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Abstract dent of specific modes or options and clearly understanding

the security differences between different options.

Many authentication and key exchange protocols are  \ any researchers and practitioners working in the field
built using an accepted set of standard concepts SUCht protacol security recognize that common authentication
as I_D.|ff|e-HeIIman key exchange, nonces to avoid replay, and key exchange protocols are built using an accepted set
certificates from an accepted authority, and encrypted or 4t gtangarg concepts. The common building blocks include
s_ig_ned messages. We introduce a l?asic framework for depyittia_Hellman key exchange, nonces to avoid replay, cer-
riving security protocols from such simple components. AS gicates from an accepted authority to validate public keys

a case study, we examine the structure of a family of key, 4 encrypted or signed messages that can only be created
exchange protocols that includes Station-To-Station YSTS ,; 1ead by identifiable parties. However, there is no com-

1ISO-9798-3, Just Fast Keying (JFK), IKE and related pro- o ehensive theory about how each of these protocol parts
tocols, deriving all members of the family from two ba- 4k and how properties of a compound protocol can be
sic protocols using a small set of refinements and protocol yaived from properties of its parts. As a step toward a
transformations. As initial steps toward associating tagi general theory, we examine the structure of a family of key
derivations with protocol derivations, we extend a pregiou exchange protocols that includes Station-To-Station JSTS
security protocol logic with preconditions and temporal as 1SO-9798-3, Just Fast Keying (JFK) and related protocols,
sertions. Using this logic, we prove the security propertie showing how all the protocols in this family may be de-
of the standard signature based Challenge-Response progjyeq systematically. The protocol derivation system for
tocol and the Diffie-Hellman key exchange protocol. The s cjass of protocols consists of two base protocol com-
1ISO-9798-3 protocol is then proved correct by cOmposing ponents; three transformations, and seven refinements. The
the correctness proofs of these two simple protocols. two protocol components are Diffie-Hellman key exchange
[10] and a two-message signature-based challenge and re-
sponse authentication protocol. The refinements (which add
1 Introduction data to message fields) include extending messages by cer-
tificates in order to discharge the assumption that each par-

While many historical authentication and secrecy proto- ticipant knows the other’s public key. The transformations

cols, such as those cataloged by Clark and Jacob [7], ma))nCIUde mov_ing data from a Ia_ter message toan garlier one,
be analyzed independently, modern protocols often have a"’,md “reordgr’!ng Mmessages using a denial-of-service preven-
number of different subprotocols and interrelated modes. tloN cookie” technique.

The Internet Key Exchange (IKE) protocol [13], for ex- The protocol derivation system is intended to formalize
ample, offers digital signature authentication, publkgrk  the well established practice of presenting protocolsencr
encryption-based authentication, and pre-shared key aumentally, starting from simple components, and extending
thentication, each potentially used in one of several modesthem by features and functions. Examples of this intu-
(e.g., Main Mode, Aggressive Mode, Quick Mode, New itive and appealing idea appear in [9]. Efforts to formalize
Group Mode). In both protocol design and protocol anal- the practice, and produce modular, reusable derivations of
ysis, it is essential to understand a complex protocol in afamilies of protocols, go back to [6]. More recently, Bel-
systematic way, characterizing properties that are inglepe lare, Canetti and Krawczyk [3] have studied two interest-



ing protocol transformations, which they callthentica- stitution are two examples of composition operations. A
tors, which generically add authentication to a given proto- refinemenbperation acts on message components of a sin-
col scheme. We notice that, in some cases, the compositiorgle protocol. For example, replacing a plaintext nonce by
of two protocols has the security properties of both. For an encrypted nonce is a refinement. A refinement does not
example, Diffie-Hellman key exchange provides a sharedchange the number of messages or the basic structure of a
secret, but no authentication. Conversely, signed chgdlen protocol. Atransformationoperates on a single protocol. It
response provides authentication, but no shared secret. Ous a general rewrite operation that can modify several steps
composition of the two provides the advantages of both: anof a protocol by moving data from one message to another,
authenticated shared secret. In exploring this approaeh, w combining steps, or inserting one or more additional steps.
aim to capture the intuition that protocol designers userwhe For example, moving data from one protocol message to an
they develop new protocols by modifying existing protocols earlier message (between the same parties) is a transforma-
for the purpose of adding new desired properties. Moreover,tion.
when new protocols are presented as derivations, their anal  In the next section, we examine the structure of a set of
ysis could be easier. key exchange protocols (which we call the STS family) to
Our eventual goal is to assign to each protocol compo-illustrate the use of this method. Among the derived pro-
nent, refinement and transformation a logical formula, ex- tocols are STS [9], standard Challenge-Response protocol
pressing its meaning, and formally tied to it by a semantical [19], JFKi, JFKr, ISO-9798-3 protocol [2], and the core of
relation in the style of [12]. Having verified soundness and the IKE protocol [13].
correctness of such assignments once and for all, one could
then routinely infer standard properties of protocols from 3 Derivation of the STS Family
the way they are derived. As initial steps toward associat-
ing logical derivations with protocol derivations, we exte In this section, we present a derivation of the STS pro-
a previous security protocol logic with preconditions and tocol family. The STS family includes protocols like IKE
temporal assertions and prove properties of protocols thatyhich are actually deployed on the internet and JFKi and
lie in the early branches of the family tree. JFKr which are currently being considered by IETF as re-
The rest of the paper is organized as follows. Section placements for IKE. The security properties relevant to the
2 describes the main ideas underlying the protocol deriva-STS family of protocols include key secrecy, mutual au-
tion system. In Sectiol, we present the derivations of thentication, denial-of-service protection, identityoec-
the STS family of key exchange protocols. Sectiodis-  tion and computational efficiency. Computational efficienc
cusses the compositional logical framework using which se- s achieved by reusing Diffie-Hellman exponentials across
curity properties of protocols can be proved and also proto- multiple sessions.
cols can be formally derived. To illustrate the use of this  \We begin by describing the basic components, and the
method, the 1SO-9798-3 protocol is formally derived from transformation and refinement operations used in deriving
two component subprotocols based on the Diffie-Hellman the STS family of key exchange protocols. In order to keep
key exchange protocol and the signature-based Challengethe paper within page limits, the components and transfor-

Response protocol. Finally, in Sectién we present our  mations are presented tersely, with additional intuitiod a
conclusions and propose some interesting themes for futureaxplanation given where they are used.

work. In informally describing the derivation system, we use
a standard informal notation for protocol steps. However,
2 Derivation Framework the reader should bear in mind that protocols actually in-

volve initial conditions, communication steps, and int&rn
actions used to compute data used in messages and data pro-
duced as output of the protocol for use in other operations.
When we derive a protocol, the derivation steps may act on
one or more of these aspects of a protocol.

