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Abstract—We present ASPIER – the first framework that
combines software model checking with a standard protocol
security model to automatically analyze authentication and
secrecy properties of protocol implementations in C. The
technical approach extends the iterative abstraction-refinement
methodology for software model checking with a domain-
specific protocol and symbolic attacker model. We have imple-
mented the ASPIER tool and used it to verify authentication
and secrecy properties of a part of an industrial strength
protocol implementation – the handshake in OpenSSL – for
configurations consisting of up to 3 servers and 3 clients. We
have also implemented two distinct methods for reasoning
about attacker message derivations, and evaluated them in
the context of OpenSSL verification. ASPIER detected the
“version-rollback” vulnerability in OpenSSL 0.9.6c source code
and successfully verified the implementation when clients and
servers are only willing to run SSL 3.0.

Keywords-security protocol; verification; model checking;
abstraction refinement.

I. INTRODUCTION

Network protocols such as SSL [1], TLS [2], Kerberos [3],

IPSec [4], and IEEE 802.11i [5] are designed to enable

secure communication over untrusted networks. However,

they are notoriously difficult to get right; the literature is

replete with serious security flaws uncovered in protocols

many years after they were first published [6], [7], [8], [9],

[10]. Over the last three decades, a variety of highly success-

ful methods and tools have been developed for analyzing the

security guarantees provided by network protocol specifica-

tions [11], [12], [13], [14], [15], [16], [6], [17], [18], [19].

Independently, in recent years, there has been significant

progress in automatically verifying non-trivial properties of

software implementations. In this context, one successful

technique is software model checking – a combination of

predicate abstraction [20] and model checking [21] with

automated abstraction refinement [22], [23].

In this paper, we present ASPIER
1—the first framework

that weds software model checking with a standard protocol

security model to analyze authentication and secrecy prop-

erties of protocol implementations in an automated manner.

We have implemented the method in the ASPIER tool and

1ASPIER is an acronym for “Automated Security Protocol
Implementation verifiER”
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Figure 1. Overall security verification framework. SSMs = specification
state machines. Shaded area represents the protocol compilation stage.

applied it successfully to establish authentication and secrecy

properties of the OpenSSL [24] implementation of the SSL

handshake protocol. We elaborate below on the three central

contributions of this paper – the verification method, the

tool, and the application to OpenSSL. We also discuss our

underlying assumptions.

Method: The ASPIER framework is depicted in Fig-

ure 1, and consists of two main stages – protocol compilation

and verification.

ASPIER PROTOCOL COMPILATION: We begin with

the C programs for the protocol and translate them into

programs in the ASPIER protocol language (presented in

Section II). Thus, a concrete ASPIER protocol is defined

by a set of programs, one for each protocol role. Protocol

compilation involves two main steps. First, calls to library

routines are replaced by their corresponding specification

state machines (SSMs) via specification inlining. The SSMs

used for specification inlining are provided as input to

ASPIER. For example, a call to an encryption function is

replaced by a SSM performing the corresponding encryption



action in the ASPIER programming language. Second, a

control flow graph (CFG) is extracted by an automated

syntactic analysis of each C program. The edges of the

CFG are labeled by appropriate statements from the ASPIER

programming language.

The design of the ASPIER protocol language is a key

contribution of this paper, and is driven by the observation

that protocol implementations involve two kinds of opera-

tions – numeric and cryptographic. The ASPIER language

is designed carefully to separate these two aspects while

allowing interaction between these two kinds of operations.

Specifically, there are two disjoint sets of variables: mes-

sage variables and numeric variables. Cryptographic actions

– such as generating new random numbers, sending and

receiving messages, pattern matching, decryption and sig-

nature verification – operate on terms (including message

variables) of a free term algebra, as in security protocol

specifications. Numeric operations – including assignments

to numeric variables, and conditionals where the value of a

numeric expression determines which branch is taken – are

just like in C.

Since numeric and cryptographic statements appear as

labels on CFG edges, we are able to model interaction

between them. This interaction is crucial for representing

realistic protocols (e.g., OpenSSL), where different program

statements involving numeric operations are executed by an

agent based on the value (e.g., version number received) of

a message variable. However, direct assignments of numeric

expressions to message variables, and message terms to

numeric variables, are disallowed. We believe that this is

a reasonable restriction since messages are constructed by

calls to library routines for encryption, signature generation

etc. Technically, this choice ensures that the term algebra

abstraction for messages is preserved; the capabilities of the

symbolic attacker can then be defined in terms of derivability

of terms in the algebra. Without this restriction, a realistic

attacker is able to operate arbitrarily on numbers (bits), and

formal analysis becomes intractable. This design choice thus

reflects tradeoffs among expressivity of the language, and

tractability of ASPIER. The separation is also explicit in the

operational semantics of the ASPIER programming language,

where cryptographic state is maintained using a context and

the attacker knowledge, while numeric state is captured by

a store (see Section II-C and Figure 6 for details).

