
72	 COPublished by the IEEE Computer and Reliability Societies ■ 1540-7993/10/$26.00 © 2010 IEEE ■ November/December 2010

Secure Systems
Editors: Patrick McDaniel, mcdaniel@cse.psu.edu
Sean W. Smith, sws@cs.dartmouth.edu

argument about the protocol’s se-
curity. Logical methods can aid in
these tasks.

Logic
A logic includes a syntax of well-
formed formulas, which we can
use to express security properties.
For example, let’s say only Alice
and Bob know a secret key used
for encryption. We could express
this property formally in a proto-
col logic as

∀p. Has(p,secretkey) ⇒ (p =
Alice ∨ p = Bob)

In this example, Alice and
Bob are constants of type principal,
and p is a variable of type principal;
secretkey is a constant of type
key; Has is a predicate with param-
eters of type principal and key; ⇒
denotes logical implication; and ∨
is logical disjunction. The syntax of
a logic precisely defines sets of vari-
ables and constants for each type
(in this case, principal or key), as well
as the predicates from which larger
formulas are built, by repeatedly
applying operators such as logical
disjunction and implication. We
can define the semantics (or mean-
ing) of well-formed formulas of a
logic using an appropriate model.

For example, the model for a
protocol Q could be the set ℳQ
of all possible protocol executions,
starting from any initial configu-
ration. We could then define the
semantics of a protocol logic using
this model to capture the intui-
tive idea that a protocol satisfies a
property expressed in the logic if
and only if the property holds for
all executions in ℳQ.

partial overview of how logical
methods—in particular, methods
for reasoning about system secu-
rity and for enforcing security and
privacy policies—contribute to
this discipline.

Applying logic to computer
security and privacy offers long-
term benefits, including the devel-
opment of a scientific foundation
that informs how we think about
and teach security as well as de-
sign, implement, and analyze se-
cure systems.

Reasoning about
System Security
Reasoning about system security
requires methods for proving that a
given security mechanism, such as
a network protocol or Web brows-
er, achieves the desired security
property even in the presence of a
well-defined class of adversaries.

Consider the problem of en-
abling secure communication over
an untrusted network, such as the
Internet. One security mechanism
for this task is the SSL protocol,
which users employ when bank-
ing online, for example. SSL uses
cryptographic primitives such as
public key encryption and digital sig­
natures to provide security proper-
ties such as authentication and data
confidentiality and integrity. Authen-

tication assures a user that he or
she is interacting with the bank—
not some adversary masquerading
as the bank—while data confiden-
tiality and integrity implies that
only the user and bank can view
and modify the account informa-
tion. These guarantees are expect-
ed to hold even in the presence of
an active adversary who can inter-
cept, inject, and remove messages
from the network.

Designing such protocols is
nontrivial, and many attacks have
been identified after a protocol’s
deployment (as in the case of the
public key Kerberos, earlier ver-
sions of SSL, and the IEEE 802.11i
wireless authentication protocol
suite). Such attacks often arise be
cause the protocols execute in a
concurrent environment. For exam-
ple, a bank’s Web server running
SSL simultaneously serves many
users. A user might also be simul-
taneously engaged in SSL sessions
with the bank and an e-commerce
website. An adversary could use
information acquired in one ses-
sion to compromise the security of
another session.

During protocol design, it’s
difficult to consider all possible
sequences of actions that could
break the desired security prop-
erty and develop a sound informal

C
omputer security and privacy is concerned

with the design, implementation, and anal

ysis of mechanisms intended to guaran-

tee that desired policies (or properties) hold

in the presence of malicious adversaries. Here, I provide a

Anupam Datta

Carnegie
Mellon
University

Logical Methods 	
in Security and Privacy

Secure Systems

	 www.computer.org/security� 73

Model Checking
Logical methods based on model
checking can help identify attacks
on a protocol Q automatically by
exhaustively checking the model
ℳQ—that is, by searching for a
possible execution of Q that does
not satisfy the desired property.
This method applies to a proto-
col’s finite configurations (such as
SSL with three servers and four
client sessions).

Early examples of model-
checking protocols include efforts
with the FDR (Failure Diver-
gences Refinement Checker) tool1
and the Murphi tool. State-of-the
art protocol model checkers, such
as those in the AVISPA (Auto-
mated Validation of Internet Se-
curity Protocols and Applications)
tool set, scale even better and have
been successfully applied to many
industrial protocols. These tools
can serve as useful aids in debug-
ging designs of complex protocols.