Our framework for deriving security protocols consists
of a set of basic building blocks calledmponentand a set
of operations for constructing new protocols from old ones.
These operations are of three typeempositiontransfor-
mationandrefinementIntuitively, the distinctions between
these parts are as follows:

A components a basic protocol step or steps, used as
a building block for larger protocols. Since the present pa-
per uses key exchange protocols as a worked example, w& he basic Diffie-Hellman protocol [10] provides a way for
take Diffie-Hellman key exchange as a basic component. Atwo parties to set up a shared key"( which a passive at-
compositioroperation takes two protocols and puts them to- tacker cannot recover. There is no authentication guaran-
gether in some way. Sequential composition and term sub-tee: the secret is shared between two parties, but neither

3.1 Components

Diffie-Hellman component,C,



can be sure of the identity of the other. The security of the We can understand the value of this transformation
key depends on the computational hardness of the discretdy considering the signature-based authenticatbr, de-
logarithm problem. Our component, contains only the  scribed above. Protocdl; provides one-sided authentica-
internal computation steps of the Diffie-Hellman protocol. tion: after executing the protocdl,is assured that the sec-
ond message was generated Byin response to the first

I: generates random valu@nd computeg® (for message. However? does not know the identity of.
previously agreed bagg Since the goal of a mutual authentication protocol is to pro-
R: generates random valueand computeg” vide the authentication guarantee to both parties, it seems
(for previously agreed bagg likely that we can construct a mutual authentication proto-

._.col from two instances (executed in opposite directions) of
8’2. However, the sequential composition of two rungsf
does not quite do the job, since neither party can be sure
that the other participated in one of the runs. If we apply a
Signature-based authenticator(, transformation to obtain the protocol on the left side of-Fig

) ure 1, and then apply the binding transformation to obtain
The signature-based challenge-response protocol shown b&e one on the right, we obtain a protocol with both nonces

low is a standard mechanism for one-way authentication;,«iqe the signature, thus assuring thandn belong to
(see Section 10.3.3 of [19]) the same session.

We note, however, that the protocol on the right side of
Figure 1 does not guarantee mutual authentication in the
conventional sense. Specifically, affexompletes a session
with R, initiator I cannot be sure thak knows she has

Itis assumed that: is a fresh value or nonce and thatthe completed the same session withThe stronger guarantee
initiator, I, possesses the public key certificate of responder,may be achieved by including the peer’s identity inside the

are considered to be the output of this protocol fragment.

I—-R:m
R—1:5IGgr(m)

R, and can therefore verify the signature. signatures, as discussed further in Section 3.4.
3.2 Transformations Cookie, T
Message component movd; The purpose of the cookie transformation is to make a

protocol resistant to blind Denial-of-Service (DoS) aksc
This transformation moves a fietdof a messagen to an  ynder certain assumptions, it guarantees that the responde
earlier message:’, wherem andm' have the same sender  goes not have to create state or perform expensive computa-
and receiver, and if does not contain any data freshly gen- tjon before a round-trip communication is established with

erated or received between the two messages. One reasafie initiator. The cookie transformation is described in de
for using this transformation is to reduce the total number t5j| in [8]. Here, we only touch on the main idea.

of messages in the protocol.
I—>R:m I—>R:m

Binding, T» R —1:mg R—1:m§,HMACyk, (m1,m$)
I —-R:m3 = I — R:ms3,mi,ms,

Binding transformations generally add information from HMACHKk,(m1,m$)

one part of a protocol to another in order to “bind” the two . R—1:m§

parts in some meaningful way. The specific instance of this
general concept that we use in this paper adds a nonce from
an earlier message into the signed portion of a later mes-

sage, as illustrated in Figure 1. Figure 2. An example of a cookie transforma-
tion
I—-R:m I—-R:m
?:é Z’I%K(;?f)(m) - f:é g}él?ni(Z}m) An example of a cookie transformation is shown in Fig-
' I ’ A ure 2. The protocol on the left hand side is a standard three
message protocol in which after receiving message R

Figure 1. An example of a binding transfor- creates state and replies with message Clearly, this pro-
mation tocol is vulnerable to both computation and memory DoS

attacks. Now assume that the components of message



can be divided into two sets: those that can be computedrespectively), this is an example of a refinement which
without performing any expensive operation (denoted by discharges the assumption that the principals possess each
m$) and those that require expensive operations (denotedther’s public key certificates apriori.

by m$). In the transformed protocol, upon receiving the

first message, the responderdoes not create local state  Tnys, two general methods of protocol derivation us-
and does not perform any expensive computation. Insteading refinements emerge: (i) construct a protocol with some
R sends an unforgeable token (cookie) backwhich cap- - properties and apply a refinement to add another property to
tures the local state, and resumes the protocol only afer th {he protocol; (i) construct a protocol assuming some facts
cookie is returned by. Here the cookie is a keyed hash of 5, discharge those assumptions by applying a refinement.

messagen; andm$. The key used for this purposH,K g,
is known only toR. Since expensive computation and cre-
ation of state is deferred till it is established that th&ator

can receive messages at the IP address which it claimed a

its own, the resulting protocol is resistant to blind DoS at-
tacks.

3.3 Refinements
While defining refinements, we use the notation> b

to indicate that every instance of message compomémt
the protocol should be replaced by For ease of exposi-

The next four refinements are all geared towards adding
g1e property of mutual authentication to a protocol. We de-
scribe one of the refinements in detail here, deferring etai
of the others to the point where they are used in the deriva-
tion of the STS family in the next section.

RefinementR; SIGx(m) = SIGx(m,IDy), where

Y is the peer. An assumption here is thdtpossesses
the requisite identifying information for’, e.g.,Y”’s pub-

lic key certificate, before the protocol is executed. This

tion, different refinements that serve the same purpose arédssumption can be discharged X receivesY”s iden-

grouped together below.

RefinementR; SIGx(m) = Ex(SIGx(m)), where

K is a shared key with the peer. The purpose of this re-
finement is to provide identity protection against passive
attackers. In all the protocols that we consider in this pa-

per, everything signed is public. So, an attacker can verify
guesses at identities of a principal if the signature was not

encrypted.

RefinementR; ¢* = ¢*,n,, wheren, is a fresh value.

In many Diffie-Hellman based key exchange protocols, the
Diffie-Hellman exponentials serve two purposes: (a) they
provide the material to derive secret keys; (b) they provide

the freshness guarantee for runs required in order to pre

vent replay attacks. However, Diffie-Hellman exponentials
are expensive to compute. This refinement makes partic
ipants exchange nonces in addition to Diffie-Hellman ex-
ponentials, thereby offloading function (b) onto the nonces

_SIGx(HMACK(m7 IDx)),

tity in an earlier message of the protocol. In public-
key based challenge-response protocols, the authenticato
should identify both the sender and the intended recipient.
Otherwise, the protocol is susceptible to a person-in-the-
middle attack. Here, the signature identifies the sender and
the identity inside the signature identifies the intended re
cipient. In an encryption-based challenge-response pobto
(e.g., Needham-Schroeder [23]), since the public encryp-
tion key identifies the intended recipient, the sender'side
tity needs to be included inside the encryption. The origina
protocol did not do so, resulting in the property discovered
nearly twenty years later by Lowe [15].

RefinementRy; SIGx(m) =

where K is a shared
key with the peer. The difference between this refinement
and Ry is that instead of signing the peer’s identity, the
principal signs a keyed hash of the message and her own

identity. This refinement is used in the derivation of IKE.

The use of nonces enables the reuse of exponentials across

multiple sessions resulting in a more efficient protocol. On

RefinementR; SIGx(m) =

the other hand, when exponents are reused, perfect forward G x (m), HM ACk(m,IDx), whereK is a shared key

secrecy is lost. This tradeoff is offered both by JFKi and
JFKT.

RefinementRs SIGx(m) = SIGx(m),IDx, where
IDx denotes the public key certificate &f. Since the

with the peer. This refinement is very similar & and is
used to the derive the core of the JFKr protocol.

