logi-
cal methods considered in this paper. At a more de-
tailed level, there are some important differences be-
tween the way that we reason about incremental pro-
tocol construction and alternative approaches such as
“universal composability” [5]. In universal composabil-
ity, properties of a protocol are stated in a strong form

2

so that the property will be preserved under a wide
class of composition operations. In contrast, our pro-
tocol proofs proceed from various assumptions, includ-
ing invariants that are assumed to hold in any envi-
ronment in which the protocol operates. The ability to
reason about protocol parts under assumptions about
the way they will be used offers greater flexibility and
appears essential for developing modular proofs about
certain classes of protocols.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the framework developed in our previous
work. The extension of the protocol logic with function
variables is sketched in Section 2.4. Section 3 describes
the abstraction-instantiation methodology which is the
focus of this paper. Applications of this method to
existing real-world security protocols are presented in
Section 4. Section 5 explores the possibility of using this
method for combining known protocols in new ways.
Finally, Section 6 presents our conclusions and men-
tions some directions for future work.

2. Background

2.1. Derivation System

In [6], we outlined a protocol derivation framework
and formalized a subset of it. The framework consists
of a set of basic building blocks called components
and a set of operations for constructing new proto-
cols from old ones. These operations were divided into
three general types: composition, refinement, and trans-
formation. As mentioned in the introduction, compo-
sition combines separate protocols, refinement changes
the content or structure of individual messages, and
transformation alters the structure of a protocol. Some
example components, composition operations, refine-
ments and transformations were described but not fully
formalized in [6]. Further examples and more compre-
hensive formalization of protocol composition appear
in [8, 7].

So far, the protocol derivation framework consists
of some informal protocol operations, a precise nota-
tion for defining protocols, a formal logic for proving
properties of protocols, and some connections between
the derivation operations and formal proofs. In subsec-
tions 2.2 and 2.3, we briefly review the protocol nota-
tion and formal logic. Subsection 2.4 contains a short
explanation of how we extend both with concepts from
higher-order logic in order to support the abstraction-
instantiation method that is the focus of this paper.

2.2. Cord Calculus

One important part of security analysis involves un-
derstanding the way honest agents running a proto-
col will respond to messages from a malicious attacker.
The common informal arrows-and-messages notation
is therefore insufficient, since it only presents the in-
tended executions (or traces) of the protocol. In ad-
dition, our protocol logic requires more information
about a protocol than the set of protocol executions
obtained from honest and malicious parties; we need a
high-level description of the program executed by each
agent performing each protocol role. As explained in
[12], we used a form of process calculus that we call
cords.

The STS protocol [10], written as a pair of cords,
one for each role, is shown in Figure 1. The arrows be-
tween the cords are used in the figure to show how mes-
sages sent by one role may be received by the other, but
they are not part of the cord formalism. The sequence
of actions in the initiator role is given by the cord A.
The notations (νx), 〈t〉, (x) refer respectively to the ac-
tions of nonce generation, sending a term, and receiv-
ing a message. A message is assumed to have the form:
(source, destination, content). In words, the actions of
A are: generate a fresh nonce; send a message using
that number to B̂; receive a message with source ad-
dress B̂; verify aspects of the message; and finally, send
another message containing data received and the ini-
tial nonce generated at the start of the run.

2.3. A Protocol Logic

Our basic protocol logic and proof system are de-
veloped in [12, 6, 8, 7], with [8] providing a relatively
succinct presentation of the most recent form.

The formulas of the logic are given by the grammar
in Table 1, where ρ may be any role, written using the
notation of cord calculus. Here, t and P denote a term
and a process respectively. We use the word process to
refer to a principal executing an instance of a role. As
a notational convention, we use X to refer to a process
belonging to principal X̂. We use φ and ψ to indicate
predicate formulas, and m to indicate a generic term
we call a “message”.

Most protocol proofs use formulas of the form
θ[P]Xφ, which means that after actions P are ex-
ecuted in process X , starting from a state where
formula θ is true, formula φ is true about the re-
sulting state of X . Here are the informal interpre-
tations of the predicates (see [8] for detailed seman-
tics):

3

A = [(νx) 〈Â, B̂, gx〉

~~||
|
|
|
|
|
|

(B̂, Â,m, {|{|m, gx|}B|}mx) 〈Â, B̂, {|{|gx,m|}A|}mx〉

��

]

B = [(X̂, B̂, n) (νy) 〈B̂, X̂, gy, {|{|gy, n|}B|}ny〉

OO

(X̂, B̂, {|{|n, gy|}X |}ny)]

Figure 1. STS as a cord space

Has(X,x) means principal X̂ possesses information x
in the process X . This is “possess” in the limited
sense of having either generated the data or re-
ceived it in the clear or received it under encryp-
tion where the decryption key is known.

Send(X,m) means principal X̂ sends messagem in the
process X .

Receive(X,m), New(X, t), Decrypt(X, t), Verify(X, t)
similarly mean that receive, new, decrypt and sig-
nature verification actions occur.

Fresh(X, t) means the term t generated in X is “fresh”
in the sense that no one else has seen any term
containing t as a subterm. Typically, a fresh term
will be a nonce and freshness will be used to rea-
son about the temporal ordering of actions in runs
of a protocol.

Honest(X̂) means the actions of principal X̂ in the cur-
rent run are precisely an interleaving of initial seg-
ments of traces of a set of roles of the protocol. In
other words, X̂ assumes some set of roles and does
exactly the actions prescribed by them.

Computes(X,m) means that principal X̂ pos-
sesses enough information in process X to
build term m of certain forms. For exam-
ple, Computes(X, {|t|}K) holds if X possesses both
the term t and the key K (see Appendix A for fur-
ther details).

Contains(t1, t2) means that t2 is a subterm of t1.

The two temporal operators Q and � have the same
meaning as in Linear Temporal Logic [22]. Since we
view a run as a linear sequence of states, Q φ means
that in some state in the past φ holds, whereas � φ
means that in the previous state φ holds.

The predicate After(a1, a2), definable from Q and� , means that the action a2 happened after the action
a1 in a run.

2.4. Cords and Protocol Logic with Func-
tion Variables

Like a program module containing functions that are
not defined in the module, a cord may contain func-
tions that are not given a specific meaning in the cord

calculus. When a cord contains undefined functions,
the cord cannot be executed as is, but can be used
to define a set of runs if the function is replaced by a
combination of defined operations. Since cords contain
functions such as encryption and pairing, it is a sim-
ple matter to extend the syntax with additional func-
tion names. Since we will apply substitution for these
function names, and implicitly quantify over their pos-
sible interpretations in the protocol logic, we refer to
these function names as function variables. The mecha-
nism for substituting an expression for a function vari-
able, in a manner that treats function arguments cor-
rectly, is standard in higher-order logic. A simple ex-
planation that does not involve lambda calculus or re-
lated machinery is given at the beginning of [14].

In a judgement

Q,Γ ⊢ φ1[P]Aφ2

where Q is a protocol containing function variables, P
is one role or initial segment of a role of the proto-
col, and Γ denotes the set of assumed properties and
invariants. The formulas in Γ may also contain func-
tion variables. The meaning of this judgement is that
for every substitution that eliminates all function vari-
ables, any execution of the resulting protocol Q′ re-
specting the resulting invariants Γ′ satisfies the result-
ing formula φ′1[P

′]Aφ
′

2.