Protocol Logics
Although model-checking tools
can automatically identify attacks
on finite protocol configurations,
protocol logics serve the dual purpose
of proving the absence of attacks on
a protocol for an unbounded num-
ber of concurrent sessions. An early
example of a protocol logic is BAN
logic;2 a more recent example is
Protocol Composition Logic.3

The proof system for protocol
logics codify principles that proto-
col designers use to informally rea-
son about protocol security. A proof
system for a logic consists of axioms
and inference rules. We prove a theo­
rem by starting from axioms and
repeatedly applying inference rules.

For example, an axiom in the
proof system of a protocol logic
might capture the difficulty of
forging signatures by stating that
if Alice verifies Bob’s signature
on a message, and Bob is the only
principal who possesses his signing
key, then Bob must have produced
the signature. An example of an
inference rule is modus ponens,

which states that if ϕ and ϕ ⇒
ψ are provable, then so is ψ. If it’s
provable that Alice verifies Bob’s
signature on a message during a
protocol execution, then we could
use an instance of this inference
rule, together with the signature
axiom, to prove the theorem that
Bob produced the signature on
the message.

Typically, the proof system
for a logic is sound, implying that
every theorem about a protocol
Q proved using the proof system
actually holds for all executions in
ℳQ. This soundness result implies
that if we can construct a formal
proof of protocol security, then
the informal argument that the
proof codifies doesn’t contain the
kind of fallacious reasoning that is
at the heart of many errors in pro-
tocol designs.

Using soundness results to
connect proof systems to protocol
execution semantics is one differ-
ence between some of the early
protocol logics and more recent
ones. Other differences include
broader coverage of protocols and
properties and the development
of modular reasoning principles
that have enabled application of
these methods to large industrial
security protocol suites, such as
the IEEE 802.11i suite for wire-
less local area networks and the
IEEE 802.11s suite for wireless
mesh networks.

Deployment: Limitations
and Challenges
It’s important to note that the se-
curity guarantees assured by these
methods are not absolute; they
hold only in the underlying model
of protocol execution and attack.
An adversary could break the se-
curity property using capabilities
that the model doesn’t consider.

For example, we typically as-
sume that cryptographic primitives
are perfect (for example, a sig-
nature is unforgeable with prob-
ability of 1). We also often assume
that the programming language

for modeling protocols doesn’t in-
clude features such as pointers that
an implementation in a language
like C will have. Nevertheless, the
results of such an analysis have val-
ue, because they demonstrate the
absence of a large class of design-
level attacks on protocols. Indeed,
researchers are actively working on
logical methods for more refined
models that consider, for example,
complexity-theoretic models of
cryptography and features of im-
plementation languages such as C
and F#.

The study of logical methods
for reasoning about security proto-
cols has produced a significant sci-
entific foundation for this area and
resulted in methods and tools that
have impacted deployed protocols.
Although my earlier discussion
focused on protocols, related logi-
cal methods have also been devel-
oped for reasoning about security
properties of other classes of sys-
tems, including operating system
kernels, trusted computing sys-
tems, and Web platforms. Several
institutions have successfully used
these methods and tools in teach-
ing the process of secure protocol
and system design.

Specifically, before implement-
ing a completed protocol or system
design, it’s worthwhile to subject
the design to a careful analysis us-
ing, for example, model-checking
tools. Some of these tools (such
as the Murphi model checker)
are easy to use, even without any
background in formal logic. This
approach can help identify and
correct design-level flaws. How-
ever, if the model checker doesn’t
find any attacks, it doesn’t mean
that the system is secure, because
the model checker can only check
small finite configurations (usually
less than 10 concurrent sessions of
security protocols).

It’s then useful to try to prove
that the protocol or system is se-
cure using the proof system of a
logic. This step typically requires
more expertise in logic; graduate

Secure Systems

74	 IEEE SECURITY & PRIVACY

students without significant prior
experience can usually learn to
use such logics with a reasonable
amount of effort.

Enforcing Security
and Privacy Policies
In addition to reasoning about sys-
tem security, logical methods can
also be used to design and imple-
ment mechanisms for enforcement
of policies—for example, for ac-
cess control and privacy.