RefinementR; Ex(m) =

Ex(m), HM ACk/ (role, Ex(m)), where K and K’

other party may not possess the signature-verification key,are keys shared with the peer. In this approach, each party

it is necessary to include the certificate along with the sig-
nature. Unlike refinement®, and R5s above which add
properties to a protocol (identity protection and efficignc

includes a keyed hash of the encrypted signature and it's
own role (i.e., initiator or responder). This refinement is
used in the derivation of JFKT.



3.4 The Derivation

We now use the components and operations of the
derivation system defined above to systematically derige th

protocols in the STS family. The complete derivation graph Ch Cs
is shown in Figure 3. In what follows, we trace the deriva- (Diffie-Hellman) (Signature-based Authenticator)
tions of the various protocols in the graph. At each deriva- ﬂcz;cz
tion step, we attempt to intuitively explain what property
that step helps achieve. Pl
K#
. . " M
Protocol P, Obtained by sequential composition of two P,
symmetric copies of componefit. é
i Ty
\4
I—-R:m Py
R—1:5IGgr(m)
R—>1T:n C1;P3 Ry
I — R:SIGi(n)

P; Py
This is the first step in constructing a mutual authenticatio \

protocol from two instances of an unilateral authentigatio —
protocol. Here, it is assumed thatandn are fresh values
and that/ and R possess each other’s public key certificates Cy:Py
and so can verify the signatures. Ry le \LRS R4
Ps Py P Py
Protocol P, Obtained from protocoP; by using trans- (STS) (IKE-core) (JFKr-core) (1S0-9798)
formationT}: the component of messagds moved up to e lRS
message.
I—=R:m Py Py
R—1:n, SIGR(m) (STS+nonces) (IKE-core+nonces)
IHRSIG](TL) Re
This refinement serves to reduce the number of messages P
in the protocol fromt to 3. (STS+nonces+IDs)
s
Protocol P; Obtained from protocolP, by using the P\iB
binding transformatioril. (JFKIi/JFKr-core+cookies)
I—-R:m
R—T: n, SIGR(TL’I’TL) ...........................
I — R:SIG(m,n) Ry T
\
After executing this protocol] is assured thaR gener- (ilér) Pis
ated the second message and moreover that the message was
freshly generated. However, as elaborated below, it would lR“
be incorrect off to conclude thai? believes that she was Pis
talking to I. The source of the problem is that the authen- (JFKi)
ticator does not indicate who the message was meant for.
One way to get around it is by applying refinemé&atmen- Figure 3. Derivation graph of the STS protocol

tioned in the previous section. There are other ways too as  family
we will see while proceeding with the derivation.
The following attack describes a scenario in whithnd
1 hold different beliefs about who they completed the ses-
sion with. AttackerM intercepts and then forwards the first
two messages, obtaining noneesandn. ThenM blocks



the final message frothand substituteS G, (m, n). Af-
ter these stepd, believes nonces: andn were exchanged
with R, but R believes the nonce: was generated by im-
posterM.

Protocol P5
protocol Ps.

Obtained by composing componeTit with

I—-R:¢
R—1I:g",SIGRr(9",9")
I — R:SIG;(¢% g")

The noncesn andn were instantiated to Diffie-Hellman
exponentg’ andg”. The assumption that andn are fresh
values is still valid as long asandr are fresh. This is an ex-
ample of composition by term substitution. Intuitivelyeth
actions that any principal carries outif is the sequential
composition of the actions that she carries outinand

attack described while presenting proto£yl(and which is
applicable to protocaP; too) does not work anymore since
an attacker cannot compute the encryption K€y,which
depends on the Diffie-Hellman secret?, and hence can-
not replacel’s signature in the third message by her own.
However, Lowe describes another attack on this protocol in
[16]. It is not quite clear whether that attack breaks mutual
authentication.

Protocol Py,
tocol Ps.

Obtained by applying refinemem; to pro-

I—R:g'n;
R—1:4g",n. Fg (SIGR(gT,nT,gi,ni))
I —R:FEg (SIGI(gi7ni,gT,nr))

Py retains all the properties df; except perfect forward
secrecy. As mentioned while describing refinemeptthe

in P;, except that instead of sending and receiving nonces,use of fresh nonces enables the reuse of Diffie-Hellman ex-
she sends and receives Diffie-Hellman exponentials. Thatponentials across multiple sessions resulting in a more com
is why it makes sense to regard term substitution as a com-putationally efficient protocol.

position operation. Protocd?; possesses all the properties
of protocolP;. In addition, whenevef completes a session
supposedly withk, then if R is honest, thed andR share a
secretg’. Note that since the person-in-the-middle attack
described above is still possiblB,may not believe that she
has a shared secret with

Protocol P; 5
tocol Pyg.

Obtained by applying refinemeRy to pro-

I - R:g¢n;
R—1: g’ gy, )
EK (SIGR(gT7n7‘agzani)’I‘DR)

After protocol Ps, four different derivation paths can be I — R: Ex (SIGi(g',ni, g",nr), 1Dy

seen in Figure 3. The_first path includes STS, JFKi a_nd By applying refinemengy to Py, N0 new properties are
JFKr; the second path includes the core of IKE; the third jnoqyced. Instead, the assumption that the protocot prin
path includes a protocol that forms the core of IKE-sigma ¢jnais possessed each other’s public key certificatesraprio

[14] and JFKT; the fourth path includes the 1SO-9798-3 pro- s gischarged by explicitly exchanging certificates alotes
tocol. We describe the first derivation path in detail here. o signatures.

The refinements and transformations used in the other paths
can be seenin Figure 3. The details are omitted due to spac
constraints. Also included is a derivation of ##%0-9798-3
protocol. The properties of the protocols in this derivatio
are formally proved in the next section.

Protocol P53 Obtained by applying the cookie transfor-
mation, T3, to protocolP;s.

I - R:g¢'n;

R—1TI:g",n.,. HMACyHK, (9", nr,g",n;)
I—R:g"ni,g" ,n., HMACy K, (9",nr, g%, mi),
EK (SIGI(gi,ni,gT?nT),IDI)

EK (SIGR(9T77’LT,QZ,TL¢),IDR)

Path 1: STS, JFKi and JFKr

Protocol P; Obtained by applying refinement,; to pro-
tocol Ps, whereK is a key derived from the Diffie-Hellman
secret. This is the STS protocol.

R—1:

The cookie transformation ensures that in addition to the
properties of protocaP;, this protocol also possesses the
additional property of resistance to blind Denial-of-Seev
attacks.

I-R:¢ ‘
R—1:g",Eg (SIGr(9",9"))
I — R: Eg (SIG1(¢",9"))

In addition to the properties aPs, Ps provides identity At this point, we have derived a protocol that provides
protection against passive attackers. As mentioned beforekey secrecy, mutual authentication, identity protectimn (
refinementR; is geared towards adding this property to the initiator against passive attackers and for respondenagai
protocol on which it is applied.Ps; also provides a mutu-  active attackers), DoS protection and computational effi-
ally authenticated shared secret. The person-in-thedmidd ciency, i.e., all the stated security properties for thiaifg



of protocols. Both JFKi and JFKr are obtained fraty
and only differ in the form of identity protection that they
offer.

Path 1.1: JFKr

Protocol P, Obtained by applying refinemeRt, to P;3.

This is essentially JFKr. We ignore some of the message
fields (e.g., the security association and the group identif
ing information) which can be added using two more refine-
ments.

