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argument about the protocol’s se-
curity. Logical methods can aid in 
these tasks.

Logic
A logic includes a syntax of well-
formed formulas, which we can 
use to express security properties. 
For example, let’s say only Alice 
and Bob know a secret key used 
for encryption. We could express 
this property formally in a proto-
col logic as

∀p. Has(p,secretkey) ⇒ (p = 
Alice ∨ p = Bob) 

In this example, Alice and 
Bob are constants of type principal, 
and p is a variable of type principal; 
secretkey is a constant of type 
key; Has is a predicate with param-
eters of type principal and key; ⇒ 
denotes logical implication; and ∨ 
is logical disjunction. The syntax of 
a logic precisely defines sets of vari-
ables and constants for each type 
(in this case, principal or key), as well 
as the predicates from which larger 
formulas are built, by repeatedly 
applying operators such as logical 
disjunction and implication. We 
can define the semantics (or mean-
ing) of well-formed formulas of a 
logic using an appropriate model. 

For example, the model for a 
protocol Q could be the set ℳQ  
of all possible protocol executions, 
starting from any initial configu-
ration. We could then define the 
semantics of a protocol logic using 
this model to capture the intui-
tive idea that a protocol satisfies a 
property expressed in the logic if 
and only if the property holds for 
all executions in ℳQ.

partial overview of how logical 
methods—in particular, methods 
for reasoning about system secu-
rity and for enforcing security and 
privacy policies—contribute to 
this discipline.

Applying logic to computer 
security and privacy offers long-
term benefits, including the devel-
opment of a scientific foundation 
that informs how we think about 
and teach security as well as de-
sign, implement, and analyze se-
cure systems.

Reasoning about 
System Security
Reasoning about system security 
requires methods for proving that a 
given security mechanism, such as 
a network protocol or Web brows-
er, achieves the desired security 
property even in the presence of a 
well-defined class of adversaries.

Consider the problem of en-
abling secure communication over 
an untrusted network, such as the 
Internet. One security mechanism 
for this task is the SSL protocol, 
which users employ when bank-
ing online, for example. SSL uses 
cryptographic primitives such as 
public key encryption and digital sig­
natures to provide security proper-
ties such as authentication and data 
confidentiality and integrity. Authen-

tication assures a user that he or 
she is interacting with the bank—
not some adversary masquerading 
as the bank—while data confiden-
tiality and integrity implies that 
only the user and bank can view 
and modify the account informa-
tion. These guarantees are expect-
ed to hold even in the presence of 
an active adversary who can inter-
cept, inject, and remove messages 
from the network. 

Designing such protocols is 
nontrivial, and many attacks have 
been identified after a protocol’s 
deployment (as in the case of the 
public key Kerberos, earlier ver-
sions of SSL, and the IEEE 802.11i 
wireless authentication protocol 
suite). Such attacks often arise be
cause the protocols execute in a 
concurrent environment. For exam-
ple, a bank’s Web server running 
SSL simultaneously serves many 
users. A user might also be simul-
taneously engaged in SSL sessions 
with the bank and an e-commerce 
website. An adversary could use 
information acquired in one ses-
sion to compromise the security of 
another session. 

During protocol design, it’s 
difficult to consider all possible 
sequences of actions that could 
break the desired security prop-
erty and develop a sound informal 
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Model Checking
Logical methods based on model 
checking can help identify attacks 
on a protocol Q automatically by 
exhaustively checking the model 
ℳQ—that is, by searching for a 
possible execution of Q that does 
not satisfy the desired property. 
This method applies to a proto-
col’s finite configurations (such as 
SSL with three servers and four 
client sessions). 

Early examples of model-
checking protocols include efforts 
with the FDR (Failure Diver-
gences Refinement Checker) tool1 
and the Murphi tool. State-of-the 
art protocol model checkers, such 
as those in the AVISPA (Auto-
mated Validation of Internet Se-
curity Protocols and Applications) 
tool set, scale even better and have 
been successfully applied to many 
industrial protocols. These tools 
can serve as useful aids in debug-
ging designs of complex protocols.