VERIFICATION: Once the C programs are translated

into a concrete ASPIER protocol, we verify that they satisfy

the desired security properties. However, this cannot be

achieved via direct reachability analysis since the concrete

protocol is an infinite state system. We therefore use a com-

bination of predicate abstraction [20] with counterexample

guided abstraction refinement (CEGAR) [22]. Predicate ab-

straction represents an infinite set of memory configurations

with a valuation to a set of predicates involving program

variables (e.g., x > 0), and yields a finite abstract model

of the concrete protocol. CEGAR refines the abstract model

iteratively to a level of detail needed for proving the security

property, following the steps below:

1. Abstraction: This step automatically extracts an ab-

stract ASPIER model M of the concrete protocol via AS-

PIER’s predicate abstraction. The main challenge that we

address involved developing a uniform finite model that

combines predicate abstraction for C-style code, proto-

col actions, and a symbolic attacker model [25], [26].

Technically, this involves abstracting the numeric state via

predicates over the store variables, retaining the concrete

cryptographic state, and handling unbounded depth attacker

computations via automated deduction techniques (cf. [27],

[28]). The abstraction yields a finite model because: (i)

numeric unboundedness is handled via predicate abstraction,

and (ii) cryptographic unboundedness is handled by the term

abstraction, and the requirement that only bounded messages

are exchanged over the network. Our main technical result

(Theorem 1) is that this abstraction is sound. Specifically,

for a security property ϕ, if M satisfies ϕ, then the concrete

system also satisfies ϕ. Section III explains this step in detail.

2. Verification: Our verification approach combines

model checking with theorem proving. We use reachability

analysis to verify that M |= ϕ. ASPIER’s verification covers

all possible connection topologies, i.e., functions mapping

each client session C to the server with which C initiates

a connection. To improve scalability, ASPIER verifies each

possible connection topology separately, thereby trading off

time for space. In addition, we use symmetry reduction to

reduce the number of connection topologies to be verified,

without losing coverage. Section V has more details on these

optimizations. If verification succeeds, since M is a sound

abstraction, we exit with “System Secure”. Otherwise, we

obtain a counterexample CE and proceed to Step 3.

3. Counterexample Validation: We check whether CE

is a real counterexample, i.e., it concretizes to a real attack.

This step yields one of three possible results. First, if we

determine that CE is a real counterexample, we exit with

“Real Attack” and a concretization of CE . Second, if we

find that CE does not concretize to any real attack, i.e., CE

is spurious, we proceed to Step 4. Finally, if we are unable

to determine whether CE concretizes to a real attack or not

(this is possible since the counterexample validation problem

is undecidable), we exit with “Unknown”. ASPIER’s coun-

terexample validation requires an extension to the standard

CEGAR approach to account for protocol actions in addition

to standard program statements. The technical difference

shows up in the definition of weakest preconditions, where

protocol actions are treated like NOPs. This is because

protocol actions do not directly affect the values of numeric

variables in our model. Section IV explains this step in

detail.

4. Refinement: We use the spurious CE to update the

abstraction information and repeat from Step 1. The main



property ensured by the refinement process is that CE does

not arise as a counterexample in the refined model. This step

is standard from previous work. Section IV explains this step

in detail.

Tool: We implemented the ASPIER framework by ex-

tending the COPPER tool [29]. Specifically, we augmented

each stage of COPPER’s CEGAR engine to support ASPIER’s

concrete and abstract model. We also implemented two

mechanisms for handling unbounded attacker computations

via automated deduction techniques. The ASPIER implemen-

tation is presented in Section V.

Application: We used ASPIER to establish authentica-

tion and secrecy properties of the OpenSSL [24] implemen-

tation of the SSL handshake protocol. When clients and

servers implement only SSL 3.0, ASPIER verifies authenti-

cation and secrecy properties of OpenSSL for configurations

comprising of up to 3 servers and 3 clients. When clients and

servers implement both SSL 2.0 and SSL 3.0 and negotiate

the version during handshake, ASPIER detects the “version

rollback” attack whereby an intruder can force a server

and a client to use SSL 2.0 even when both intend to use

SSL 3.0. To our knowledge, our results are the first of its

kind concerning OpenSSL. We observe that CEGAR works

well for this application because predicate abstraction over

OpenSSL’s branch conditions exposes a sufficiently precise

control flow skeleton. Further details about our OpenSSL

case study are presented in Section VI.

Assumptions and Limitations: The current ASPIER im-

plementation treats floating point data as integers, and bit-

wise operations as uninterpreted functions. Pointers are also

not treated soundly. These limitations arise from COPPER,

the underlying model checker. Some of them (e.g., treatment

of pointers) are addressable by porting ASPIER to a different

model checking engine (e.g., SLAM [23] or BLAST). Oth-

ers, such as the proper treatment of floating points during

software analysis, are open problems. We note that in the

context of our OpenSSL case study, these limitations were

relevant only within the bodies of library routines replaced

by SSMs. Thus, they were handled via our assumption that

the SSMs used as input to ASPIER are sound abstractions of

their corresponding library routines.

We also assume that the control flow graph accurately

represents the possible executions of the program. We be-

lieve that this assumption is dischargable via orthogonal

techniques (for example, Control Flow Integrity [30]). De-

tecting low-level security issues, such as buffer overflows,

also require other program analysis methods [31]. Inspite of

these restrictions, we found ASPIER to be useful in reasoning

about an industrial strength protocol implementation.