I —R:
R—1:
I —-R:

givni )
gf,Tl,,‘,HMACHKR(gT,TLT,gl,TLi) .
gz,ni,gr,nr,_H]V[ACHKR(gT,nr,gz,ni),

Ex (SIGI(g nlvg‘ nT) IDI)a

HMACK/ (I EK (SIG] g le,g TL7) ID]))
Ex (SIGr(g",nr, g%, 104), IDR),

HMACK (R Ex (SIGR(g Ny G5 15), IDR))

R—1:

Py, retains all the properties df;3. The keyed hash of

the encrypted signature appears to serve the same purposg .. P,

as the encryption of the signature in protoégl It guar-
antees that since the computation of the kéysand K’
requires knowledge of’", the adversary cannot launch the
person-in-the-middle attack described while presentiog p

tocol Ps, since she cannot compute the encrypted signature

and the keyed hash. Also, Lowe’s attack [16] doesn’t work
against this protocol.
Path 1.2: JFKi

Protocol P;5
protocol Py 3.

Obtained by applying transformatidh to

I —R:
R—1:
I —R:

gt ni

g nTaIDR7H]\/[ACHKR(g nrag nz)
g'ni g e, HMACH K, (97, 0,y g7, 100),
Ex (SIGI(g ni, 9", nr), IDI)

R—1:FEg (SIGR(gT,nT,gZ,ni))

The message compondid  is moved from messagein
P53 to message here. The reason for applying this trans-
formation becomes clear in the next step when the princi-
pals include the peer’s identity inside the signaturescé&in
I's signature is part of the third message of the protocol, she
must possesR’s identity before she sends out that message.
This protocol retains all the properties Bf; except for the
fact that the form of identity protection is different. Uk
Py 3, here the responder’s identity is not protected. The ini-
tiator’s identity is still protected against active attarck

Protocol Pig  Obtained by applying refinemen; to pro-
tocol Py5. This is JFKi (except for one additional signature

transformation). As with JFKr, some of the message fields
which do not contribute to the core security property are
ignored.

I —R:
R—1:
I — R

giani

g”ivnTa IDRa HMAOHKR (gTvnTagz7ni)
: gla niagTa Ny, HMACHKR (gr7n7‘7gla ni)a
EK (SIG](QZ,TL»L',QT, Ny, IDR)ijI)

R —1:Ek (SIGr(g9",nr, 9", ni,IDy))

The refinement added the peer’s identities inside the sig-
natures. Dy andI D; are added insidé’s and R’s sigha-
tures in messagg and messagé respectively. Including
the identities inside the signatures obviates the attaek de
scribed while presenting protocék and Lowe’s attack on
STS [16]. Py retains all the properties d? 5.

Derivation of the 1ISO-9798-3 Protocol
Now we present a derivation of protoc8}, ISO-9798-3

Obtained by applying refineme, to pro-
tocol P5. This is the standard challenge-response protocol.

I—-R:m
R—1I:n,SIGgr(n,m,IDy)
I — R:SIGi(m,n,IDg)

P; is refined so that the peer’s identity is included inside
the signatures. Consequently, the person-in-the-middle a
tack on P; doesn’t succeed againgy. P, therefore pro-
vides mutual authentication. Protodg is now derived by
composing componert; with protocol P, in exactly the
same way thaP; was derived.

3.5 Other Issues

3.5.1 Commutativity of Rules

As suggested by protocdly above, many protocols have
several different derivations, obtained by applying compo
sitions, refinements and transformations in different mde
Suchcommutativitie®f the derivation steps are usually jus-
tified by the fact that the properties that they realize age lo
ically independent. For instance, the refinemeRis(en-
crypting the signatures) anfl; (adjoining nonces to the
exponentials) commute, because the corresponding proper-
ties - identity protection and reusability of exponentials

. are logically independent.

3.5.2 Generalization of Refinements

In this introductory presentation, we often selected the re
finements leading to the desired properties by a shortest

in the second message which can be added using one morpath. Building a library of reusable derivations of a wider



family of protocols would justify more general rules. For 4.1 Cord Calculus and Security Protocols
example, refinemenk; is a special case of a general re-

finement:m = Ex(m), wherem is any term andx’ is Cords[12] are the formalism we use to represent pro-
a shared key. The purpose of this refinement would be t05cols and their parts. They form an action calculus
remove the termn from the set of publicly known values. [20, 21, 24], related tar-calculus [22] andspi-calculus
[1]. The cords formalism is also similar to the approach of
) L the Chemical Abstract Machine formalism [5], in that the
4 Logical Formalization communication actions can be viewed as reactions between
“molecules”. Cord calculus serves as a simple “protocol
programming language” which supports our Floyd-Hoare
The protocol derivations presented in the previous sec-style |ogical annotations, and verifications in an axiomati

tion show how security properties accumulate as complexsemantics. Cord calculus is presented in [12]; a brief sum-
protocols are constructed from simple components throughmary is included in Appendix A.

refinement, composition and transformation operations.

In this section, we present a formal system for describ- 4.2 A Logic for Protocol Analysis and Derivation
ing security protocols and for reasoning about their prop-

erties. ThelSO-9798-3protocol is then formally derived
in this system from the signature-based challenge-regpons

protocol and the standard Diffie-Hellman key exchange pro- The formulas of the logic are given by the grammar in Ta-
tocol. The derivation involves: (a) construction of ti%O- ble 1, where» may be any role, written using the notation of
9798-3protocol by composition of the Diffie-Hellman and  cord calculus. Here,and N are terms and names. We use
challenge-response protocols; and (b) proof of correstnes ¢ and+ to indicate predicate formulas, and to indicate
of the composed protocol from proofs of correctness of its a generic term we call a “message”. Each message has the
components. Note that this corresponds to the step in theform (source, destination, content), providing source and
derivation tree for the STS family whei@, and P, are  destination fields in addition to the contents. Note that the
composed to yield%. It therefore provides some evidence source field of a message may not be the same as the ac-
that a complete formalization of the derivation system pre- tual sender of the message since the intruder can spoof the
sented in the previous section may be achievable. source address. Also, the principal identified by the desti-
The formal logic we use is based on earlier work [12]. nation field may not receive the message since the intruder
It consists of two parts: a language called cord calculus can intercept messages. However, the source and destina-
for representing protocols, and a logic for reasoning abouttion fields in the message are useful while proving authen-
properties of protocols. In order to derive protocols, we tication properties of protocols. When an honest princi-
need a formal language to describe them. Cord calculus ispal sends out a message, the source field identifies her and
our language of choice for this purpose. While we use cordthe destination field identifies the intended recipient. Our
calculus in its original form, the protocol logic has been ex formalization of authentication is based on the notion of
tended in order to allow reasoning about a broader rangematching records of runs [9] which requires that whenever
of security protocols. Due to space constraints, we only A and B accept each other’s identities at the end of a run,
sketch the extensions here, deferring the full technical de their records of the run should match. Including the source
velopment to another paper. The most significant extensionand destination fields in the message allows us to match up
is a rule for composing protocols. This rule plays a key send-receive actions.
role in the derivation of th&S0-9798-3rotocol. Other ex- The role instance identifier;, in the predicate formulas
tensions include a set of rules which allow reasoning aboutserves to identify the specific instance of a role in whict tha
the temporal ordering of actions carried out by the différen predicate is true. For example, a principakcould simul-
principals during the execution of a protocol. This form of taneously engage in two sessions in the initiator role. It is
reasoning is required in order to formalize the notion of au- necessary to distinguish between the predicates thatere tr
thentication. While the order in which the actions within a in the two role instances. Most protocol proofs use formu-
single process are carried out is easily determined, infgrr  las of the form[P] x ,,¢, which means that afteX executes
the ordering of actions carried out by different processesr actionsP in the role instance identified by, formula¢ is
quires some thought. Our formalization is based on the ideatrue about the resulting state &f in . Here are the in-
that if a fresh value: is generated and sent out for the first formal interpretations of the predicates, with the basis fo
time as a subterm of messaggethen any action carried out  defining precise semantics discussed in the next section:
by any other principal which involvesmust have occurred The formulaHas(X, =, ) means that principak’ pos-
after the send action. sesses information in the role identified byy. This is