Protocol Logics
Although model-checking tools 
can automatically identify attacks 
on finite protocol configurations, 
protocol logics serve the dual purpose 
of proving the absence of attacks on 
a protocol for an unbounded num-
ber of concurrent sessions. An early 
example of a protocol logic is BAN 
logic;2 a more recent example is 
Protocol Composition Logic.3 

The proof system for protocol 
logics codify principles that proto-
col designers use to informally rea-
son about protocol security. A proof 
system for a logic consists of axioms 
and inference rules. We prove a theo­
rem by starting from axioms and 
repeatedly applying inference rules. 

For example, an axiom in the 
proof system of a protocol logic 
might capture the difficulty of 
forging signatures by stating that 
if Alice verifies Bob’s signature 
on a message, and Bob is the only 
principal who possesses his signing 
key, then Bob must have produced 
the signature. An example of an 
inference rule is modus ponens, 

which states that if ϕ and ϕ ⇒ 
ψ are provable, then so is ψ. If it’s 
provable that Alice verifies Bob’s 
signature on a message during a 
protocol execution, then we could 
use an instance of this inference 
rule, together with the signature 
axiom, to prove the theorem that 
Bob produced the signature on 
the message.

Typically, the proof system 
for a logic is sound, implying that 
every theorem about a protocol 
Q proved using the proof system 
actually holds for all executions in 
ℳQ. This soundness result implies 
that if we can construct a formal 
proof of protocol security, then 
the informal argument that the 
proof codifies doesn’t contain the 
kind of fallacious reasoning that is 
at the heart of many errors in pro-
tocol designs. 

Using soundness results to 
connect proof systems to protocol 
execution semantics is one differ-
ence between some of the early 
protocol logics and more recent 
ones. Other differences include 
broader coverage of protocols and 
properties and the development 
of modular reasoning principles 
that have enabled application of 
these methods to large industrial 
security protocol suites, such as 
the IEEE 802.11i suite for wire-
less local area networks and the 
IEEE 802.11s suite for wireless 
mesh networks.

Deployment: Limitations 
and Challenges
It’s important to note that the se-
curity guarantees assured by these 
methods are not absolute; they 
hold only in the underlying model 
of protocol execution and attack. 
An adversary could break the se-
curity property using capabilities 
that the model doesn’t consider. 

For example, we typically as-
sume that cryptographic primitives 
are perfect (for example, a sig-
nature is unforgeable with prob-
ability of 1). We also often assume 
that the programming language 

for modeling protocols doesn’t in-
clude features such as pointers that 
an implementation in a language 
like C will have. Nevertheless, the 
results of such an analysis have val-
ue, because they demonstrate the 
absence of a large class of design-
level attacks on protocols. Indeed, 
researchers are actively working on 
logical methods for more refined 
models that consider, for example, 
complexity-theoretic models of 
cryptography and features of im-
plementation languages such as C 
and F#.

The study of logical methods 
for reasoning about security proto-
cols has produced a significant sci-
entific foundation for this area and 
resulted in methods and tools that 
have impacted deployed protocols. 
Although my earlier discussion 
focused on protocols, related logi-
cal methods have also been devel-
oped for reasoning about security 
properties of other classes of sys-
tems, including operating system 
kernels, trusted computing sys-
tems, and Web platforms. Several 
institutions have successfully used 
these methods and tools in teach-
ing the process of secure protocol 
and system design.

Specifically, before implement-
ing a completed protocol or system 
design, it’s worthwhile to subject 
the design to a careful analysis us-
ing, for example, model-checking 
tools. Some of these tools (such 
as the Murphi model checker) 
are easy to use, even without any 
background in formal logic. This 
approach can help identify and 
correct design-level flaws. How-
ever, if the model checker doesn’t 
find any attacks, it doesn’t mean 
that the system is secure, because 
the model checker can only check 
small finite configurations (usually 
less than 10 concurrent sessions of 
security protocols). 