Running Example: We use ASPIER to verify authen-

tication and secrecy properties of the OpenSSL 0.9.6c im-

plementation of SSL 3.0 handshake. Figures 2(a) and 2(b)

show simplified versions of the OpenSSL client and server

code respectively. Figure 2(c) shows the CFG extracted

from the client code. The client function implements

the role of a protocol initiator with three parameters: (a)

i – identity of thread executing client role, (b) r – identity

server with which client wishes to communicate, and (c) v –

version of SSL client wishes to use. Similarly, the server

function implements the role of a protocol responder with

two parameters: (a) r – identity of the thread executing the

server role, and (b) v – version of SSL server wishes to use.

A program running client (or server) essentially

executes a finite state machine with four states. In each state,

the program sends or receives an appropriate message via

a library routine call. For example, s_c_hello sends a

client_hello message to the server, while r_c_hello

receives a client_hello message from a client. The

sequence of messages sent and received corresponds to the

SSL specification. We use the program in Figure 2 as a

running example to illustrate our approach. Even though

we use a simplified version of OpenSSL to illustrate our

approach, our experiments were performed on benchmarks

derived from actual OpenSSL source code.

II. CONCRETE PROTOCOL MODEL AND PROPERTIES

In this section, we describe the syntax and semantics

(i.e., concrete model) of the ASPIER protocol language. The

language supports cryptographic operations, communication

actions, assignments, conditionals, and loops. We also define

authentication and secrecy in the concrete model.

A. Protocol Language Syntax

We assume the following denumerable and mutually

disjoint sets: (a) MConst ,MVar : message constants and

variables, (b) Z,NVar : numeric (integer) constants and

variables, (c) SId : session ids, (d) Name: principal names,

(e) Nonce: nonces (globally unique numbers), and (f) K :

symmetric keys.

Messages. Messages are defined by a free term algebra.

The set Key of keys is defined in BNF format as follows:

Key = K | privkey(Name) | pubkey(Name)

The set Term of terms in our term algebra is defined as

follows:

Term = MConst | MVar | SId | Nonce | Key | {Term}Key

| Sig(privkey(Name),Term) | HashK (Term) | (Term,Term)

where {t}k denotes the encryption and decryption of t

with k, Sig(privkey(N), t) denotes N ’s signature over the

message t, and Hashk(t) denotes the keyed hash over

message t using key k. For any key k ∈ Key , we use

the notation k−1 to refer to its (unique) reverse key. Also,

(t1, t2) denotes a pair of messages t1 and t2. A message is a

ground term (i.e., a term without any variables). The set of

all messages is denoted by Msg . We assume that terms are

implicitly typed to avoid confusion, e.g., between a signature

and a nonce.



(a)

void client(int i,r,v)

{

int s = 0;

while(1) {

if(s == 0) {

s_c_hello(...);

} else if(s == 1) {

v = r_s_hello(...);

} else if(s == 2) {

s_c_verify(...);

} else if(s == 3) {

r_s_finished(...);

} else return;

++s;

}

}

(b)

void server(int r,v)

{

int i,s = 0;

while(1) {

if(s == 0) {

v = r_c_hello(...);

} else if(s == 1) {

s_s_hello(...);

} else if(s == 2) {

r_c_verify(...);

} else if(s == 3) {

s_s_finished(...);

} else return;

++s;

}

}

(c)

3

4

5

Rest of the

CFG of the

client program

s := 0

[s == 0]

1

2 [s != 0]

[s == 1] [s != 1]

[s == 2]s_c_hello()

s_c_verify()

v := r_s_hello()

s := s + 1

[s != 2]

Figure 2. An implementation of a two-party signature-based challenge-response protocol: (a) client code; (b) server code; (c) client CFG.

Actions. Protocol actions include sending and receiving

messages, generating nonces, creating messages, decryption,

and pattern matching. The set Act of actions is defined as

follows:

Act = new MVar | send Term | recv Term

| MVar := Msg

where: (a) new v denotes creating a fresh nonce and storing

it in v, (b) send t denotes sending a message, (c) recv t

denotes receiving a message and matching it to t, and (d)

v := m denotes assigning m to v. Note that decryption and

signature verification are implemented via pattern matching.

Statements. Let Expr be a set of expressions defined

over Z and NVar using the standard set of numeric (+, -,

* etc.), relational (<,>,= etc.), and Boolean (∧,∨,¬ etc.)

operators. The set Stmt of statements is defined as follows:

Stmt = Act | NVar := Expr | assume Expr

Context. A context represents an assignment of messages

to message variables. Formally, a context ν : MVar →֒ Msg

is a partial mapping from message variables to messages.

The set of all contexts is denoted by C. We write {v = m}
to denote the singleton context that maps v to m. For any

contexts ν1 and ν2 with domains D1 and D2 respectively, we

write ν1 ⊲⊳ ν2 to mean the context ν such that the following

hold:

Dom(ν) = D1 ∪ D2

∧
∀v ∈ D1 \ D2 � ν(v) = ν1(v)

∧

∀v ∈ D2 � ν(v) = ν2(v)

For any context ν, and any term t, we write ν[t] to mean

the message obtained by replacing each variable v in t with

ν(v). If t contains a variable v such that v 6∈ Dom(ν), then

ν[t] is undefined (written as ν[t] = ⊥).