4.2.1 Syntax



“possesses” in the limited sense of having either gener-mula is true in a run if it is true at the end of that run. An
ated the data or received it in the clear or received it un- action formulaa is therefore true in a run if it is the last
der encryption where the decryption key is known. The action in that run. On the other hand, a past formgha
formulaSend(X,m,n) means that the last action in a run is true if in the past the action formutawas true in some
of the protocol corresponds to principal sending mes-  state, i.e., if the action had occurred in the past.

sagemn. Receive(X, m,n), New(X,t,n), Decrypt(X, t,n),

andVerify (X, t,n) are similarly associated with the receive, 4.3 Proof System

new, decrypt and signature verification actions of a proto-

col. &a means that in the past, actiarwas carried out. 4.3 1  Axioms for Protocol Actions

As the name suggestéfter(a,a) means that the second

action happened after the first action in runs of a proto- The axioms about protocol actions are listed in Table 2.
col. Fresh(X,t,n) means that the termgenerated byX Note that thes in axiom A A1 is any one of thé actions

is “fresh” in the sense that no one else has seen any ternnda is the corresponding predicate in the logida A1
containingt as a subterm. Typically, a fresh term will be a therefore states that if a principal has executed an aation i
nonce and freshness will be used to reason about the temsome role, then the corresponding predicate asserting that
poral ordering of actions in runs of a protocol. This form of the action had occurred in the past is true. If princijal
reasoning is useful in proving authentication properties o generates a new valueand does no further actions in this
protocols. Finally, the formul&donest(X) means that the  role, then axionAN2 says that\' knowsn, AN1 says that
actions of principalX in the current run are precisely an No one else knows, andAN3 says that is fresh. AR1
interleaving of initial segments of traces of a set of roles o says that itX has received a message then she knows
the protocol. In other wordsY assumes some set of roles ™. Axiom AMTI is about the binding of static variables
and does exactly the actions prescribed by them. We noteof a protocol role. In this case the in (z1...2,)[ |x 5,
here that the temporal operatds and some of the predi- is a value determined when the roles for each participant
cates (e.g.Send, Receive) bear semblance to those used in were assigned. Typically this will be the identity of the-par
NPATRL [25], the temporal requirements language for the ticipant, and possibly the identity of other participants a
NRL Protocol Analyzer [17, 18]. While NPATRL is used initiator will try to talk to, along with shared keys, etc.

for specifying protocol requirements, our logic is alsodise

to infer properties of protocols. 4.3.2 Axioms relating Atomic Predicates

Table 3 lists axioms relating various propositional preper
4.2.2 Semantics ties, most of which follow naturally from the semantics of

propositional formulas. For example Xf decrypts{|n|} x,
A formula may be true or false at a run of a protocol. More then X knowsn because that is the result of the decryption,
precisely, the main semantic relatio@, R = ¢, may be  and if a principal knows a tuple, y then he also knows
read, “formula¢ holds for runi of protocol Q" In this  andy. Animportant axiom idN1 which states that if a prin-
relation, R may be a complete run, with all sessions that cipal X has generated a valugn some role, then that value
are started in the run completed, or an incomplete run with s gistinct from all other values generated in all other sole
some principals waiting for additional messages to com- N2 states that values generated by different actions within a
plete one or more sessions. role are distinctN1 andN2 together capture the intuition

The inductive definition ofp, R = ¢ is omitted due to  that fresh nonces are unigu¢ ER andSEC respectively

lack of space (see [12] to get a general sense of the aprefer to the unforgeability of signatures and the need te pos
proach). The main idea is to view a run as a sequencesess the private key in order to decrypt a message encrypted
of reaction steps within a cord space. Each reaction stepwith the corresponding public key. The additional condi-
corresponds to a principal executing an action. It there-tion requiring principalX to be honest guarantees that the
fore becomes possible to assert whether a particular actionntruder is not in possession of the private keys.
occurred in a given run and also to make assertions about
the temporal ordering of the actions. An alternative view, 433
consistent with the execution model used in defining Linear
Temporal Logic (LTL) semantics, is to think of a run as a Table 4 collects the other inference rules. It is clear that
linear sequence of states. Transition from one state to themost predicates are preserved by additional actions. How-
next is effected by an action carried out by some principal ever, theFresh predicate is not preserved if the freshly gen-
in some role. Associating that action with the state that the erated value: is sent out in a message (38 Perhaps, the
system ends up in as a consequence, allows us to use thmost interesting inference rule is the protocol compositio
well-understood terminology of LTL in our logic. A for- rule C, which was not present in [12]. It gives us a way

Inference Rules



Action formulas

a == Send(N,m,n)|Receive(N,m,n)|New(N,t,n)|Decrypt(N,t,n) | Verify(N, t,n)
Formulas

¢ == <SalHas(N,t,n)|Fresh(N,t,n)|Honest(NV) | After(a,a) |d A d| ¢

Modal forms

U u= polopg

Table 1. Syntax of the logic

AA1l la]x,, ©a

ANL  [(wn)]x, Has(Yyn,n) o (Y = X) A (g = 1)

ANZ2 [(vn)]x,, Has(X,n,n)

AN3 [(vn)]x,, Fresh(X,n,n)

AR1 [(m)]x,, Has(X,m,n)

AM1 (x1...20)[]x,n Has(X,z1,m) A ... AHas(X, z,,,7)
HasAlone(X,n,n) = Has(X,n,n) A (Has(Y,n,n') D (Y =X)A(n =n))

Table 2. Axioms for protocol actions

DEC1 &S Decrypt(X, {{nl} x,n) D Has(X, {|nftx,n)
DEC2 &S Decrypt(X, {{nl} x,n) D Has(X,n,n)
PROJ1 Has(X, (z,v),n) D Has(X, z,n) A Has(X,y,n)
N1 SNew (X, n,n) A SNew(Y,n,n') D (X =Y An=1)
N2 SNew (X, n,n) A SNew(X,n',n) D (n#n)
SEC Honest(X) A & Decrypt (Y, {nl}x,n) D> (Y = X)
VER Honest(X) A & Verify (Y, {n[tx,n) D

In’.Im.& CSend (X, m,n') A ({nltx € m)
S CSend (X, {nltk,n) = Has(X,n,n) AHas(X,K,n) A S Send(X, {{nl}x,n)

Table 3. Relationship between properties




of sequentially composing two role® and P’ when the erties of its parts, the signature-based challenge-regpon
logical formula guaranteed by the executionfafi.e., the protocol CR) and a protocol which forms the essence of
post-condition ofP, matches the pre-condition required in the standard Diffie-Hellman key exchange protodaH,).
order to ensure tha®?’ achieves some property. This form The formal logical derivation is in keeping with the main
of reasoning allows a proof of correctness of a protocol to idea of the protocol derivation system presented in the pre-
be built up incrementally from a proof of its component sub- vious section. It corresponds to the step in Figure 3, where
protocols and parallels the way that protocols are derined i Py is derived fromC; and P4 (note thatP, is actuallylSO-

the derivation system. 9798-3andC, andP, areDH, andC'R respectively.)
The approach is to assign to each protocol a logical for-
4.3.4 Axioms and Rules for Temporal Ordering mula which captures (a) the security properties that it guar