It’s then useful to try to prove 
that the protocol or system is se-
cure using the proof system of a 
logic. This step typically requires 
more expertise in logic; graduate 



Secure Systems

74	 IEEE SECURITY & PRIVACY

students without significant prior 
experience can usually learn to 
use such logics with a reasonable 
amount of effort.

Enforcing Security  
and Privacy Policies
In addition to reasoning about sys-
tem security, logical methods can 
also be used to design and imple-
ment mechanisms for enforcement 
of policies—for example, for ac-
cess control and privacy.

Consider the problem of pro-
tecting patient privacy in a hospi-
tal. The hospital’s privacy policy, 
following the Health Insurance 
Portability and Accountability Act 
(HIPAA), could specify conditions 
under which the hospital can use a 
patient’s personal health informa-
tion (such as for diagnosis, treat-
ment, or billing) and share it with 
entities outside the hospital (such as 
the patient or his or her insurance 
company). The hospital might use 
a combination of security mecha-
nisms involving access control and 
audits to ensure that it respects this 
policy, even in the presence of 
external adversaries and insiders 
(hospital employees) who might 
try to violate the policy. 

Access Control
Access control mechanisms could 
restrict access to a patient’s record 
to only the set of nurses and doc-
tors who are involved in caring for 
the patient (the care team). How-
ever, a care-team doctor could 
delegate access rights to another 
doctor standing in for him or her 
on a particular day. So, doctors 
could gain access to a patient’s re-
cord by providing evidence to the 
reference monitor (which medi-
ates access) that reveals he or she 

is either part of that patient’s care 
team or was granted access rights 
by a doctor in that care team. 

One insight that Bulter Lamp-

son and his colleagues pointed out 
is that a logic could represent ac-
cess control policy rules, such as 
the ones I’ve outlined.4 A logical 
proof that shows why policy rules 
authorize access could constitute 
sufficient evidence for the refer-
ence monitor to grant access. Fur-
thermore, logical inference and 
automated proof search could im-
plement the policy rules directly.

There’s now a substantial body 
of work on logic-based access 
control methods and their use in 
operating systems, Web security, 
physical access control, file sys-
tem access control, and distributed 
trust management systems. Hospi-
tals could, in principle, use similar 
mechanisms to restrict access to 
patient records. 

In practice, many hospitals 
currently use coarse-grained ac-
cess control, for example, to re-
strict access to patient records to 
hospital employees based on their 
roles (doctor, administrative staff, 
and so on) or physical location 
(for example, nurses working for 
a large hospital chain might have 
access to records of patients only at 
the location where they work). In-
deed, it’s important to understand 
what access control policies work 
best in a healthcare setting, given 
the need to balance easy access for 
healthcare providers and patient 
privacy. Once we determine the 
appropriate access control policies, 
we can enforce them using logic-
based access control mechanisms 
(in particular, we could easily 
codify role-based access control).

A remaining challenge, which 
researchers are currently actively 
working on, is to make logic-
based access control more usable—
for example, by developing policy 
languages with easily understand-
able syntax as well as tools with us-
er-friendly interfaces for authoring 
and updating policies.

Audits
Note that access control mecha-
nisms aren’t sufficient for enforc-
ing all privacy policies, such as 
clauses in the HIPAA Privacy 
Rule that 

•	 impose conditions on transmis-
sion of various types of personal 
information based on subjective 
beliefs (for example, letting hos-
pital officials share protected 
health information with law en-
forcement agencies if a death is 
suspicious);

•	 restrict information use to speci-
fied purposes (such as treatment 
or payment); and 

•	 associate future obligations with 
transmissions (for example, re-
quiring hospitals to respond in 
a timely manner to patient re-
quests pertaining to the patient’s 
protected health information). 

The current practice is to re-
cord all accesses to patient records 
in an audit log and rely on manual 
audits to identify violations and to 
hold individuals accountable for 
such violations. A significant open 
problem is to develop foundations 
for accountability and compu-
tational methods for structuring 
audits that reduce human involve-
ment in the process.