Protocol. A role is a 4-tuple (S, I, P, T ) where: (i) S is

a finite set of control-flow-graph (CFG) nodes, (ii) I ∈ S

is an initial CFG node, (iii) P ⊆ MVar is a set of input

parameters, and (iv) T ⊆ S×Stmt×S is a transition relation

where each transition is labeled with a statement. A protocol

is a set of roles.

A thread is an instance of a role executed by a princi-

pal. Each thread is identified by a principal name and a

unique thread id, and an assignment of values to the role

parameters. Formally, a thread is a 5-tuple (Id , ν, S, I, T )
where: (i) Id = (η,N) is the thread identifier comprising of

a session id η and a name N , (ii) ν is a context, and (iii)

(S, I,Dom(ν), T ) is the role instantiated by the thread.
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Figure 3. SSMs for library routines called by client procedure from
Fig. 2(a).

Example 1: Recall that our running example protocol

consists of two roles: client and server. Figure 3 shows the

SSMs for some of the library routines called by client.

The control flow graph (CFG) of the client role is derived

via specification inlining from the client CFG shown in

Figure 2(c). Figure 4 shows a fragment of the resulting client

role CFG. Each client role CFG node shares its shape and

name with its corresponding SSM state.

Figure 4 uses the following convention: (i) [e] ≡
assume e; (ii) t! ≡ send t; (iii) #n ≡ message

constant n; (iv) {t}t′ ≡ {t}t′ ; (v) (t1, . . . , tn)
≡ (t1, (. . . (tn−1, tn) . . . ); (vi) S is the server’s

name; (vii) C is the client’s name; (viii) CA



is the certifying authority’s name; (ix) n, n′ are

nonces; (x) Sec is the client’s secret; (xi) TR2 ≡
(S,C, n′,#2,Sig(privkey(CA), (S, pubkey(S)))); (xii)

TR3 ≡ (S,C, n′,#3,Sig(privkey(CA), (S, pubkey(S))));
(xiii) TS2 ≡ (C,S,Sig(privkey(CA), (C, pubkey(C))),
Sig(privkey(C),HS 2), {Sec}pubkey(S),HashSec(HS 2))
where HS 2 ≡ all previous messages sent and received

by the client excluding the version number; (xiv)

TS3 ≡ (C,S,Sig(privkey(CA), (C, pubkey(C))),
Sig(privkey(C),HS 3), {Sec}pubkey(S),HashSec(HS 3))
where HS 3 ≡ all previous messages sent and received by

the client including the version number.

Note the interaction between messages and numeric data

in the client. First, the constant (#2 or #3) in the message

sent by s_c_hello depends on the value of the numeric

variable v denoting the version of SSL that the client wishes

to use. Next the value (2 or 3) of v is set depending

on the constant (#2 or #3) in the message received by

r_s_hello. Finally, the contents of the message sent by

s_c_verify depends on the new value of v. The key

difference between SSL 2.0 and 3.0 in terms of the message

sent by s_c_verify is that former does not include the

version numbers in encrypted form, while the latter does.

This leads to the “version-rollback” attack in SSL 2.0, as

we discuss later in Section VI.

The input parameters i and r are instantiated with names

C and S of the client and the server respectively. The name

C appears as part of the thread identifier as well. In summary

the thread is (Id , ν, S, I, T ) where: (i) Id = (η,C), (ii) ν =
{i = C, r = S}, (iii) S = {1, 2, . . . }, (iv) I = 1, and (v) T

is as shown in Figure 4.

B. Protocol Language Semantics: Preliminaries

In this section, we present some basic concepts used for

describing the semantics of a protocol. We begin with stan-

dard concepts from protocol specification analysis: attacker

capabilities and knowledge, and a context that describes the

values of various message variables in the different role

instances as they execute. The execution of the protocol

actions updates the context and the attacker knowledge as

described formally by the transition rules in Figure 6.

We then augment the formalism with a store which keeps

track of the mapping of numeric variables to constants. The

store is updated by assignment actions (see the last rule in

Figure 6); values of numeric variables read from the store

affects the control flow of the program via the conditionals

that appear in the CFG (as illustrated in Figure 2(c)).

Attacker Model. We use the standard symbolic (Dolev-

Yao) attacker model [26], [25]. The attacker capabilities are

represented via the inference rules shown in Figure 5, where

Γ ⊢ m means that the attacker can compute message m

from the set Γ of messages. In addition, the attacker can

generate nonces and message constants. The attacker has

complete control over the network: it can intercept every

Γ ⊢ m ∧ Γ ⊢ k =⇒ Γ ⊢ {m}k

Γ ⊢ {m}k ∧ Γ ⊢ k−1 =⇒ Γ ⊢ m

Γ ⊢ m ∧ Γ ⊢ k′ =⇒ Γ ⊢ Sig(k′,m)

Γ ⊢ m ∧ Γ ⊢ k =⇒ Γ ⊢ Hashk(m)

Γ ⊢ m1 ∧ Γ ⊢ m2 =⇒ Γ ⊢ (m1,m2)

Γ ⊢ (m1,m2) =⇒ Γ ⊢ m1 ∧ Γ ⊢ m2

Figure 5. Attacker message derivation rules; k
′ = privkey(N) for name

N .

message sent on the network and send messages that it can

construct (using the above inference rules) to honest parties.