Theorem 2.1 (Soundness Theorem) Security Pro-
tocol Logic [12, 6, 13, 8] is sound for protocols and asser-
tions containing function variables. Furthermore, substi-
tution preserves semantic entailment and validity of for-
mulas.

As a technical note for logicians, we observe that
since we do not have any comprehension principle for
our logic, it is actually reducible to first-order logic
by the standard method of treating function variables
as first-order variables via an Apply function. Con-
sequently, our higher-order protocol logic is no less
tractable for automated theorem proving than the logic
without function variables.

4

Action formulas
a ::= Send(P,m) |Receive(P,m) |New(P, t) |Decrypt(P, t) |Verify(P, t)
Formulas
φ ::= a |Has(P, t) |Computes(P, t) |Fresh(P, t) |Honest(N) |Contains(t1, t2) |φ ∧ φ | ¬φ | ∃x.φ | Q φ | � φ
Modal forms
Ψ ::= ρ φ |φ ρ φ

Table 1. Syntax of the logic

3. Abstraction and Refinement

Methodology

Protocol Templates: A protocol template is a protocol
that uses function variables. An example of a challenge-
response protocol template using the informal trace no-
tation is given below.

A → B : m

B → A : n, F (B, A, n, m)
A → B : G (A, B, m, n)

Here, m and n are fresh nonces and F and G are
function variables. Substituting cryptographic func-
tions for F and G with the parameters appropriately
filled in yields concrete protocols. For example, in-
stantiating F and G to signatures yields the standard
signature-based challenge-response protocol from the
ISO-9798-3 family, whereas instantiating F and G to a
keyed hash yields the SKID3 protocol.

Characterizing protocol concepts: Protocol templates
provide a useful method for formally characterizing de-
sign concepts. Our methodology for formal proofs in-
volves the following two steps.

1. Assuming properties of the function variables and
some invariants, prove properties of the protocol
templates. Formally,

Q,Γ ⊢ φ1[P]Aφ2

Here, Q is an abstract protocol and P is a pro-
gram for one role of the protocol. Γ denotes the
set of assumed properties and invariants.

2. Instantiate the function variables to cryptographic
functions and prove that the assumed properties
and invariants are satisfied by the obtained pro-
tocol. Hence conclude that this protocol possesses
the security property characterized by the proto-
col template.

If Q′ ⊢ Γ′, then Q′ ⊢ φ′1[P
′]Aφ

′

2

Here, the primed versions of the protocol, hy-
potheses, etc. are obtained by applying the substi-
tution σ used in the instantiation.

The correctness of the method is an immediate
corollary of Theorem 2.1.

Combining protocol templates: Protocol templates can
also be used to formalize the informal practice of proto-
col design by combining different mechanisms. The key
observation is that if a concrete protocol is an instantia-
tion of two different protocol templates, each instantia-
tion respecting the assumed invariants associated with
the template, then the concrete protocol has the secu-
rity properties of both templates. Our methodology in-
volves the following three steps.

1. Identify two protocol templates which guarantee
certain security properties under some assump-
tions.

Q1,Γ1 ⊢ φ11[P1]Aφ21 and Q2,Γ2 ⊢ φ12[P2]Aφ22

Here, Q1 and Q2 are protocol templates; P1 and
P2 are respectively the programs corresponding to
a specific role; and Γ1 and Γ2 denote the sets of
assumed properties and invariants.

2. Find substitutions σ1 and σ2 such that the two in-
stantiated protocols and roles are identical, i.e.,

σ1Q1 = σ2Q2 = Q′ and σ1P1 = σ2P2 = P ′

3. Prove that the instantiated protocol satisfies the
hypotheses of both the protocol templates. Hence
conclude that it inherits the security properties of
both.

If Q′ ⊢ Γ′

1∪Γ′

2, then Q′ ⊢ (φ′11∧φ
′

12)[P
′]A(φ′21∧φ

′

22)

Here, the primed versions of the protocol, hypothe-
ses, etc. are obtained by applying the substitutions
σ1 and σ2 used in the instantiations.

5

ISO +

(Concrete Protocols)

(Abstract Protocols)

Encryption

MQV
(DH)

Diffie
Hellman ISO−9798−2SKID3ISO−9798−3

(CR)

Challenge−Response

Identity

Template Combination

Instantiated Templates

Templates

Template CR Template IICR Template ITemplate

Template

Key Computation

STS−KSIGMA

STS−MQVSTS−DH
Protection

Figure 2. Illustrating the Methodology

4. Illustrative Examples

In this section, we present several examples illus-
trating the abstraction-instantiation methodology. The
protocols considered include real-world protocols from
the ISO and IKE families.

4.1. Characterizing Protocol Concepts

A protocol template can be instantiated to multiple
protocols. Security proofs of instances of a template
follow from the proof of the template plus a (usually
much simpler) proof that the instances satisfy the as-
sumed hypotheses. In what follows, we work through
an example demonstrating the approach.

4.1.1. Example: Challenge-Response Tem-
plate In our first example, we characterize a
challenge-response protocol template and then ob-
tain three protocols: ISO-9798-2, ISO-9798-3, and
SKID3 by appropriate substitutions. In doing so, we
follow the two step methodology outlined in Sec-
tion 3.

Step 1: The first step is to precisely define and charac-
terize the protocol template. This involves defining the
template (denoted QCR in the sequel) as a cord space,
expressing the security property achieved, and iden-
tifying the set of assumptions under which the prop-
erty holds. The programs for the initiator and respon-
der roles of QCR is written out below in the notation

of cords.

InitCR = (νm) 〈{Â, B̂, m}〉

({B̂, Â, n, F (B̂, Â, n, m)})

〈{Â, B̂, G(Â, B̂, m,n)}〉

RespCR = ({Ŷ , B̂, y})

(νx) 〈{B̂, Ŷ , x, F (B̂, Ŷ , x, y)}〉

({Ŷ , B̂, G(Ŷ , B̂, y, x)})

Here, F and G are function variables. Under a set of
assumptions (ΓCR) about these variables, we prove an
authentication property for the initiator of the proto-
col using the logic (see Table 2 for the complete formal
proof).

QCR, ΓCR ⊢ [InitCR]A Honest(Â) ∧ Honest(B̂) ⊃ φauth

Intuitively, this formula means that ifA executed a ses-
sion of QCR supposedly with B and both of them are
honest (implying that they strictly follow the proto-
col and do not, for example, reveal their private keys),
then the authentication property expressed by the for-
mula φauth holds in the resulting state. φauth speci-
fies an authentication property for the initiator based
on the concept of matching conversations [10]. Sim-
ply put, it requires that whenever A completes a ses-
sion supposedly with B, both A and B have consistent
views of the run, i.e., they agree on the content and or-
der of the messages exchanged. Formally,

φauth ≡ ∃B.(ActionsInOrder(

Send(A, {Â, B̂, m}),

Receive(B, {Â, B̂, m}),

Send(B, {B̂, Â, n, F (B̂, Â, n, m)}),

Receive(A, {B̂, Â, n, F (B̂, Â, n, m)}),

Send(A, {Â, B̂, G(Â, B̂, m,n)}),

Receive(B, {Â, B̂, G(Â, B̂, m,n)})))

6

The set of assumptions ΓCR used to prove the authen-
tication property consists of the following four logical
formulas:

γ1 ≡ Computes(X, F (B̂, Â, n, m)) ⊃

(∃A
′

.X = A
′) ∨ (∃B

′

.X = B
′)

γ2 ≡ Q Fresh(Z, x) ⊃

¬Contains({X̂, Ŷ , x}, F (B̂, Â, n, m))