Consider the problem of pro-
tecting patient privacy in a hospi-
tal. The hospital’s privacy policy,
following the Health Insurance
Portability and Accountability Act
(HIPAA), could specify conditions
under which the hospital can use a
patient’s personal health informa-
tion (such as for diagnosis, treat-
ment, or billing) and share it with
entities outside the hospital (such as
the patient or his or her insurance
company). The hospital might use
a combination of security mecha-
nisms involving access control and
audits to ensure that it respects this
policy, even in the presence of
external adversaries and insiders
(hospital employees) who might
try to violate the policy.

Access Control
Access control mechanisms could
restrict access to a patient’s record
to only the set of nurses and doc-
tors who are involved in caring for
the patient (the care team). How-
ever, a care-team doctor could
delegate access rights to another
doctor standing in for him or her
on a particular day. So, doctors
could gain access to a patient’s re-
cord by providing evidence to the
reference monitor (which medi-
ates access) that reveals he or she

is either part of that patient’s care
team or was granted access rights
by a doctor in that care team.

One insight that Bulter Lamp-

son and his colleagues pointed out
is that a logic could represent ac-
cess control policy rules, such as
the ones I’ve outlined.4 A logical
proof that shows why policy rules
authorize access could constitute
sufficient evidence for the refer-
ence monitor to grant access. Fur-
thermore, logical inference and
automated proof search could im-
plement the policy rules directly.

There’s now a substantial body
of work on logic-based access
control methods and their use in
operating systems, Web security,
physical access control, file sys-
tem access control, and distributed
trust management systems. Hospi-
tals could, in principle, use similar
mechanisms to restrict access to
patient records.

In practice, many hospitals
currently use coarse-grained ac-
cess control, for example, to re-
strict access to patient records to
hospital employees based on their
roles (doctor, administrative staff,
and so on) or physical location
(for example, nurses working for
a large hospital chain might have
access to records of patients only at
the location where they work). In-
deed, it’s important to understand
what access control policies work
best in a healthcare setting, given
the need to balance easy access for
healthcare providers and patient
privacy. Once we determine the
appropriate access control policies,
we can enforce them using logic-
based access control mechanisms
(in particular, we could easily
codify role-based access control).

A remaining challenge, which
researchers are currently actively
working on, is to make logic-
based access control more usable—
for example, by developing policy
languages with easily understand-
able syntax as well as tools with us-
er-friendly interfaces for authoring
and updating policies.

Audits
Note that access control mecha-
nisms aren’t sufficient for enforc-
ing all privacy policies, such as
clauses in the HIPAA Privacy
Rule that

•	 impose conditions on transmis-
sion of various types of personal
information based on subjective
beliefs (for example, letting hos-
pital officials share protected
health information with law en-
forcement agencies if a death is
suspicious);

•	 restrict information use to speci-
fied purposes (such as treatment
or payment); and

•	 associate future obligations with
transmissions (for example, re-
quiring hospitals to respond in
a timely manner to patient re-
quests pertaining to the patient’s
protected health information).

The current practice is to re-
cord all accesses to patient records
in an audit log and rely on manual
audits to identify violations and to
hold individuals accountable for
such violations. A significant open
problem is to develop foundations
for accountability and compu-
tational methods for structuring
audits that reduce human involve-
ment in the process.

Adam Barth and his colleagues’
recent work provides a representa-
tive example of the use of logical
methods for representing and en-
forcing privacy policies.5 This effort
formalizes concepts from contextual
integrity, a philosophical account of
privacy in terms of the transmission
of personal information.

A central concept in this theo-

In addition to reasoning about system security, logical

methods can also be used to design and implement

mechanisms for enforcement of policies—for example,

for access control and privacy.

Secure Systems

	 www.computer.org/security� 75

ry is that of a context, which cap-
tures the idea that people transact
and act in society as individuals in
certain capacities or roles in dis-
tinctive social contexts, such as
healthcare, education, and bank-
ing. A communication action
transmits some type of personal in-
formation about a subject in some
role (such as personal health in-
formation about a patient) from a
sender in some role (such as Bob, a
doctor) to a recipient in some role
(such as Alice, the patient). Such
transmissions are governed by
norms of transmission that prescribe
or proscribe certain transmissions
based on the context, roles, and
type of information.