Finally, the attacker has an identity on the network, i.e. a

name and corresponding private and public keys. We use Γ
(with decorations) to denote the attacker’s knowledge.

Context and Protocol Actions. Recall that a context

maps message variables (that appear in role instances) to

messages. Protocol actions such as sending and receiving

messages updates the context and the attacker knowledge

as depicted in Figure 5. The semantics of most protocol

actions is standard. However, pattern matching during a

message receive (which is used to model operations such

as projection, decryption and signature verification) uses a

function match. Specifically, match : Msg × Term →֒ C
takes a message m and a term t and returns a context ν such

that m = ν[t] and the domain of ν is equal to the set of

variables in t. If no such context exists, then match(m, t)
is undefined and is denoted by ⊥.

In subsequent sections, we present the concrete and ab-

stract semantics of ASPIER protocols. However, we note

here that, since we combine message receives with pattern

matches, the non-determinism due to a message receive in

both the concrete and abstract semantics of ASPIER protocols

is always finite. This holds even when the attacker is able

to construct an infinite number of possible messages. The

finite non-determinism property is crucial to ensure that the

abstract model of any ASPIER protocol is finite-state, which

in turn is necessary for model checking.

Store. A store represents an assignment to numeric vari-

ables. Formally, a store σ : NVar 7→ Z is a mapping

from numeric variables to constants. The set of all stores

is denoted by S. For any store σ, and any expression e,

we write σ[e] to mean the integer obtained by replacing

each variable v in e with σ(v) and then performing standard

arithmetic operations. For any σ ∈ S, v ∈ NVar and c ∈ Z,

σ ⊲⊳ {v = c} is the store σ′ such that:

∀v′ ∈ NVar �(v′ = v∧σ′(v′) = c)∨(v′ 6= v∧σ′(v′) = σ(v′))

Environment. An environment for a thread T is a triple

(σ, ν,Γ)T such that σ ∈ S, ν ∈ C and Γ ⊆ Msg . The set
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[s != 2]

recv TR3recv TR2

Figure 4. Client role derived via specification inlining using CFG in Fig. 2(c), and library routine SSMs from Figure 3. Shaded parts are derived from
SSMs.

RMsg
new v = {(ν,Γ, ν′,Γ′) | ν′ = ν ⊲⊳ {v = n} ∧ Γ′ = Γ} where n is a fresh nonce

RMsg
send t = {(ν,Γ, ν′,Γ′) | (ν[t] 6= ⊥) ∧ (ν′ = ν) ∧ (Γ′ = Γ ∪ {ν[t]})}

RMsg
recv t = {(ν,Γ, ν′,Γ′) | ν′ = ν ⊲⊳ match(m, t) ∧ Γ ⊢ m ∧ Γ′ = Γ}

RMsg
v:=m = {(ν,Γ, ν′,Γ′) | ν′ = ν ⊲⊳ {v = m} ∧ Γ′ = Γ}

RS
v:=e = {(σ, σ′) | σ′ = σ ⊲⊳ {v = σ[e]}} RS

assumee = {(σ, σ) | σ[e] 6= 0}

Figure 6. Transformer rules for statements.

S × C × 2Msg of all environments is denoted by E . For

any environment E = (σ, ν,Γ)T , we write Eσ , Eν and

EΓ to mean σ, ν and Γ respectively. Environments model

concrete information available to the thread and the attacker

during the thread’s execution. Specifically, an environment

(σ, ν,Γ)T means that the thread T ’s numeric and messages

variable binding is σ and ν respectively, while Γ is the set

of all messages sent out on the network (and thus available

to the attacker). We omit the superscript when the thread T
is clear from the context.

Environment Transformer. We view a statement as an

environment transformer. Action statements only transform

the ν and Γ components of an environment, while non-action

statements transform only the σ component of an environ-

ment. Thus, we first present these transformers separately.

1) For any action statement St , the transformer relation

RMsg
St ⊆ C × 2Msg × C × 2Msg is shown in Figure 6.

For any non-action statement St , RMsg
St is the identity

relation.

2) For any non-action statement St , the transformer re-

lation RS
St ⊆ S × S is shown in Figure 6. For any

action statement St , RS
St is the identity relation.

3) Finally, for any statement St , the concrete transformer

relation RSt ⊆ E × E is defined as follows:

RSt = {((σ, ν,Γ), (σ′, ν′,Γ′)) |

(σ, σ′) ∈ RS
St ∧ (ν,Γ, ν′,Γ′) ∈ RMsg

St }

C. Protocol Language Concrete Semantics

We defined protocols and threads in Section II-A. We now

define how a finite number of threads execute concurrently.

This is meant to capture the scenario where, for example, 3
client and 2 server threads of SSL are running concurrently.

The formal definition is presented using Labeled Transition

Systems (LTSs). Note that this model is similar to those

used for protocol analysis. The presentation of the model is

different because we want to align it with models used for

software model checking. We begin by defining LTSs.

Labeled Transition System (LTS). An LTS is a 4-tuple

M = (S, I,Σ, T) such that: (i) S is a set of states, (ii) I ⊆ S

is the set of initial states, (iii) Σ is an alphabet of events,

and (iv) T ⊆ S × Σ × S is the transition relation.