Adam Barth and his colleagues’ 
recent work provides a representa-
tive example of the use of logical 
methods for representing and en-
forcing privacy policies.5 This effort 
formalizes concepts from contextual 
integrity, a philosophical account of 
privacy in terms of the transmission 
of personal information. 

A central concept in this theo-
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ry is that of a context, which cap-
tures the idea that people transact 
and act in society as individuals in 
certain capacities or roles in dis-
tinctive social contexts, such as 
healthcare, education, and bank-
ing. A communication action 
transmits some type of personal in-
formation about a subject in some 
role (such as personal health in-
formation about a patient) from a 
sender in some role (such as Bob, a 
doctor) to a recipient in some role 
(such as Alice, the patient). Such 
transmissions are governed by 
norms of transmission that prescribe 
or proscribe certain transmissions 
based on the context, roles, and 
type of information. 

The logic of privacy that Barth 
and his colleagues developed is in-
terpreted using a semantic model 
of interacting agents in roles that 
transmit personal information to 
each other. This model includes 
a record of transmission actions. 
The syntax of this logic can ex-
press social norms of transmis-
sion or privacy policies codified 
in laws. For example, a formula in 
the logic can represent the norm 
that hospitals can transmit per-
sonal health information about a 
patient to a third party only if the 
patient has consented to such dis-
closures. This norm would be vio-
lated in an execution that records 
a transmission action from a hos-
pital to a third party of a patient’s 
personal health information, but 
doesn’t record a transmission ac-
tion from the patient to the hospi-
tal consenting to such disclosures. 
In this way, the logic captures the 
ideas of contextual integrity dis-
cussed earlier.

Subsequent work builds on 
this logic to identify the logical 
structure of a rich class of privacy 
policies, formalizing all transmis-
sion-related clauses in the HIPAA 
privacy rule. These formalizations 
also serve as the starting point for 
automated policy enforcement 
based on a combination of logi-
cal methods that support access 

control and limited forms of au-
diting. These are useful steps to
ward the development of practical 
tools for enforcing privacy poli-
cies, although much work remains 
to effectively enforce the entire 
HIPAA rule. 

Remaining challenges for 
computer-assisted audits include 
dealing with future obligations, 
determining whether information 
was used for a specified purpose, 
and addressing issues stemming 
from distributed audit logs (for 
example, in a health informa-
tion exchange scenario involving 
a network of hospitals). In ad-
dition to enforcement, we also 
need to develop tools for policy 
analysis that could help individu-
als understand a complex privacy 
policy, such as HIPAA. The tools 
could help answer questions about 
whether a hospital can transmit a 
certain type of information to a 
patient and, if so, could produce a 
list of conditions under which the 
information could be transmitted. 

Although I’ve used healthcare 
as a motivating example, these 
methods and remaining chal-
lenges apply to many other sec-
tors in which privacy is a concern, 
including finance, Web services, 
education, and government.

L ooking forward, logic should 
continue to contribute toward 

computer security and privacy by 
providing general methods for 
designing, implementing, and 
analyzing security mechanisms. 
Several existing methods and tools 
for security analysis of system de-
signs are ready for wider adoption 
in industry; other methods require 
a certain level of background in 
formal logic that could be pro-
vided by ensuring that topics like 
propositional and first-order logic 
receive attention in the under-
graduate computer science cur-
riculum. These steps will help 
produce secure systems with prop-
erties that are better understood. 

Logical methods of analysis 
won’t guarantee absolute security, 
but they’ll rule out large classes of 
attacks and make explicit the as-
sumptions about adversary capa-
bilities and system characteristics. 
Indeed, a challenge moving for-
ward is to expand the scope of these 
methods to cover more detailed 
models of systems and adversaries. 

Logical methods will also con-
tribute toward the design and im-
plementation of new mechanisms 
for enforcing privacy policies—a 
major societal challenge. Spe-
cifically, we should see significant 
progress in terms of foundations 
and methods for audits and ac-
countability in the near future. 
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