γ3 ≡ Q Fresh(Z, x) ∧ Q Fresh(W,y) ∧

Contains({X̂, Ŷ , G(X̂, Ŷ , x, y)}, F (B̂, Â, n, m)) ⊃

X̂ = B̂ ∧ Ŷ = Â ∧ n = y ∧ m = x

γ4 ≡ Q Fresh(Z, x) ∧ Q Fresh(W,y) ∧

Contains({X̂, Ŷ , x, F (X̂, Ŷ , x, y)}, F (B̂, Â, n, m)) ⊃

X̂ = B̂ ∧ Ŷ = Â ∧ n = x ∧ m = y

Informally, assumption γ1 states that the function F
is hard to compute: only agents Â and B̂ can com-
pute F (B̂, Â, n,m) (more precisely, if some session X
has enough information to compute F (B̂, Â, n,m) then
X is either a session of agent Â or agent B̂). The hon-
esty of Â and B̂ is a part of the premise and have been
omitted to improve readability. In a concrete protocol,
this assumption can be satisfied by, for example, in-
stantiating F to a signature. The other assumptions
impose syntactic constraints on F and G. For exam-
ple, γ2 implies that F (B̂, Â, n,m) cannot be mistaken
for a nonce. This obviates certain type confusion at-
tacks. γ4 implies that F depends on the value of all
four parameters.

Proof Structure of Challenge-Response Template: A
complete proof of the authentication property for
the initiator role of the challenge-response tem-
plate is given in Table 2. The leftmost column iden-
tifies the axioms and rules used in the corresponding
step, where the naming convention follows [8] and Ap-
pendix A. The proof naturally breaks down into four
parts:

• Line (1) asserts what actions were executed by Al-
ice in the initiator role. Specifically, we can con-
clude that Alice has received a message msg con-
taining F (B̂, Â, n,m).

• In lines (2)–(9), we track the source of term
F (B̂, Â, n,m) received by Alice. Since Alice re-
ceived a message containing F (B̂, Â, n,m), there
must be a process which computed that term and
sent it out. Using the assumption γ1, we can con-
clude that only Alice or Bob could have computed
F (B̂, Â, n,m). From assumptions γ2, γ3, γ4, we
can deduce that Alice did not send F (B̂, Â, n,m).
Therefore, Bob must have sent a message msg′

containing F (B̂, Â, n,m).

• In lines (10)–(13), we use the honesty rule, and
assumptions γ2, γ3, γ4 to conclude that Bob must

have sent F (B̂, Â, n,m) as part of the second mes-
sage of the responder role. Therefore, Bob must
have received a corresponding first message in the
past. Also, using γ4, we can conclude that Bob is
in a session with Alice.

• Finally, in lines (14)–(19), the temporal ordering
rules are used to establish a total ordering among
the send-receive actions of Alice and Bob. Line
(17) concludes that Bob must have received msg1
after Alice sent it since msg1 contains a fresh
nonce. Line (18) uses the same argument for msg2
sent by Bob. Finally, line (19) uses the transitiv-
ity axiom to conclude that the authentication for-
mula φauth is true.

This completes the characterization of the protocol
template. We are now ready to move on to Step 2.

Step 2: In this step, we instantiate the protocol tem-
plate to three well known protocols from the ISO fam-
ily. The substitutions for the function variables and the
resulting protocols are shown in Figure 3. ISO 9798-2,
SKID3, and ISO 9798-3 [26] respectively use symmet-
ric key encryption with a pre-shared key, keyed hash
and signatures to instantiate F and G. These substi-
tutions respect the assumed invariants in ΓCR. For ex-
ample, γ1 is satisfied by signatures since the signature
can be computed only by an agent who has the corre-
sponding private key. (The formal proofs follow imme-
diately from logical axioms and are omitted.) We can
therefore conclude that all three protocols guarantee
the authentication property characterized by the pro-
tocol template.

Note that we have only proved the authentication
property for the initiator in the protocol. To complete
the proof of the mutual authentication property, we
need to prove a formula analogous to φauth for the re-
sponder. This is achieved using symmetric assumptions
about function variable G. All three instantiations sat-
isfy these additional assumptions.

4.2. Combining Protocol Templates

A refinement operation, when applied to a proto-
col, adds an additional security property while pre-
serving the original properties. Examples of refinement
operations considered in [6] include replacing signa-
tures by encrypted signatures to provide identity pro-
tection and replacing fresh Diffie-Hellman exponen-
tials by a pair consisting of a stale exponential and a
fresh nonce, thereby enabling reuse of exponentials and
hence greater computational efficiency. The methodol-
ogy for combining protocol templates, described in Sec-
tion 3, provides a way to formally reason about a broad

7

AA1,T1,P1 [InitCR]A Q Receive(A,msg) ∧ Contains(msg, F (B̂, Â, n,m)) (1)

CP3, (1) [InitCR]A ∃X.∃msg′.(Computes(X,F (B̂, Â, n,m)) ∧Q Send(X,msg′) ∧ Contains(msg′, F (B̂, Â, n,m))) (2)

ΓCR Computes(X,F (B̂, Â, n,m)) ⊃ (∃A′.X = A′) ∨ (∃B′.X = B′) (3)

HON Honest(Ŷ) ∧ Q Send(Y,msg′) ⊃ ∃X.∃x.∃y.(Q Fresh(Y, y) ∧

(msg′ = {Ŷ , X̂, y} ∨

msg′ = {Ŷ , X̂, y, F (Ŷ , X̂, y, x)} ∨

msg′ = {Ŷ , X̂, G(Ŷ , X̂, y, x)}) (4)

ΓCR ¬Contains({Â, X̂,m′}, F (B̂, Â, n,m)) (5)

ΓCR Contains({Â, X̂, G(Â, X̂,m′, x)}, F (B̂, Â, n,m)) ⊃ Â = B̂ (6)

ΓCR Contains({Â, X̂,m′, F (Â, X̂,m′, x)}, F (B̂, Â, n,m)) ⊃ Â = B̂ (7)

(4 − 7) Honest(Â) ∧ Q Send(A′,msg′) ∧ Contains(msg′, F (B̂, Â, n,m)) ⊃

Â = B̂ (8)

(2 − 3), (8) [InitCR]A Honest(Â) ⊃ ∃B.∃msg′.(Computes(B,F (B̂, Â, n,m)) ∧Q Send(B,msg′) ∧ Contains(msg′, F (B̂, Â, n,m))) (9)

ΓCR ¬Contains({B̂, X̂, n′}, F (B̂, Â, n,m)) (10)

ΓCR Contains({B̂, X̂, G(B̂, X̂, n′, x)}, F (B̂, Â, n,m)) ⊃ m = n′ (11)

ΓCR Contains({B̂, X̂, n′, F (B̂, X̂, n′, x)}, F (B̂, Â, n,m)) ⊃

Â = B̂ ∧ n = n′ ∧ x = m (12)

(4), (9 − 12) [InitCR]A Honest(Â) ∧ Honest(B̂) ⊃ ∃B.