Concrete Thread Model. Let T = (Id , ν, S, I, T ) be a

thread. Let us write EI to mean S × {ν} × {Γ0} where

Γ0 ⊆ Msg denotes the attacker’s initial knowledge. Then

the concrete model of T is the LTS M(T ) = (S, I,Σ, T)



such that (i) S = S × E , (ii) I = {I} × EI , (iii) Σ =
(Stmt × {Id}) ∪ {m# | m ∈ Msg}, and:

T = {((s,E), (St , Id), (s′, E′)) | (s,St , s′) ∈ T ∧ (E,E′) ∈

RSt}
⋃

{((s,E),m#, (s,E)) | s ∈ S ∧ E ∈ E ∧ EΓ ⊢ m}

The different components of the LTS can be understood as

follows: (i) states are represented by the states of the CFG

together with an environment that maps variables (message

and numeric) to values and keeps track of the attacker

knowledge; (ii) the initial states are obtained by combining

the initial state of the CFG with an initial environment;

(iii) the alphabet of events consists of protocol statements

along with the identifier of the thread that executed the

statement; (iv) a transition ((s,E), (St , Id), (s′, E′)) exists

in the LTS if the edge between s and s′ on the CFG is labeled

by the statement St ; as a consequence, the environment

E is updated to E′ following the environment transformer

relation. The event m# indicates that the attacker derived

m and sent it out, i.e. the secrecy of m has been violated.

This is a special transition used to specify secrecy.

Concrete Thread Composition. We assume that threads

execute asynchronously and have disjoint sets of variables.

We now present the concrete model of the composition of

two threads (our model generalizes naturally to an arbitrary

but finite number of threads). Let T1 = (Id1, ν1, S1, I1, T1)
and T2 = (Id2, ν2, S2, I2, T2) be two threads and let

M(T1) = (S1, I1,Σ1, T1) and M(T2) = (S2, I2,Σ2, T2)
be their respective concrete models. Let EI = S × {ν1 ⊲⊳

ν2} × {Γ0}. Then the composed model of the two threads

M(T1, T2) is the LTS (S, I,Σ, T) such that: (i) S = S1 ×
S2 × E , (ii) I = {I1} × {I2} × EI , (iii) Σ = Σ1 ∪ Σ2, and:

T = {((s1, s2, E),X, (s′1, s
′
2, E

′))}

such that for i ∈ {1, 2}, the following holds: if X ∈ Σi then

((si, E),X, (s′i, E
′)) ∈ Ti, otherwise (si = s′i).

D. Security Properties and Satisfaction

For any sequence w and any set u of events, we write

w ⇃ u to mean the subsequence of w obtained by eliding

events not in u. For instance, 〈α, γ, β, β, γ, β, α〉 ⇃ {α, γ} =
〈α, γ, γ, α〉. We deal with two types of security properties

– authentication and secrecy. Let M = (S, I,Σ, T) be any

concrete model.

Authentication. An authentication property ϕ ensures

that certain events always happen in a specific or-

der. It is specified by a finite sequence of events

〈α1, . . . , αn〉. A counterexample to ϕ is a finite sequence

〈q0, b1, q1, . . . , bk, qk〉 such that: (i) q0 ∈ I, (ii) ∀1 ≤
i ≤ k � (qi−1, bi, qi) ∈ T, (iii) bk = αn, and (iv)

〈b1, . . . , bk〉 ⇃ {α1, . . . , αn} 6= 〈α1, . . . , αn〉.
For example, a possible authentication

property is specified by the event sequence

〈(α1, Id1), (α2, Id2), (α3, Id1), (α4, Id2)〉 where Id1

is the thread identifier of the client role, Id2 is the thread

identifier of the server role, and 〈α1, α2, α3, α4〉 is the

sequence of messages exchanged between a client and

server during a correct run of the SSL handshake.

Secrecy. A secrecy property ϕ ensures the inability of the

attacker to compute a specific message m. A counterexample

to ϕ is a finite sequence q0, b1, q1, . . . , bk, qk such that: (i)

q0 ∈ I, (ii) ∀1 ≤ i ≤ k�(qi−1, bi, qi) ∈ T, and (iii) bk = m#.

For OpenSSL, m is the secret generated by the client role.

Property Satisfaction. The composition of threads

T1, . . . , Tn satisfies a property ϕ iff M(T1, . . . , Tn) satisfies

ϕ. Let Q be a protocol with n roles. A configuration Conf

of Q is a function from {1, . . . , n} to natural numbers.

Intuitively, Conf (i) is the number of threads instantiating

the ith role of Q. Then Q satisfies a property ϕ under Conf

iff every composition (obtained by instantiating the input

parameters) of
∑

i Conf (i) threads (with the first Conf (1)
threads instantiating the first role, the next Conf (2) threads

instantiating the second role, and so on) satisfies ϕ.