The logic of privacy that Barth
and his colleagues developed is in-
terpreted using a semantic model
of interacting agents in roles that
transmit personal information to
each other. This model includes
a record of transmission actions.
The syntax of this logic can ex-
press social norms of transmis-
sion or privacy policies codified
in laws. For example, a formula in
the logic can represent the norm
that hospitals can transmit per-
sonal health information about a
patient to a third party only if the
patient has consented to such dis-
closures. This norm would be vio-
lated in an execution that records
a transmission action from a hos-
pital to a third party of a patient’s
personal health information, but
doesn’t record a transmission ac-
tion from the patient to the hospi-
tal consenting to such disclosures.
In this way, the logic captures the
ideas of contextual integrity dis-
cussed earlier.

Subsequent work builds on
this logic to identify the logical
structure of a rich class of privacy
policies, formalizing all transmis-
sion-related clauses in the HIPAA
privacy rule. These formalizations
also serve as the starting point for
automated policy enforcement
based on a combination of logi-
cal methods that support access

control and limited forms of au-
diting. These are useful steps to
ward the development of practical
tools for enforcing privacy poli-
cies, although much work remains
to effectively enforce the entire
HIPAA rule.

Remaining challenges for
computer-assisted audits include
dealing with future obligations,
determining whether information
was used for a specified purpose,
and addressing issues stemming
from distributed audit logs (for
example, in a health informa-
tion exchange scenario involving
a network of hospitals). In ad-
dition to enforcement, we also
need to develop tools for policy
analysis that could help individu-
als understand a complex privacy
policy, such as HIPAA. The tools
could help answer questions about
whether a hospital can transmit a
certain type of information to a
patient and, if so, could produce a
list of conditions under which the
information could be transmitted.

Although I’ve used healthcare
as a motivating example, these
methods and remaining chal-
lenges apply to many other sec-
tors in which privacy is a concern,
including finance, Web services,
education, and government.

L ooking forward, logic should
continue to contribute toward

computer security and privacy by
providing general methods for
designing, implementing, and
analyzing security mechanisms.
Several existing methods and tools
for security analysis of system de-
signs are ready for wider adoption
in industry; other methods require
a certain level of background in
formal logic that could be pro-
vided by ensuring that topics like
propositional and first-order logic
receive attention in the under-
graduate computer science cur-
riculum. These steps will help
produce secure systems with prop-
erties that are better understood.

Logical methods of analysis
won’t guarantee absolute security,
but they’ll rule out large classes of
attacks and make explicit the as-
sumptions about adversary capa-
bilities and system characteristics.
Indeed, a challenge moving for-
ward is to expand the scope of these
methods to cover more detailed
models of systems and adversaries.

Logical methods will also con-
tribute toward the design and im-
plementation of new mechanisms
for enforcing privacy policies—a
major societal challenge. Spe-
cifically, we should see significant
progress in terms of foundations
and methods for audits and ac-
countability in the near future.

References
1.	 P. Ryan et al., Modelling and Anal­

ysis of Security Protocols, Addison-
Wesley, 2001.

2.	 M. Burrows, M. Abadi, and R.
Needham, “A Logic of Authenti-
cation,” ACM Trans. Computer Sys­
tems, vol. 8, no. 1, 1990, pp. 18–36.

3.	 A. Datta et al., “Protocol Compo-
sition Logic (PCL),” Electronic Notes
in Theoretical Computer Science, vol.
172, Apr. 2007, pp. 311–358.

4.	 B.W. Lampson et al., “Authen
tication in Distributed Systems:
Theory and Practice,” ACM
Trans. Computer Systems, vol. 10,
no. 4, 1992, pp. 265–310.

5.	 A. Barth et al., “Privacy and Con-
textual Integrity: Framework and
Applications,” IEEE Symp. Securi­
ty and Privacy, 2006, pp. 184–198.

Anupam Datta is an assistant research

professor at Carnegie Mellon Univer-

sity. His research interests include de-

veloping logical methods to address

problems associated with security pro-

tocols, trustworthy systems, and data

privacy. Datta has a PhD in computer

science from Stanford University. He is a

member of IEEE and the ACM. Contact

him at danupam@cmu.edu.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