) . , antees; and (b) the assumptions under which those proper-
The axioms and rules specific to the temporal ordering of ia5 hold. For example, thé R protocol guarantees mutual
actions are presented in Table 5. The first two rules are ihentication under the assumption that the data exchange
fairly straightforward. AF1 orders the actions within & .y the principals are fresh nonces. The property associated
role. This is consistent Wlth the way we view a role as an \yith the DH, protocol is that the protocol principal pos-
ordered sequence of actionAF2 states that théfter re-  gagges a fresh Diffie-Hellman exponential and moreover she

lation is transitive. AF3 uses the freshness of nonces 1o g the only one who knows the exponent. It therefore guar-
reason about the ordering of actions carried out by differen jnaes 4 form of secrecy: if's Diffie-Hellman exponent is

principals. Intuitively, it states that if a principal createsa  , 5nd someone else knows the Diffie-Hellman segfét

fresh valuen and then s_ends ou_t a message containing i_t 8Sthen that person must know DH, does not require any

a subterm, then any action carried out by any other principal 5 ygitional assumptions to be made.

Wh'ch |nvolye5n (e.g. ifY receives a message cpntalnlng The properties just described can be expressed as modal

n inside a signature), happens after the send action. formulas in our logic where the assumptions appear as pre-
conditions and the security properties as post-conditions

4.3.5 The Honesty Rule the protocol role. If the post-condition of a protocol role

t matches the pre-condition of another, then using the infer-

ence ruleC in Table 4, we can obtain properties of a bigger

fgrotocol by composing the two. In the example that we

consider here, the post-condition bf{, matches the pre-

condition of CR (D H, furnishes the fresh data th&tRr

Intuitively, the honesty rule is used to combine facts abou
one role with inferred actions of other roles. For example,
suppose Alice receives a response from a message sent
Bob. Alice may wish to suppose that Bob is honest and use

properties of Bob’s role to reason about how Bob gener- : . .
ated his reply. The honesty rule is essentially an invaganc "€duires). The result of applying the protocol composition

rule for proving properties of all roles of a protocol. Since rule is theISO-97_98-3protocoI. In what follpws:, We ex-
honesty, by definition in our framework, means “following Pr¢SS the properties of secrecy and authenucatl_o_n asalloglc
one or more roles of the protocol.” honest principals must formulas and show how the process of composition ties to-
satisfy every property that is a provable invariant of the-pr gether the two properties. A _dlr_ect consequence is that the
tocol roles. The honesty rule depends on the protocol and!SO-9798-Jrotocol allows_prlnmpals to comput.e a.shared
S0 we writeQ - [P]¢ if [P]¢ is provable using the honesty seqret. We_sketch the outline of _the formal derivation rele-
rule for @ and the other axioms and proof rules (see [12] for gating detailed proofs to Appendix B.
further discussion about the honesty rule).

The honesty rule is used in the proof_ of correctness ofthey 4 1 Challenge Response Protocdl;R
Challenge-Response protocol that is given in full in Table 8
One place the honesty rule is used is to prove th&t#ent  Our formulation of authentication is based on the concept
out a message with his signature over the two nonces ancbf matching conversationp}] and is similar to the idea
A’s identity, then in the pasB must have received a mes-  of proving authentication usingorrespondence assertions
sage with source field and containing one of the nonces. [26]. The same basic idea is also presented in [9] where it
This property (line (10) of Table 8) is an important step in is referred to asnatching records of runsSimply put, it
proving that the challenge response protocol has the mutuatequires that whenevet and B accept each other’s identi-

authentication property. ties at the end of a run, their records of the match i.e.,
each message thdtsent was received bl and vice versa,
4.4 An Example of Protocol Composition each send event happened before the corresponding receive

event, and moreover the messages sent by each prindipal (
In this section, we use our logical framework to formally or B) appear in the same order in both the records. The
derive properties of théS0O-9798-3protocol from prop-  formalization of authentication as used here is intergstin



Generic Rules:

[Plo [Py [Pl fbD?/)G ¢

G1 2 G3

[Plo A1 [Py [P]¢

Preservation Rules: (F®ersist € {Has, & a})

[P]A,nPersist(XJ,n’) [P]AmFl’eSh(Aﬂ’L,’I])
P1 (nZa) P2
[Pa)anPersist(X,t,7') [Pa)a.,Fresh(A,n,n)
[P]x,nHasAlone(X, n,n) [P]x.,HasAlone(X,n,n)
(a#(m))P3 (nZym) P4
[Pa)x,,HasAlone(X, n,n) [P(m)] x,,HasAlone(X,n,n)

Freshness Loss and Composition Rules:

[P]A,ﬁFreSh(Aanvn) (bl [P]A,n¢2 ¢2[P/]A,n¢3
(nCm) F C

[P(m)]an—Fresh(A,n,n) ¢1[P; P an3

Table 4. Inference Rules

AF1 [ai...an]x,, After(ai,az) A ... A After(an—1,an)
AF2 After(ai, az) A After(az, a3z) D After(ag, a3)

Inter-process ordering rule:

[P)x,,Fresh(X,n,n) [Pai]x,—Fresh(X,n,n) [P'asly,,

(Y#XVn#n')A(nCaz) AF3
After(a1, az)

Table 5. Axioms and rule for temporal ordering of actions




its own right. However, since the focus of this paper is on
the compositional aspect of security protocols and space isSDH1 Has(X, a,7) A Has(X, g% 1) D Has(X, g**, )
limited, we will present the details elsewhere. DH2 Has(X, ¢, ) O Has(X, g**, n)

The logical formula specifying the initiator role of the ab b
CR protocol is of the form:precondition [actions] post- DH3 Has(X, ", n) 5 (Has(X; a,n) A Has(X, g%, m)) V

condition where: (Has(X,b,m) A Has(X, g%, 7))
pre — (A B m ) Fresh(A, m,n) DH4 Fresh(X,a,n) D Fresh(X, g% n)
actions = [A, B,m)(B, A,n,{m,n, Al}g/B, A,y, z)
(z/{lm, y, Al B)(A, B, {{m,y, B} 1)]an Table 6. Rules for Diffie-Hellman key ex-
post = Honest(B) D 3n’.(ActionsInOrder( change

Send(A, {A, B,m},n),

Receive(B,{A, B,m},n’),

Send(Ba {BaAv {TL, {|m7naA|}§}}vn/)v e

Receive(A, { B, A, {n, {{m,n, A}5}},7)) to the way that Diffie-Hellman secrets are compuiBdi1
captures the way that a Diffie-Hellman secret is computed
from an exponent and an exponenti®dH2 captures the
commutativity of exponentiationDH3 captures the hard-
ness of the discrete log problem by stating that in order to
compute the Diffie-Hellman secret, at least one exponent
and the other exponential needs to be knodd»H4 cap-
tures the intuition that if: is fresh at some point of a run,
theng® is also fresh at that point.

The predicatéctionsInOrder(ay, a, .. .,a,) means that the
actionsay, ao, ... ,a, Were executed in that order. It can be
defined in a natural away using the transitivity axiom about
the After predicate AF2.

