A Derivation System for Security Protocols and its Logical Formalization

> Anupam Datta John C. Mitchell

Ante Derek Dusko Pavlovic

Stanford UniversityKestrel InstituteCSFW July 1, 2003

Contributions

Protocol derivation

- Build security protocols by combining parts from standard sub-protocols.
- Proof of correctness
 - Prove protocols correct using logic that follows steps of derivation.

Outline

Derivation System

- Motivating examples
- Main concepts
- Benefits
- Compositional Logic
 - Main idea
 - Syntax, semantics and proof system
 - Formalizing Composition

Conclusions and Future Work

Protocol Derivation System

Example

- Construct protocol with properties:
 - Shared secret
 - Authenticated
 - Identity Protection
 - DoS Protection
- Design requirements for IKE, JFK, IKEv2 (IPSec key exchange protocol)

Diffie-Hellman

$$\begin{array}{rrrr} A & \rightarrow & B \colon & g^a \\ B & \rightarrow & A \colon & g^b \end{array}$$

- Shared secret (with someone)
 - A deduces:

Knows(Y, g^{ab}) \supset (Y = A) V Knows(Y,b)

- Authenticated
- Identity Protection
- DoS Protection

Component 2

Challenge Response:

- Shared secret (with someone)
- Authenticated
 - A deduces: Received (B, msg1) Λ Sent (B, msg2)
- Identity Protection
- DoS Protection

m := g^a n := g^b

Composition

■ ISO 9798-3 protocol: $A \rightarrow B$: g^a , A $B \rightarrow A$: g^b , $sig_B \{g^a, g^b, A\}$ $A \rightarrow B$: $sig_A \{g^a, g^b, B\}$

- Shared secret: g^{ab}
- Authenticated
- Identity Protection
- DoS Protection

Refinement

Encrypt signatures:

- $\begin{array}{ll} A \rightarrow B : \ g^{a}, A \\ B \rightarrow A : \ g^{b}, \ E_{K} \left\{ sig_{B} \left\{ g^{a}, \ g^{b}, A \right\} \right\} \\ A \rightarrow B : \ E_{K} \left\{ sig_{A} \left\{ g^{a}, \ g^{b}, B \right\} \right\} \end{array}$
- Shared secret: g^{ab}
- Authenticated
- Identity Protection
- DoS Protection

Transformation

- Use cookie: JFK core protocol
 - $A \rightarrow B$: g^a , A
 - $B \rightarrow A$: g^b , hash_{KB} { g^b , g^a }
 - $A \rightarrow B: g^{a}, g^{b}, hash_{KB} \{g^{b}, g^{a}\}$ $E_{K} \{sig_{A} \{g^{a}, g^{b}, B\}\}$
 - $B \rightarrow A: g^{b}, E_{K} \{ sig_{B} \{ g^{a}, g^{b}, A \} \}$
 - Shared secret: g^{ab}
 - Authenticated
 - Identity Protection
 - DoS Protection

Derivation Framework

- Protocols are constructed from:
 - components
 - by applying a series of:
 - composition, refinement and transformation operations.
- Properties accumulate as a derivation proceeds.
- Examples in paper:
 - STS, ISO-9798-3, JFKi, JFKr, IKE

Properties:

- Certificates from CA
- Shared secret: g^{ab}
- Identity protection
- DoS protection
- Reverse ID protection

Benefits and Directions

- Complex protocols are easier to understand and analyze.
- Protocols can be organized in a taxonomy.
 - e.g., STS family, Needham-Schroeder family.
- Protocol synthesis.