(Q Send(B, {B̂, X̂, G(B̂, X̂, n′, x)}) ∧ Q Fresh(B, n′) ∧ n′ = m) ∨

(Q Send(B, {B̂, Â, n, F (B̂, Â, n,m)})) (13)

AN3,P1 [InitCR]A Q Fresh(A,m) (14)

(13 − 14) [InitCR]A Honest(Â) ∧ Honest(B̂) ⊃Q Send(B, {B̂, Â, n, F (B̂, Â, n,m)}) (15)

(15),HON [InitCR]A Honest(A) ∧ Honest(B̂) ⊃ ActionsInOrder(

Receive(B, {Â, B̂, n}), Send(B, {Â, B̂, n, F (B̂, Â, n,m)})) (16)

F,AF3 [InitCR]A After(Send(A, {Â, B̂, n}),Receive(B, {Â, B̂, n})) (17)

F,AF3,HON [InitCR]A Honest(B̂) ⊃ After(Send(B, {Â, B̂, n, F (B̂, Â, n,m)}),

Receive(A, {Â, B̂, n, F (B̂, Â, n,m)})) (18)

AF1,AF2 [InitCR]A Honest(Â) ∧ Honest(B̂) ⊃ φauth (19)

Table 2. Deductions of Â executing InitCR role

class of refinements including the two just mentioned.
Below we illustrate the general method by examining
the identity protection refinement in some detail.

4.2.1. Example: Identity Protection Refine-
ment In this example, we start with a signature
based protocol, ISO-9798-3, that provides mutual au-
thentication. We apply the identity protection refine-
ment to it, which involves replacing the signatures
by encrypted signatures using a shared key. The in-
tention is to prevent adversaries from observing
signatures since they can reveal identities of com-
municating peers. Our goal is to prove that this
refinement step is correct, i.e., it does indeed guar-
antee that the resulting protocol provides identity

protection, while preserving the mutual authentica-
tion property of the original protocol. We identify
two templates: QCR, the challenge-response tem-
plate described in the previous section, and QENC de-
scribed below, which provides a form of secrecy. The
aim now is to prove that the protocol obtained af-
ter the refinement step is an invariant respecting
instance of both these templates and the terms pro-
tected by the secrecy template are precisely the signa-
tures.

Step 1: The QCR template has been defined and char-
acterized in an earlier section. Here, we do the same for
the QENC template. Using the informal arrows-and-
messages diagram, the template can be described as

8

F (X, Y, x, y) ≡ EKXY (x, y, X) F (X, Y, x, y) ≡ HKXY (x, y,X) F (X, Y, x, y) ≡ SIGX(x, y, Y)
G(X, Y, x, y) ≡ EKXY (y, x) G(X, Y, x, y) ≡ HKXY (y, x, X) G(X, Y, x, y) ≡ SIGX(y, x, Y)

A → B : m A → B : m A → B : m

B → A : n, EKAB (n, m, B) B → A : n, HKAB (n, m, B) B → A : n, SIGB(n, m, A)
A → B : EKAB (n, m) A → B : HKAB (n, m, A) A → B : SIGA(n, m, B)

ISO 9798-2 SKID3 ISO 9798-3

Figure 3. Instantiations of the Challenge-Response template

follows.

A → B : m

B → A : n, EKAB (H(B,A, n, m))
A → B : EKAB (I(A,B, m, n))

The programs for the initiator and responder roles
of QENC is written out below in the notation of cords.

InitENC = (νm) 〈{Â, B̂, m}〉

({B̂, Â, n, EKAB (H(B̂, Â, n, m))})

〈{Â, B̂, EKAB (I(Â, B̂, m, n))}〉

RespENC = ({Ŷ , B̂, y})

(νx) 〈{B̂, Ŷ , x,EKBY (H(B̂, Ŷ , x, y))}〉

({Ŷ , B̂, EKBY (I(Ŷ , B̂, y, x))})

Here,H and I are function variables. Under a set of as-
sumptions (ΓENC) about these variables, we prove that

the term H(B̂, Â, n,m) remains secret: it is known only
to A and B. Formally,

QENC , ΓENC ⊢ [InitENC]A Honest(Â) ∧ Honest(B̂) ⊃

φsecret

Intuitively, this formula means that ifA executed a ses-
sion of QENC supposedly with B and both of them are
honest, then the secrecy property expressed by the for-
mula φsecret holds in the resulting state. φsecret spec-
ifies the secrecy property for the term H(B̂, Â, n,m).
Formally,

φsecret ≡ ∃B.(Has(X, H(B̂, Â, n, m)) ⊃

(X = A ∨ X = B))

The set of assumptions ΓENC used to prove the au-
thentication property consists of the following four log-
ical formulas:

δ1≡Computes(X, H(B̂, Â, n, m)) ⊃ ∃B.X = B

δ2≡Q Fresh(Z, x) ⊃

¬Contains({X̂, Ŷ , x}, H(B̂, Â, n, m))

δ3≡Q Fresh(Z, x) ∧ Q Fresh(W, y) ∧

Contains({X̂, Ŷ , EKXY (I(X̂, Ŷ , x, y))}, H(B̂, Â, n, m))

⊃ (X̂ = B̂ ∧ n = y ∧ m = x)

δ4≡Q Fresh(Z, x) ∧ Q Fresh(W, y) ∧

Contains({X̂, Ŷ , x, EKXY (H(X̂, Ŷ , x, y))},

H(B̂, Â, n, m)) ⊃ (X̂ = B̂ ∧ n = x ∧ m = y)

These formulas capture simple ideas, e.g.,
H(B̂, Â, n,m) (e.g. B′s signature) can be com-
puted only by B and certain syntactic constraints,
e.g., a signature is not a subterm of a nonce.

Step 2: The second step is to find substitutions σ1 and
σ2 such that both the templates (QCR and QENC) in-
stantiate to the same real protocol. The desired substi-
tutions are shown in Figure 4. σ1 is on the left, σ2 is on
the right and the instantiated protocol is in the mid-
dle of the figure.

Step 3: The final step is to verify that the instanti-
ated protocol satisfies the union of the hypotheses in
ΓCR and ΓENC . This follows easily from the proper-
ties of signature and encryption under symmetric key
as expressed in the logic and the syntactic structure of
the protocol. We can therefore conclude that the iden-
tity protection refinement operation as applied here is
correct, i.e., it adds the identity protection property
while preserving the original properties of the proto-
col (which in this case is mutual authentication).

4.3. Authenticated Key-Exchange Tem-
plates

An important use of protocol templates is to under-
pin basic principles used in designing classes of proto-
cols and to bring out subtle tradeoffs offered by various
protocol families. In this section, we examine two fam-
ilies of authenticated key exchange protocols. The first
template, AKE1, generalizes a family of protocols in
which authentication is achieved by explicitly embed-
ding the intended recipient’s identity inside authentica-
tors in messages. This family includes the ISO-9798-3
key exchange protocol and related protocols including
the core JFKi protocol. The second template, AKE2,
generalizes a family of protocols where agents authen-
ticate each other using a combination of signatures and
a proof of possession of the Diffie-Hellman shared se-
cret computed during the execution of the protocol.
This family includes STS, SIGMA, and the core of the
IKE and JFKr protocols. Part of the reason these two

9

F (X, Y, x, y) ≡ EKXY (SIGX(x, y)) A → B : m H(X,Y, x, y) ≡ SIGX(x, y)
G(X, Y, x, y) ≡ EKXY (SIGX(y, x)) B → A : n, EKAB (SIGB(n, m)) I(X,Y, x, y) ≡ SIGX(y, x)

A → B : EKAB (SIGA(n, m))

Figure 4. Protocol that is an instantiation of both CR and ENC templates

families are interesting is that they were both candi-
dates for the recently proposed IKEv2 protocol and
there has been considerable discussion and debate in
the IETF community about the tradeoffs offered by
the two designs. The use of templates to character-
ize the two families sheds light on the subtle difference
between the authentication, non-repudiation and iden-
tity protection guarantees associated with the two sets
of protocols.