III. ABSTRACT PROTOCOL MODEL AND SOUNDNESS

Even though authentication and secrecy are reachability

properties, they cannot be verified via direct reachability

analysis of the concrete protocol since, in general, the

concrete model has an infinite set of states. To overcome

this problem, ASPIER performs reachability analysis on an

abstract protocol model. In this section, we describe how the

abstract model is extracted automatically from the concrete

protocol using predicate abstraction. In the abstract model,

sets of stores are represented in terms of predicates that they

satisfy (e.g. x > 0). This enables us to represent an infinite

set of concrete states (i.e., stores) using a finite set of abstract

states (i.e., predicates). The main result of this section is

a soundness theorem (Theorem 1), which states that if a

security property holds in the abstract protocol model, then

it also holds in the concrete (real) protocol model2.

A. Abstract Protocol Model

We begin with the concepts behind predicate abstraction.

Predicate. A predicate is an expression. Let P be a set

of predicates. A valuation V of P is a function from P to

{TRUE, FALSE}. The set of all valuations of P is denoted

by VP . Given a store σ, we write VP(σ) to mean the unique

valuation of P defined as follows:

∀p ∈ P � (VP(σ)(p) = TRUE ⇐⇒ σ[p] 6= 0)

Note that we use C-style semantics to convert between

expressions and Boolean formulas, i.e., something is TRUE

iff it is non-zero.

2Note, however, that the failure of a property in the abstract model does
not imply its failure in the concrete model. ASPIER’s behavior in such
situations is the topic of the next section.



Concretization. The concretization of V , denoted by

γ(V ), is the expression defined as follows:

γ(V ) =
∧

p∈P

γV (p)

where V (p) =⇒ γV (p) = p and ¬V (p) =⇒ γV (p) =
¬p.

Weakest Precondition. The weakest precondition of an

expression e with respect to a statement St , denoted by

WP{e}[St ] is defined as follows: (a) WP{e}[v := e′] is

obtained by replacing every occurrence of v in e with e′,

(b) WP{e}[assume e′] = e∧ e′, and (c) WP{e}[Act ] = e.

Abstract Transformer. In predicate abstraction [20], ev-

ery statement is viewed as a predicate valuation transformer.

Specifically, for any statement St and predicate set P , the

transformer relation RV
St,P ⊆ VP×VP is defined as follows:

RV
St,P = {(V, V ′) | γ(V ) ∧WP{γ(V ′)}[St ] is satisfiable}

Intuitively, V is related to V ′ by the abstract transformer

RV
St,P if there are stores σ and σ′ such that V = V (σ),

V ′ = V (σ′), and there is a concrete transition from σ

to σ′. We use an automated theorem prover to check for

the satisfiability of γ(V ) ∧ WP{γ(V ′)}[St ]. If the theo-

rem prover does not return a definite answer, we assume

that γ(V ) ∧ WP{γ(V ′)}[St ] is satisfiable to preserve the

soundness of our abstraction. The following fact, which we

state without proof, describes the precise correspondence

between store transformers and predicate valuation trans-

formers. It is used later on (see Lemma 1) to prove a similar

correspondence between concrete and abstract environment

transformers.

Fact 1: For any set of predicates P and any statement St :

∀σ, σ′ ∈ S � (σ, σ′) ∈ RS
St =⇒ (VP(σ), VP(σ′)) ∈ RV

St,P

Abstract Environment. An abstract environment corre-

sponds to an environment where all numerical data is repre-

sented as predicate valuations. Let P be a set of predicates.

Then the set of all abstract environments over P , denoted

by ÊP , is VP×C×2Msg . For any environment E = (σ, ν,Γ)
we write Ê to mean the corresponding abstract environment

(VP(σ), ν,Γ). The predicate valuation transformer RV
St,P

described above naturally induces an abstract environment

transformer RSt,P ⊆ ÊP × ÊP as follows:

RSt,P = {((V, ν,Γ), (V ′, ν′,Γ′)) |

(V, V ′) ∈ RV
St,P ∧ (ν,Γ, ν′,Γ′) ∈ RMsg

St }

Note that RSt,P is computable since both RV
St,P and RMsg

St

are computable. The following lemma describes the precise

correspondence between concrete and abstract environment

transformers. It is used subsequently (see Lemma 2 and

Theorem 1) to prove the critical soundness result about our

abstraction.

Lemma 1: For any set of predicates P and any statement

St :

∀E,E′ ∈ E � (E,E′) ∈ RSt =⇒ (Ê, Ê′) ∈ RSt,P

Proof: Let E = (σ, ν,Γ) and E′ = (σ′, ν′,Γ′)
such that (E,E′) ∈ RSt . From the definition of RSt

we know that (σ, σ′) ∈ RS
St and (ν,Γ, ν′,Γ′) ∈ RMsg

St .

Then, by Fact 1, we know that (VP(σ), VP(σ′)) ∈ RV
St,P .

Hence, from the definition of RSt,P , we know that

((VP(σ), ν,Γ), (VP(σ′), ν′,Γ′)) ∈ RSt,P , which is what we

want.