Compositional Logic

Example: Challenge-Response

- Alice reasons: if Bob is honest, then:
 - only Bob can generate his signature. [protocol independent]
 - if Bob generates a signature of the form sig_B {m, n, A},
 - he sends it as part of msg 2 of the protocol and
 - he must have received msg1 from Alice. [protocol specific]
- Alice deduces: Received (B, msg1) Λ Sent (B, msg2)

Execution Model

- Protocol
 - "Program" for each protocol role
- Initial configuration
 - Set of principals and key
 - Assignment of ≥ 1 role to each principal
- Run

Formulas true at a position in run

- Action formulas
 - a ::= Send(P,m) | Receive (P,m) | New(P,t) | Decrypt (P,t) | Verify (P,t)
- Formulas
 - $$\begin{split} \phi &::= a \mid \mathsf{Has}(\mathsf{P},\mathsf{t}) \mid \mathsf{Fresh}(\mathsf{P},\mathsf{t}) \mid \mathsf{Honest}(\mathsf{N}) \\ &\mid \quad \mathsf{Contains}(\mathsf{t}_1,\,\mathsf{t}_2) \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \exists \mathsf{X} \ \phi \\ &\mid \quad o\phi \mid \Diamond \phi \end{split}$$
- Example
 - After(a,b) = $(b \land o a)$

Modal Formulas

 After actions, postcondition [actions] $_{P} \phi$ where $P = \langle princ, role id \rangle$ Before/after assertions φ [actions]_P ψ Composition rule φ [S]_P ψ ψ [T]_P θ Note: same P in all formulas φ [ST] _P θ

Diffie-Hellman: Property

- Formula
 - [new a] A Fresh(A, g^a)

Explanation

- Modal form: [actions] $_{P} \phi$
- Actions: [new a] A
- Postcondition: Fresh(A, g^a)

Challenge Response: Property

- Modal form: ϕ [actions] P ψ
 - precondition: Fresh(A,m)
 - actions: [Initiator role actions] A
 - postcondition:

Honest(B) \supset ActionsInOrder(send(A, {A,B,m}), receive(B, {A,B,m}), send(B, {B,A,{n, sig} {m, n, A}}), receive(A, {B,A,{n, sig} {m, n, A}})),)

Composition: DH+CR = ISO-9798-3

- DH postcondition matches CR precondition
- Combination:
 - Substitute g^a for m in CR to obtain ISO.
 - Apply composition rule, persistence.
 - ISO initiator role inherits CR authentication.
- DH secrecy is also preserved
 - Proved using another application of composition rule.

Critical issues

- Reasoning about honest principals
 - Invariance rule, called "honesty rule"
- Preservation of invariants under composition
 - If we prove Honest(X) $\supset \phi$ for protocol 1 and compose with protocol 2, is formula still true?

Honesty Rule

- Definition
 - A basic sequence of actions begins with receive, ends before next receive
- Rule
- Example
 - $\begin{array}{l} \mathsf{CR} \blacktriangleright \mathsf{Honest}(\mathsf{X}) \supset \\ (\mathsf{Sent}(\mathsf{X}, \, \mathsf{m}_2) \supset \mathsf{Recd}(\mathsf{X}, \, \mathsf{m}_1)) \end{array}$

Composition Rules

Prove assertions from invariants Γ |- φ [...]_P ψ Invariant weakening rule Γ - φ [...]_P ψ If combining protocols, extend assertions to combined invariants $\Gamma \cup \Gamma' \mid - \phi [...]_{P} \psi$ Prove invariants from protocol $\mathbf{Q} \triangleright \Gamma \qquad \mathbf{Q'} \triangleright \Gamma$ Use honesty (invariant) rule to show that both protocols preserve Ο • Ο' ▶ Γ assumed invariants

Conclusions and Future Work

Conclusions

Protocol Derivation System:

- Systematizes the practice of building protocols from standard sub-protocols. Useful for:
 - protocol analysis and understanding.
 - organizing related protocols in taxonomies.
 - protocol synthesis.
- Protocol Logic:
 - Correctness proofs follow derivation steps.
 - Rigorous treatment of protocol composition.

Future Work

- Derivation system:
 - taxonomies: STS, Needham-Schroeder family.
 - explore possibility of protocol synthesis.
 - can proofs in other formal systems be guided by derivations?
- Protocol Logic:
 - Formalize refinements and transformations.
 - Automate proofs.

Questions?