Let us try to understand the three parts of the for-
mula. Thepreconditionincludes the static parameter list
(A B m n) with the parameters identifying the initiator,

responder, the data sent out by the initiator and the role in- 1,4 DH, protocol involves generating a fresh random
stance identifier, and the predic&tesh(A,m, n) capturing  hmper and computing its Diffie-Hellman exponential. It
the assumptions made about the static parameters. The Ss yherefore the initial part of the standard Diffie-Hellman
guence ofactionscorresponds to the initiator cc_>rd (from key exchange protocol. The logical formula specifying the
now on denoted binitcr). These are the actions exe- jnitiator role of theD Hy, protocol is again of the forrpre-
cuted by a principal in the initiator role. Finally, tp®st- ¢4 gition [actions] postconditioand is given below.
condition(denotedy,..;, from now on) captures the secu-

rity property associated with the initiator role. Intudily, (A B n)[(va)] , . (A B g% n)Fresh(A, g%, n)A

this formula states that ifl initiates a session of th€'R HésAIone(A, a,mn)

protocol withB with fresh datan, then after completing the

actions inInitcr, A can be assured of the security prop- This formula follows easily from the axioms and rules of
erty ¢qucn. Note thatp,.., effectively captures the notion the logic. It states that after carrying out the initiatolero
of authentication discussed above. A total ordering is es-of DH,, A possesses a fresh Diffie-Hellman exponential
tablished among all send and receive actions. Moreover, forg® and is the only one who possesses the expomefihis
each ‘matching’ send-receive action pair, the send actionproperty will be useful in proving the secrecy condition of

precedes the receive action. the ISO-9798-3protocol. Note that the precondition only
A complete proof of the formula above is presented in includes the static parameters. No additional assumptions
Table 8 in Appendix B. are made. The postcondition includes a cord calculus con-
struct - theoutput interface A B ¢ n) - which we haven't
4.4.2 Base Diffie Hellman Protocol D H, encountered till this point. The purpose of this construct

. . will become clear during the composition process.
In this section, we take a closer look at protoénl, that

forms the essence of the standard Diffie-Hellman protocol.
Our goal is to assign td H, a logical formula charac-

terizing its security properties and making explicit any as The final step of the derivation is to obtain a logical for-
sumptions. The first step is to enrich the term language andm|a characterizing the security properties ofi8©-9798-
the protocol logic to allow reasoning about Diffie-Hellman 3 hrotocol. We sketch an outline of the proof here.

computation. The termg(a) andh(a, b), respectively rep- Let us go back and look at the form of the logical formu-
resenting the Diffie-Hellman exponentigl modp and the |55 characterizind H, andCR:

Diffie-Hellman secret®® mod p, are added to the term lan-
guage. To improve readability, we will ugé and ¢’ in- DHy : (A B n) [Initpm,] (A B g® )Fresh(A, g%, 1)
stead ofy(a) andh(a, b). Table 6 presents the rules specific R (A B m n) Fresh(A,m,n) Initcr] auth

4.4.3 Composing the Protocols



Note that the post-condition oD H, matches the pre- derivation graph is shown in Figure 3. It shows how the
condition of CR. We can therefore compose the two for- various security properties - secrecy, authentication$ Do
mulas by applying the composition ru{e. The resulting protection etc. - accumulate as the derivation proceeds. Th

formulais: study of the security properties of the STS family seems to
. . be relevant since it includes protocols like IKE which are
1ISO-9798-3 (auth.) (A B 1) [Initpu,; Initcr] ¢aun actually deployed on the internet and JFKi and JFKr which

The composition operator ;" is defined so that the output are currently being considered by IETF as replacements for

parameters of the first cord are substituted into the inputIKE'
static parameter list of the second cord. Composition there ~ As an initial step towards associating logical derivations
fore provides a method for substitution. In this specific With protocol derivations, we have extended a previous pro-
example, the result of composing the two roles is that the tocol logic with preconditions and temporal assertionse Th
freshly generated Diffie-Hellman exponential is subsitt ISO-9798-3rotocol is then formally derived from the stan-
for the nonce in the challenge-response cord. The resultingdard challenge response protocol and a protocol that forms
role is precisely the initiator role of th&0-9798-Jroto-  the essence of the Diffie-Hellman key exchange protocol.
col. The formula above states that the mutual authenticatio The logical derivation corresponds to the step in Figure 3,
property ofC R is preserved by the composition process.  WhereF; is derived fromCy and P,. It shows how the se-
The other main step involves proving that the secrecy crecy and authentication properties of Diffie-Hellman and
property of DH, is preserved by’ R, since theC'R proto- challenge-response are preserved by the composition pro-
col does not reveal the Diffie-Hellman exponents. cess.
. There are several different directions in which this work
DHy : (A Bn) [Initp,] (A B g n)HasAlone(4, a, n) could be extended. One direction is to develop deriva-
CR : (A B g" n) HasAlone(A, a, ) [Initcr] tion graphs for other sets of related protocols. Another
HasAlone(4, a,7) family of protocols that might be interesting to look at
is the Needham-Schroeder protocol family. This family
will include well-known protocols like Kerberos, Otway-
Rees, etc. The connecting point between these protocols
ISO-9798-3 (secrecy) is that they all use encryption for achieving authenticated
(A B n) [Initpp, ; Initcr | HasAlone(A4, a, n) key exchange. Such derivation graphs can be used to de-
_ . velop a taxonomy of security protocols. Another direction
The rest of the proof uses the properties of Diffie- \orth exploring is protocol synthesis. Once a set of generic
Hellman secret computation to prove the following logical components and composition, refinement and transforma-

Therefore, by applying the composition rulg again, we
have the secrecy condition for th®0-9798-3rotocol:

formula: tion operations are identified, it might be possible to auto-
ISO-9798-3 (shared-secret) matically synthesize protocols that satisfy complex siécur
(A B ) [Initpp, ; Initcr] specifications using the basic ideas of the derivation syste
Honest(B) D 3b.317".( dautn A (n = g(b))A Also, our initial results suggest that formal analysis afise
Has(A, g*),n) A (Has(X, g*,n") D rity protocols may be easier when proofs of correctness of
(X=AA7" =n)V (X =BAy" =17)) complex protocols can be built from the proofs of their con-

stituent sub-protocols. It should be interesting to extied
Intuitively, the property proved is that B is honest, then  |ogical system to allow formal reasoning about all the proto
A andB are the only people who know the Diffie-Hellman  ¢ol refinement and transformation steps that have been pre-
secrety®®. In other words, théSO-9798-Frotocol can be  sented in this paper. Finally, in the example that we worked

used to compute a shared secret. out, we have shown that under certain restrictions, securit
properties can be preserved under composition. A formal
5 Conclusions and Future Work characterization of the conditions under which security pr

tocols can be composed would be a significant result.