Template AKE1: Using the informal arrows-and-
messages diagram, the authenticated key-exchange
template AKE1 can be described as follows.

A → B : A, ga

B → A : gb, F (B,A, gb, ga)

A → B : G(A, B, ga, gb)

For this template, we are able to prove both secrecy
and authentication for the initiator role:

QAKE1, ΓAKE1 ⊢ [InitAKE1]AHonest(Â) ∧ Honest(B) ⊃

φauth ∧ φshared−secret

The formula φauth describes an authentication prop-
erty for the initiator based on matching conversations,
while formula φshared−secret states that A and B are
the only two sessions which know the Diffie-Hellman
secret gab. The set of assumptions ΓAKE1 is similar to
ΓCR in Section 4.1.1:

ǫ1≡Computes(X, F (B̂, Â, g
b
, g

a)) ⊃ ∃B
′

.X = B
′

ǫ2≡Q Fresh(Z, x) ⊃

¬Contains({X̂, Ŷ , gx}, F (B̂, Â, g
b
, g

a))

ǫ3≡Q Fresh(Z, x) ∧ Q Fresh(W,y) ∧

Contains({X̂, Ŷ , G(X̂, Ŷ , gx, gy)}, F (B̂, Â, g
b
, g

a)) ⊃

(X̂ = B̂ ∧ Ŷ = Â ∧ g
b = g

y ∧ g
a = g

x)

ǫ4≡Q Fresh(Z, x) ∧ Q Fresh(W,y) ∧

Contains({X̂, Ŷ , gy, F (X̂, Ŷ , gx, gy)}, F (B̂, Â, g
b
, g

a)) ⊃

(X̂ = B̂ ∧ Ŷ = Â ∧ g
b = g

x ∧ g
a = g

y)

We prove that the ISO-9798-3 key exchange protocol
satisfies the set of assumptions, ΓAKE1, and therefore
provides similar authentication and secrecy guarantees.
However, STS, SIGMA and their variants do not sat-
isfy ΓAKE1. Specifically, the assumption ǫ4 fails since
the intended recipient’s identity is not embedded in-
side an authenticator in the second message of the pro-
tocol. The way the proof fails leads us to a run which
provides a counterexample to the strong authentica-
tion property. This works for both STS and SIGMA

and the run is essentially similar to the “attack” on
STS first demonstrated by Lowe in [21].

Template AKE2: Using the informal arrows-and-
messages diagram, AKE2 can be described as fol-
lows.

A → B : ga

B → A : gb, F (B, gb, ga), F ′(B, gab)
A → B : G(A, ga, gb), G′(A, gab)

Informally, the purpose of F is to ensure that B is
a session with parameters ga and gb, while F ′ proves
that B has the shared secret gab. More precisely, us-
ing the set of assumptions about the function variables
ΓAKE2, it is possible to prove that this protocol tem-
plate provides a form of authentication – matching con-
versations for the responder:

QAKE2, ΓAKE2 ⊢ [InitAKE2]BHonest(Â) ∧ Honest(B̂) ⊃

φauth ∧ φshared−secret

The set of assumptions ΓAKE2 is:

η1≡Computes(X, G(Â, g
a
, g

b)) ⊃ ∃A
′

.X = A
′

η2≡Computes(X, F
′(Ẑ, g

ab)) ⊃ Has(X, g
ab)

η3≡Q Fresh(Z, x) ⊃

¬Contains({X̂, Ŷ , gx}, G(Â, g
a
, g

b))

η4≡Q Fresh(Z, x) ∧ Q Fresh(W,y) ⊃

¬Contains({X̂, Ŷ , gy, F (X̂, gx, gy), F ′(X̂, gxy)},

G(Â, g
a
, g

b))

η5≡Q Fresh(Z, x) ∧ Q Fresh(W,y) ∧

Contains({X̂, Ŷ , G(X̂, gx, gy), G′(X̂, gxy)}, G(Â, g
a
, g

b))

⊃ (X̂ = Â ∧ ∧g
b = g

x ∧ g
a = g

y)

However, as mentioned before, this class of protocols
does not have the matching conversations based au-
thentication property for the initiator.

Design Tradeoffs Template AKE1 provides a stronger
form of authentication: matching conversations for
both initiator and responder whereas AKE2 only pro-
vides matching conversations for responder. Therefore,
in AKE1, the initiator is required to reveal his iden-
tity in the first message of the protocol, and hence
instances of this template cannot provide identity pro-
tection against active attackers for the initiator. Ad-
ditionally, assumptions ǫ1 and ǫ3 together imply that
when the function variable F is instantiated to the sig-
nature function, A has a non-repudiable proof of com-
munication with B. In the logic, such a proof just

10

A → B : ga A → B : ga A → B : ga

B → A : gb, SIGB(gb, ga, A) B → A : gb, Egab(SIGB(ga, gb)) B → A : gb, SIGB(gb, ga), Hgab(B)
A → B : SIGA(ga, gb, B) A → B : Egab(SIGA(gb, ga)) A → B : SIGA(gb, ga), Hgab(A)

ISO 9798-3 Key exchange STS Basic SIGMA

Figure 5. Instantiations of authenticated key-exchange templates

uses terms that A possesses (given by the Has predi-
cate) and the honesty of B.

One of the design goals for instances of the AKE2
template such as SIGMA [19] was to provide identity
protection for the initiator. Since the initiator A can
only reveal his identity in the third message of the pro-
tocol, and cannot be sure that the responder B knows
he is talking to A until B receives the last message,
template AKE2 does not provide the strong authenti-
cation property for the initiator. A counterexample run
is shown below:

A → I(B) : ga

I(C) → B : ga

B → I(C) : gb, F (B, gb, ga), F ′(B, gab)

I(B) → A : gb, F (B, gb, ga), F ′(B, gab)
A → I(B) : G(A, ga, gb), G′(A, gab)

In this scenario, A believes he has completed a session
with B, while B is waiting for the third message, think-
ing that he is engaged in a session with C. This coun-
terexample also shows that A’s transcript of the run
cannot be used to prove that B was involved in the
protocol. Hence this template does not provide non-
repudiation even when F is instantiated to the signa-
ture function.

5. The STS-MQV Protocol Family

While previous sections have focused on formal re-
construction of known protocols, here we examine the
possibility of synthesizing new protocols by reusing
constructs from existing protocols. We begin with two
well-known protocol families: the first includes Diffie-
Hellman key exchange and several variants that en-
hance the key derivation function (MTI/A, UM and
MQV); the second is the IKE family - STS being the
base protocol and a few steps further on is JFKr. These
two protocol families are combined to map out a two-
dimensional matrix of protocols (see Figure 6) which,
to the best of our knowledge, has not been previously
studied in the open literature. An intuitive presenta-
tion of this derivation is in Appendix B. The focus
here is on a core part of the synthesis that follows natu-
rally from the abstraction and refinement methodology.

Specifically, we formally prove authentication, shared
secrecy and identity protection properties of the pro-
tocols in the first three columns of Figure 6. Formal-
izing the remaining security properties and derivation
steps discussed in Appendix B is an interesting chal-
lenge, which we hope to address in future work.

5.1. Formal Synthesis

We identify two base protocol templates: a key com-
putation template (KC) and an authenticated key ex-
change template (AKC). AKC relies on a key computa-
tion template with exactly the properties characterized
by KC. The first column in Figure 6 contains protocols
DH, MTI/A, UM and MQV which are instantiations
of KC; the second column has instantiations of AKC,
where each instantiated protocol uses the KC instan-
tiation on its left (e.g., STSMQV uses MQV). In Sec-
tion 5.2, we prove the security properties of these pro-
tocols using the abstraction and instantiation method-
ology. The protocols in the third column are obtained
from those in the second by applying an identity protec-
tion refinement. Formally, this involves combining the
AKC template with an encryption template in a man-
ner similar to Example 4.2.1 in Section 4.2. The proofs
are deferred to the full version of the paper.

5.2. Characterizing and Combining KC
and AKC

In this section, we discuss the main ideas used in
characterizing and combining the KC and AKC tem-
plates.

Key Computation Template, KC. The template is char-
acterized by a formula capturing the idea that a shared
key has associated with it two public-private key pairs
and in order to compute the key, it is necessary and suf-
ficient to possess one private key and the other public
key. Formally,

Computes(X, H(t1, f(t1), t2, f(t2))) ≡

Has(X, (t1, f(t2))) ∨ Has(X, (t2, f(t1)))

Here,H is a function variable denoting the key compu-
tation function while the variable f denotes the func-
tion that is used to compute the public key given the

11

DH

��

authenticate

// STS

��

protect

identities

// STSP

��

cookie

transformation

// STSPH

��

symmetric hash

// JFKr

MTI/A

��

// STSMT

��

// STSMT
P

��

// STSMT
PH

��

// JFKrMT

UM

��

// STSUM

��

// STSUM
P

��

// STSUM
PH

��

// JFKrUM

MQV // STSMQV // STSMQV
P

// STSMQV
P H

// JFKrMQV

Figure 6. Design by Combining Templates

private key. It is easy to see that the key computa-
tion functions of all four protocols (DH through MQV)
satisfy this hypothesis. For example, the Diffie-Hellman
shared key gab is associated with the public-private key
pairs (ga, a) and (gb, b) and computing it requires ei-
ther (a, gb) or (b, ga). Note that the hypothesis for
this template only characterizes the properties of cer-
tain functions. The proof that a particular instantia-
tion has this property must therefore follow from ax-
ioms of the proof system and is independent of the pro-
tocol in which this template is used. This observation
will be crucial when we subsequently combine this tem-
plate with AKC.

Authenticated Key Exchange Template, AKC. AKC
(given below) is a generalization of AKE2, the tem-
plate which yielded STS and SIGMA in Section 4.3.
AKE2 can be obtained by instantiating the func-
tion variables f and H to the Diffie-Hellman functions,
F1, F

′

1 to F , F ′, and G1, G
′

1 to G, G′.

A → B : f(t1)
B → A : f(t2), F1(B, f(t1), f(t2)),

F ′

1(B, H(t1, f(t1), t2, f(t2)))
A → B : G1(A, f(t2), f(t1)), G

′

1(A,H(t1, f(t1), t2, f(t2)))

The invariants characterizating this template are
similar to those for AKE2. The further abstraction
arises from understanding two points. First, the essen-
tial property provided by the Diffie-Hellman terms is
characterized by the KC template. Second, the role of
function F in AKE2 is to guarantee that only B pos-
sesses one of the private keys required to compute the
shared secret, while F ′ provides a proof that B actu-
ally possesses the key. These properties, captured by

invariants about F1 and F ′

1, yield a similar proof of the
shared secrecy and authentication properties of AKC.

Combining the Templates Diffie-Hellman and MQV
functions are instantiations of the KC template and,
as noted earlier, since this template depends only on
the functions, the property is guaranteed irrespec-
tive of the message structure of the specific protocol
in which they are used. Instantiating the underly-
ing KC template of AKC with Diffie-Hellman and us-
ing encrypted signatures over public keys gives us the
STS protocol. As proved in Section 4.3, this proto-
col satisfies the assumed invariants of AKE2 and hence
AKC. It therefore provides an authenticated shared se-
cret.

A → B : gx

B → A : gy, CB, EK (SIGB(gy, gx))
A → B : CA, EK (SIGA(gx, gy))

On the other hand, instantiating the KC template of
AKC to MQV and using a combination of certified
Diffie-Hellman keys and encryptions over the public
keys, we get the new STSMQV protocol. This protocol
also satisfies the assumed invariants of the AKC tem-
plate and therefore guarantees an authenticated shared
secret. The substitutions for F1 and F ′

1 are respectively
the certificate GB and the term encrypted with the
MQV shared key.

A → B : gx, ga

B → A : gy, gb, GB , EK (gy, gx)
A → B : GA, EK (gx, gy)

An advantage of this protocol over STS is that it is
computationally more efficient, a property that it in-
herits from the MQV protocol (see Appendix B for fur-
ther discussion).

12

6. Conclusions and Future Work

While there is ample evidence that protocol design-
ers think systematically about protocol requirements
and the means to achieve them (e.g., [1, 19]), it is a
significant challenge to make these natural intuitions
precise enough to provide systematic proofs of proto-
col properties. We believe that protocol templates, and
an accompanying higher-order extension of our previ-
ous protocol logic, furnish some useful techniques for
modular reasoning. In particular, similar protocols can
now be proved to have identical or related properties
using a single proof about a protocol template. More-
over, it is possible for multiple properties of a single
protocol to be established using different templates for
each property. While we have illustrated these general
protocol proof methods with a few simple examples,
we believe that many more templates and associated
proofs can be devised.

The logical foundation for the proof method shown
in this paper is the very simple idea of extending a pro-
tocol notation (cords) and protocol logic with function
variables. This allows protocol templates to be written
in a natural way, and allows them to be proved cor-
rect using implicit universal quantification over func-
tion variables.

We have developed some challenge-response and key
exchange protocol templates that, in addition, required
adding symmetric encryption and cryptographic hash
to our previous protocol logic. We also used protocol
templates to explore a design space surrounding JFK
(Just Fast Keying) and related protocols from the IKE
(Internet Key Exchange) family. This exploration re-
vealed some trade-offs between authentication, identity
protection, and non-repudiation; and produced some
interesting protocols that appear not to have been pre-
viously studied in the open literature.

In future work, we hope to develop useful tool sup-
port for protocol derivation steps and the associated
logic. A current effort underway draws on program
derivation and verification experience at Kestrel Insti-
tute. The software infrastructure supporting protocol
derivations is based on especs [31, 32, 4], a framework
for refinement and automated composition of state ma-
chines, where states are annotated by algebraic specifi-
cations, and transitions by morphisms between them.

References

[1] W.Aiello,S.M.Bellovin,M.Blaze,J. Ioannidis,O.Rein-
gold, R. Canetti, and A. D. Keromytis. Efficient, DoS-
resistant, secure key exchange for internet protocols. In
Proceedings of the 9th ACM conference on Computer

and communications security, pages 48–58. ACM Press,
2002.

[2] W. Aiello, S.M. Bellovin, M. Blaze, R. Canetti,
A.D. Keromytis J. Ioannidis, and O. Reingold. Just fast
keying (JFK), 2002. Internet draft.

[3] R. Ankney, D. Johnson, and M. Matyas. The unified
model, 1995. Contribution to X9F1.

[4] M. Anlauff and D. Pavlovic. On specification carrying
software, its refinement and composition. In H. Ehrig,
B.J.Kramer, andA.Ertas, editors,Proceedings of IDPT
2002. Society for Design and Process Science, 2002.