We have presented a method for systematically deriv-
ing security protocols from basic components using a set of
protocol composition, refinement and transformation steps Acknowledgements This work was partially supported
The goal has been to formalize the well-established pmactic by NSF CCR-0121403, Computational Logic Tools for Re-
of presenting protocols incrementally, starting from dienp  search and Education, the DoD University Research Initia-
components and refining them by features and functions.tive (URI) program administered by the Office of Naval Re-
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A Cord Calculus

A.1 Terms, Actions, Strands and Cords

Thetermst are built starting from the variablesand the
constants:. Moreover, the set of basic terms also contains
the namesV, which can be variableX, Y, Z, or constants
A, B, C, and keys which can be variablegand constants
k. Upon these basic sets, the term language is then gen-
erated by some given constructgrswvhich always include
tupling, the public key encryptiofjit[} x of the termt by the
key K, and the signaturgt[} over the ternt with the pri-
vate keyK. The language odctionsis then built upon the
terms by further constructors. They include sending a term
(t), receiving into a variabléx), matching a term against a
pattern(t/q(z)), and creating a new valuez). A strand
is a list of actions. The idea is that they should be the subse-
guent actions of a single role in a protocol. For example, the
strand|[(vx)(z)] represents a role in which a principal gen-
eratesc and then sends out a message containing the freshly
generated value. Since some actions of a role may be mu-
tually independent, they can in principle be executed in any
order. Different strands can thus be semantically equitale
A cordis an equivalence class of behaviorally indistinguish-
able strands. In addition to the sequence of actions, a cord



has aninput interfaceand anoutput interface As the name
suggests, the output interface represents the output bf tha [S(x)S| @ [T{H)T'| @ Co>[SS'(t/z)] ® (1)
]

[
cord. The input interface is used to provide initial data to a TT®C
cord. These input parameters (called static parametars) ca y y
represent data known apriori (e.g. signing key) or data that S (p(t)/ (=) S/] ®C> [SS/(t/x)] 20 @)
becomes known by executing another cord via its outputin- [ ({p@) [}y /{lp(z)y) S'] @ Cor [SS'(t/2)] @ C (3)
terface. [S Q@ Bz/{p®)]y) ST @ Cor S5 @ C (4)
[S(vz)S'] @ C>>[SS (m/x)] ® C (5)

A.2 Cord Spaces and Runs
Where the following conditions must be satisfied:

A cord spacés a multiset of cords that may interact via Q) FV(t)=0
communication. Theuns of a protocol arise as reaction @ Frvt)=0
sequences of cord spaces. The basic reactions within a cord (3) 'V (t) = 0 andy bound
space are shown in Table 7, with the required side condi- @ FV(t)=0
tions for each reaction shown below them. Reaction (1) (6)z ¢ FV(S)andm ¢ FV(C)U FV(S) U

is a send and receive interaction, showing the simultaneoud”V (5')
sending of termt by the first cord, with the receiving af

into variablex by the second cord. We call this anter-

nal actionbecause it involves an interaction between two

cords. The other reactions all take place within a single

cord. We call thesénternal actions Reaction (2) isaba-  Needham and Schroeder [23] and a model presented by
sic pattern match action, where the cord matches the patterylev and Yao [11]. Arun of a protocolis a sequence of

p(t) with the expected patte(z), and substitutesfor z. reaction steps from ainitial configuration An initial con-
Reaction (3) is a decryption pattern match action, where thefjgrationis determined by a set of principals, a subset of
cord matches the pattefp(t)[r, with the decryption pat-  \yhjich are designated as honest, a cord space constructed by
tern{jp(«)[}y and substitutesfor x. Reaction (4)isasigna-  4ssigning one or more roles to each honest principal, and an
ture verification pattern match action. Finally, reacti&) (  intruder cord that may use only the secret keys of dishonest
shows the binding action where_the cord creates a new Va|ueprincipals. A particular initial configuration may give eis

that doesn’t appear elsewhere in the cordspace, and substi, many possible runs. Intuitively, a protocol has a prapert

tute; that value foaz:. i_n the cord to the right. The intuitive it i all runs of the protocol, that property is preserved.
motive for the conditior¥'V'(t) = 0 should be clear: a term

cannot be sent, or tested, until all of its free variables are
instantiated.

Table 7. Basic reaction steps

B Proof of Challenge-Response Protocol

A.3 Protocols A complete proof of the challenge-response protocol is
presented in Table 8. It is proved that after executing the
initiator role of the protocol withB, A is assured that she
did indeed communicate witB. The property associated
with the responder role of the protocol is symmetric. The
formalization of the mutual authentication property isdxhs
on the notion of matching records of runs [9].

A protocolis defined by a finite set of roles, such as ini-
tiator, responder and server, each representing the action
of a participant in a protocol session. In representinggrot
col roles by cords, it is useful to identify the principal who
carries out the role. Also, since the same principal might en
gage in multiple sessions in the same role (e.g., principal
might be the initiator in two sessions at the same time), as-
sociating aole-id with the cord allows us to distinguish be-
tween the actions carried out in the different sessionsh Bot
the principal name and the role-id appear as subscripts on
the square brackets delimiting a cord.

The protocol intruder is capable of taking any of several
possible actions, including receiving a message, decompos
ing it into parts, decrypting the parts if the key is known, re
membering parts of messages, and generating and sending
new messages. This is the standard “Dolev-Yao model”,
which appears to have developed from positions taken by



AM1
AN3
AAl
AAl
AAl

AA1
AF1, AF2

N1
5, VER

HON

2,3,11, AF3

11, AF2

11,4, AF3

10 — 13, AF2

(ABn)[]an Has(A, A,n) AHas(A, B,n)

[(vm))a,, Fresh(A,m,n)

(A, B,m)]a, ©Send(A, {4, B,m},n)

[(Ba Av n, {|m7 n, A|}§)]Aﬂ7

OReceive(A, {B, A, n,{{m,n, A} 5}, 1)

[({|m7 n, A|}§/{|mv n, A|}B)]Aﬂ7 @Verify (Aa {|m7 n, A|}§7 77)

[<A7 B, {|mv n, B|}Z>]Aﬂ7 @ Send (Aa {Av B, {|mv n, B|}Z}v 77)

(A B n)[(ym)<A7 B, m>(:1c)(x/B, A7 n, {|m7 n, A|}§)

({lm’ n, A|}§/{|m7 n, A|}3)<Aa B, {|m7 n, Bl}Z>]A77Z
ActionsInOrder(Send(A, {A, B,m},n), Receive(A, {B, A, n, {{m,n, A5}, n),
Send(Av {Av B, {|mv n, B|}Z}v 77))

S New (A, m,n) D =S New(B,m,n')

Honest(B) A & Verify (A, {m,n, Al}5,n) D

In’.Im' (& CSend(B,m/,n") A ({{m,n, A}z € m'))

Honest(B) D (In'.3m’.((& CSend (B, m',n) A

{m,n, A}z Cm' A ~ESNew(B,m,n')) D

(m' ={B,A,{n,{m,n, A}g}} N & Receive(B,{A, B,m},n') A
ActionsInOrder(Receive(B, {A, B,m},n’), New(B,n,n’),
Send(B,{B, A, {n,{{m,n, Al}z}},7')))))

Honest(B) D After(Send(A4, {A, B,m},n),

Receive(B, {A, B,m},n"))

Honest(B) D After(Receive(B, {4, B,m},n’),

Send(37 {37 A, {n7 {lm’ n, Al}F}}v 77/))

Honest(B) D After(Send(B,{B, A, {n,{m,n, A}z}}.7),
Receive(A, {B, A, {n,{m,n, A}5}},1))

Honest(B) D 3n’.(ActionsInOrder(Send(A, { A, B,m},n),
Receive(B, {4, B,m},n),Send(B, {B, A, {n, {m,n, A}5}},7),
Receive(A, {B, A, {n, {{m,n, A}5}},m))

Table 8. Deductions of A executing Init role of CR
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