[5] R. Canetti. Universally composable security: A
new paradigm for cryptographic protocols. In Proc.
42nd IEEE Symp. on the Foundations of Computer
Science. IEEE, 2001. Full version available at
http://eprint.iacr.org/2000/067/.

[6] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A
derivation system for security protocols and its logical
formalization. In Proceedings of 16th IEEE Computer
Security Foundations Workshop, pages 109–125. IEEE,
2003.

[7] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Se-
cure protocol composition. Proceedings of Mathemati-
cal Foundations of Programming Semantics, to appear
in Electronic Notes in Theoretical Computer Science,
2003.

[8] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Se-
cure protocol composition (Extended abstract). In Pro-
ceedings of ACM Workshop on Formal Methods in Secu-
rity Engineering, pages 11–23, 2003.

[9] W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory,
IT-22(6):644–654, 1976.

[10] W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Au-
thentication and authenticated key exchanges. Designs,
Codes and Cryptography, 2:107–125, 1992.

[11] D.DolevandA.Yao.Onthesecurityofpublic-keyproto-
cols. IEEE Transactions on Information Theory, 2(29),
1983.

[12] N. Durgin, J. C. Mitchell, and D. Pavlovic. A compo-
sitional logic for protocol correctness. In Proceedings of
14th IEEE Computer Security Foundations Workshop,
pages 241–255. IEEE, 2001.

[13] N. Durgin, J. C. Mitchell, and D. Pavlovic. A composi-
tional logic for proving security properties of protocols.
Journal of Computer Security, 11(4):677–721, 2004.

[14] W. D. Goldfarb. The undecidability of the second-
order unification problem. Theoretical Computer Sci-
ence, 13:225–230, 1981.

[15] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE), 1998. RFC 2409.

[16] B. S. Kaliski, Jr. An unknown key-share attack on the
MQV key agreement protocol. ACM Transactions on
Information and System Security (TISSEC), 4(3):275–
288, 2001.

[17] C. Kaufman. Internet Key Exchange (IKEv2) Protocol,
2004. Internet Draft.

13

[18] R. Kemmerer, C. Meadows, and J. Millen. Three sys-
tems for cryptographic protocol analysis. J. Cryptology,
7(2):79–130, 1994.

[19] H.Krawczyk. Sigma: The sign-and-mac approach to au-
thenticated diffie-hellman and its use in the IKE proto-
cols. In Advances in Cryptology - CRYPTO 2003, vol-
ume 2729, pages 400–425. Springer-Verlag Heidelberg,
2003.

[20] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone.
An efficient protocol for authenticated key agreement.
Technical Report 98-05, COOR, 1998.

[21] G. Lowe. Some new attacks upon security protocols.
In Proceedings of 9th IEEE Computer Security Founda-
tions Workshop, pages 162–169. IEEE, 1996.

[22] Z. Manna and A. Pnueli. Temporal Verification of Reac-
tive Systems: Safety. Springer-Verlag, 1995.

[23] T. Matsumoto, Y. Takashima, and H. Imai. On seek-
ing smart public-key distribution systems. The Trans-
actions of the IECE of Japan, E69:99–106, 1986.

[24] C. Meadows. A model of computation for the NRL pro-
tocol analyzer. InProceedings of 7th IEEEComputer Se-
curity Foundations Workshop, pages 84–89. IEEE,1994.

[25] A. Menezes, M. Qu, and S. Vanstone. Some new key
agreement protocols providing mutual implicit authen-
tication. In Workshop on Selected Areas in Cryptogra-
phy (SAC ’95), pages 22–32, 1995.

[26] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[27] J. C. Mitchell, A. Ramanathan, A. Scedrov, and
V. Teague. A probabilistic polynomial-time calculus
for the analysis of cryptographic protocols (prelimi-
nary report). In Stephen Brookes and Michael Mislove,
editors, 17th Annual Conference on the Mathematical
Foundations of Programming Semantics, Arhus, Den-
mark, May, 2001, volume 45. Electronic notes in Theo-
retical Computer Science, 2001.

[28] J.C. Mitchell, M. Mitchell, and U. Stern. Automated
analysis of cryptographicprotocolsusingMurϕ. InProc.
IEEE Symp. Security and Privacy, pages 141–151, 1997.

[29] R.M. Needham and M.D. Schroeder. Using encryption
for authentication in large networks of computers. Com-
munications of the ACM, 21(12):993–999, 1978.

[30] L.C. Paulson. Proving properties of security protocols
by induction. In 10th IEEE Computer Security Founda-
tions Workshop, pages 70–83, 1997.

[31] D. Pavlovic and D. R. Smith. Composition and re-
finement of behavioral specifications. In Automated
Software Engineering 2001. The Sixteenth International
Conference on Automated Software Engineering. IEEE,
2001.

[32] D. Pavlovic and D. R. Smith. Guarded transitions in
evolving specifications. In H. Kirchner and C. Ringeis-
sen, editors, Proceedings of AMAST 2002, volume 2422
of LNCS, pages 411–425. Springer Verlag, 2002.

[33] B. Pfitzmann and M. Waidner. A model for asyn-
chronous reactive systems and its application to secure
message transmission. In IEEE Symposium on Security
and Privacy, pages 184–200, Washington, 2001.

[34] A. Ramanathan, J. C. Mitchell, A. Scedrov, and
V. Teague. Probabilistic bisimulation and equivalence
for security analysis of network protocols. In FOSSACS
2004 - Foundations of Software Science and Computa-
tion Structures, March 2004.

A. Protocol Logic Extensions

Most of the predicates and axioms of protocol logic
used in the formal proofs in this paper are presented
in [6, 8]. The main extensions include the Computes

predicate and some axioms for reasoning about sym-
metric encryption and cryptographic hash. The defini-
tion of Computes in terms of Has and the axioms it sat-
isfies is presented in Table 3. Intuitively, CP2 says that
there are two ways an agent can possess some term: she
can construct it from its components or she can receive
it as a part of some message. Axiom CP3 says that ev-
ery term that appears on the network has a source: it
originated from some process that actually computed
the term. One use of Computes is to reason about the
source of a term. This is useful for reasoning about au-
thentication properties of protocols. A second use is
to capture hardness assumptions about cryptographic
primitives, which is important for reasoning about se-
crecy. For example, we postulate that the only way to
compute a Diffie-Hellman secret is to have one expo-
nent and the other exponential. Similarly, in order to
compute an encrypted message, it is essential to pos-
sess the key and the plaintext. The axioms about sym-
metric encryption and cryptographic hash are deferred
to the full version of the paper since the proofs in which
they are used have also been omitted due to space con-
straints.

B. Deriving the STS-MQV Family

In this section, we present a derivation of the ma-
trix of protocols summarized in Figure 6 in Section 5.
This involves the derivation of JFKr (the first row of
the figure), the derivation of the Diffie-Hellman refine-
ments (the first column of the figure which we discuss in
Appendix B.1), and the combination of these two sets
of protocols, discussed below in Appendix B.2. The in-
terested reader is referred to [6] for a similar derivation
of JFKr , starting from Diffie-Hellman and challenge-
response components.

B.1. Refinements of Diffie-Hellman key ex-
change

In this section, we examine the structure of a family
of protocols that has gone through the standardization

14

CP1 Computes(X, t) ⊃ Has(X, t)

CP2 Has(X, t) ⊃ (Computes(X, t) ∨ ∃m.(Q Receive(X,m) ∧ Contains(m, t)))

CP3 (Q Receive(X,m) ∧ Contains(m, t)) ⊃

∃Y.∃m′.(Computes(Y, t) ∧ Q Send(Y,m′) ∧ Contains(m′, t))

Computes(X, t) ≡ (t = gab ∧ ComputesDH(X, gab)) ∨

(t = H(a) ∧ ComputesHASH(X,H(a))) ∨

(t = Ea(b) ∧ ComputesENC(X,Ea(b)))

ComputesDH(X, gab) ≡ ((Has(X, a) ∧ Has(X, gb)) ∨ (Has(X, b) ∧ Has(X, ga)))

ComputesENC(X,Ea(b)) ≡ Has(X, a) ∧ Has(X, b)

ComputesHASH(X,H(a)) ≡ Has(X, a)

Table 3. Computes Axioms

process. Starting from the standard Diffie-Hellman pro-
tocol, we successively obtain protocols with more de-
sirable security properties as the derivation proceeds.
The derivation steps are shown in Figure 7. The prop-
erties of interest include key secrecy, implicit authenti-
cation, forward secrecy, known-key security, resistance
to unknown key share attacks, and efficiency.

Ephemeral Diffie-Hellman DH key exchange
The basic Diffie-Hellman protocol [9] provides a way
for two parties to set up a shared key (gxy) which a pas-
sive attacker cannot recover.

A → B : gx

B → A : gy

k = gxy = (gy)x = (gx)y

There is no authentication guarantee: the secret is
shared between two parties, but neither can be sure
of the identity of the other. One way to overcome this
is for participants to have their public Diffie-Hellman
values certified by a trusted authority (static Diffie-
Hellman) and use those keys instead in the exchange.
But, in that case, A and B would compute the same
shared secret in every session, i.e, the protocol would
not have known-key security.

MTI/A key exchange The MTI/A protocol [23]
tries to achieve authenticated key exchange by com-
bining ephemeral and static Diffie-Hellman.

A → B : gx, ga, GA

B → A : gy, gb, GB

k = gay+bx = (gy)a(gb)x = (gx)b(ga)y

It is assumed that parties A and B have long term
Diffie-Hellman exponents a and b and have obtained
certificates GA and GB for corresponding public expo-
nentials ga and gb. Also, x and y are generated fresh

for every session and so a unique shared key is gener-
ated each time. It therefore provides known-key secu-
rity, key secrecy, and implicit authentication. However,
there is no forward secrecy since if the long-term se-
crets a and b are revealed, an attacker can compute all
past session keys. Also, this protocol is open to an un-
known key-share attack if an attacker can obtain cer-
tificates for exponentials of his choice without having
to prove that he possesses the corresponding private ex-
ponents. The attack was first presented in [25].

UM key exchange The Unified model protocol [3]
represents another step forward. It combines ephemeral
and static Diffie-Hellman in a very simple manner: the
shared secret is just a concatenation of the ephemeral
and static shared secrets.

A → B : gx, ga, GA

B → A : gy, gb, GB

k = gab||gxy

Besides providing the security guarantees given by
MTI/A, it also provides perfect forward secrecy since
the ephemeral shared secrets cannot be computed even
if the long term private keys are revealed. However, this
protocol is also open to an unknown key-share attack.

MQV key exchange The final protocol in the deriva-
tion is MQV [20].

A → B : gx, ga, GA

B → A : gy, gb, GB

k = g(agx+x)(bgy+y)

It provides all but one of the desirable properties: key
secrecy, implicit authentication, known-key security,
forward secrecy, and computational efficiency. Note
however that it is open to an unknown key-share at-
tack as pointed out in [16].

15

DH // MTI/A // UM // MQV

A→ B : gx

B → A : gy

k = gxy

A→ B : gx, ga, GA

B → A : gy, gb, GB

k = gay+bx

A→ B : gx, ga, GA

B → A : gy, gb, GB

k = gab||gxy

A→ B : gx, ga, GA

B → A : gy, gb, GB

k = g(agx+x)(bgy+y)

Figure 7. Refinements of the Diffie-Hellman key exchange

B.2. Combining the Derivations

In this section, we examine how security protocols
can be constructed by combining derivations. Specif-
ically, the Diffie-Hellman component in the JFKr
derivation is replaced by a more “refined” component
from the second derivation. This yields a class of pro-
tocols which inherit security properties from both the
derivations. The derivation graph for the complete class
is shown in Figure 6. Due to space constraints, we ex-
amine only one path in detail to get a sense of the gen-
eral method.

B.2.1. Derivation of the JFKMQV
r protocol We

start by composing the MQV component with the
challenge-response protocol. Since the MQV shared se-
cret includes certified static Diffie-Hellman exponen-
tials, signatures are no longer necessary, resulting in
protocols with less computational overhead.

Protocol STSMQV By composing the MQV key ex-
change with the challenge response protocol, we obtain
the STSMQV protocol. Fresh values m and n are in-
stantiated to pairs of Diffie-Hellman exponents (gx, ga)
and (gy, gb), and the keyK is instantiated to a key gen-
erated from the MQV shared secret.

A → B : gx, ga

B → A : gy, gb, GB , EK (gy, gx)
A → B : GA, EK (gx, gy)

This protocol inherits the key secrecy and mutual au-
thentication properties from STS and forward secrecy,
known-key security, and computational efficiency from
MQV . Note that the unknown key-share attack on
MQV goes away because STS provides explicit key
authentication (not just implicit).

Protocol STSMQV
P In order to protect the identity of

the participants against a passive attacker, we move the
certificates inside the encryption. The resulting proto-
col is denoted by STSMQV

P .

A → B : gx, ga

B → A : gy, gb, EK (GB , gy, gx)
A → B : EK (GA, gx, gy)

While preserving the security properties achieved in
the previous step, this protocol, in addition, provides
a form of identity protection. The identities of both
the participants are protected against passive attack-
ers, while the identity of the initiator A is also pro-
tected against active attackers. Notice that the iden-
tity protection this protocol provides is much weaker
than that of STSP . Public keys are sent in the clear,
and an attacker can deduce the identity of a partic-
ipant if he possesses his certificate. This drawback is
the result of using encryptions only, and not encrypted
signatures. We cannot move public keys into the en-
cryption since A needs to know gb in order to generate
the shared key K.

Protocol STSMQV
PH In order to make the protocol re-

sistant to blind denial of service (DoS) attacks, we pre-
form the cookie transformation [6]. The resulting pro-
tocol is denoted by STSPH .

A → B : gx, ga

B → A : gy, gb, HMACBH(gy, gx)
A → B : gx, ga, gy, gb, HMACBH(gy, gx), EK (GA, gx, gy)
B → A : EK (GB , gy, gx)

The other security properties are preserved under this
transformation.

Protocol JFKrMQV Finally, we add message au-
thentication codes to obtain JFKrMQV protocol.

A → B : gx, ga

B → A : gy, gb, HMACBH(gy, gx)
A → B : gx, ga, gy, gb, HMACBH(gy, gx), EK (GA, gx, gy)

HMACK′ (A, EK (GA, gx, gy)) ,

B → A : EK (GB , gy, gx) ,

HMACK′ (B, EK (GB , gy, gx))

The final protocol provides key secrecy, mutual au-
thentication, forward secrecy, known-key security, com-
putational efficiency, identity protection and DoS pro-
tection, inheriting most of the positive properties from
the parent derivations.

16