Abstract Thread Model. Let T = (Id , ν, S, I, T ) be a

thread, and P be a set of predicates. Let us write ÊI to

mean VP × {ν} × {Γ0} where Γ0 ⊆ Msg is the attacker’s

initial knowledge. Then the model of T over P is the LTS

M(T ,P) = (S, I,Σ, T) such that (i) S = S × ÊP , (ii) I =

{I} × ÊI , (iii) Σ = (Stmt × {Id}) ∪ {m# | m ∈ Msg},

and T is the following relation:

{((s, Ê), (St , Id), (s′, Ê′)) | (s,St , s′) ∈ T∧(E,E′) ∈ RSt,P}
⋃

{((s, Ê),m#, (s, Ê)) | s ∈ S ∧ Ê ∈ Ê ∧ EΓ ⊢ m}

Example 2: Recall, from Figure 4, our example client

thread T = (Id , ν, S, I, T ) where: (i) Id = (η,C), (ii)

ν = {i = C, r = S}, (iii) S = {1, 2, . . . }, (iv) I = 1,

and (v) T is as shown in Figure 4. Let P = {p0, p1, p2, v2}
be a set of predicates such that p0 ≡ (s == 0), p1 ≡
(s == 1), p2 ≡ (s == 2) and v2 ≡ (v == 2). Then

the thread model M(T ,P) is the LTS some of whose

important transitions are shown in Figure 7.

Abstract Thread Composition. Let T1 =
(Id1, ν1, S1, I1, T1) and T2 = (Id2, ν2, S2, I2, T2) be

two threads and let M(T1,P) = (Ŝ1, Î1,Σ1, T̂1) and

M(T2,P) = (Ŝ2, Î2,Σ2, T̂2) be their abstract models over

some P . Let ÊI = VP × {ν1 ⊲⊳ ν2} × {Γ0}. Then the

composed model of the two threads M(T1, T2,P) is the

LTS (Ŝ, Î,Σ, T̂) such that: (i) Ŝ = S1 × S2 × ÊP , (ii)

Î = {I1} × {I2} × ÊI , (iii) Σ = Σ1 ∪ Σ2, and (iv) T̂ is

defined as follows:

T̂ = {((s1, s2, E),X, (s′1, s
′
2, E

′))}

such that for i ∈ {1, 2}, the following holds: if X ∈ Σi then

((si, E),X, (s′i, E
′)) ∈ T̂i, otherwise (si = s′i).

B. Soundness of Abstract Model

Simulation relations between LTS’s are useful for speci-

fying and reasoning about properties. Later in this section,

we prove that the LTS corresponding to the concrete (real)

protocol is simulated by the LTS for the abstract protocol

model (Lemma 2) and use this result to justify the soundness

of the approach (Theorem 1).

Simulation. An LTS M1 = (S1, I1,Σ, T1) is said to be

simulated [32] by an LTS M2 = (S2, I2,Σ, T2) (written as



(1, {¬p0,¬p1,¬p2, v2}, (ν,Γ0))
(s:=0,Id)
−→ (2, {p0,¬p1,¬p2, v2}, (ν,Γ0))

(2, {p0,¬p1,¬p2, v2}, (ν,Γ0))
(assume(s==0),Id)

−→ (A, {p0,¬p1,¬p2, v2}, (ν,Γ0))

(A, {p0,¬p1,¬p2, v2}, (ν,Γ0))
(α1,Id)
−→ (B, {p0,¬p1,¬p2, v2}, (ν ⊲⊳ {n = n0},Γ0))

(B, {p0,¬p1,¬p2, v2}, (ν,Γ0))
(α2,Id)
−→ (C, {p0,¬p1,¬p2, v2}, (ν ⊲⊳ {n = n0},Γ0))

Figure 7. Some sample transitions in the abstract composed model of our example. n0 is a nonce; α1 ≡ new n; α2 ≡ assume(v == 2).

M1 � M2) iff there exists a relation R ⊆ S1 × S2 such that

the following two conditions hold:

∀s1 ∈ I1 � ∃s2 ∈ I2 � s1 R s2 (INIT)

∀s1, s
′
1 ∈ S1�∀s2 ∈ S2�∀a ∈ Σ�s1 R s2∧(s1, a, s′1) ∈ T1 =⇒

∃s′2 ∈ S2 � (s2, a, s′2) ∈ T2 ∧ s′1 R s′2 (STEP)

Lemma 2 (Simulation): Let T1 and T2 be two threads, and

P be a set of predicates. Then:

M(T1, T2) � M(T1, T2,P)

Proof: Let M(T1, T2) = (S, I,Σ, T) and

M(T1, T2,P) = (Ŝ, Î,Σ, T̂). Consider the relation

R ⊆ S × Ŝ defined as follows:

R = {((s1, s2, E), (s1, s2, Ê)) | (s1, s2, E) ∈ S}

We now prove that R is a simulation relation. For the INIT

condition, note that:

∀(s1, s2, E) ∈ I � (s1, s2, Ê) ∈ Î

For the STEP condition, suppose that

((s1, s2, E), α, (s′1, s
′
2, , E

′)) ∈ T. W.l.o.g, suppose

that ((s1, E), α, (s′1, E
′)) ∈ T1. Then from Lemma 1

and the definition of T1 and T̂1, we know that

((s1, Ê), α, (s′1, Ê
′)) ∈ T̂1. Hence, from the

definition of T̂, ((s1, s2, Ê), α, (s′1, s
′
2, Ê

′)) ∈ T, and

((s′1, s
′
2, E

′), (s′1, s
′
2, Ê

′)) ∈ R

Theorem 1 (Soundness): Let T1 and T2 be two threads,

and P be a set of predicates. Then, for any security property

ϕ:

M(T1, T2,P) |= ϕ =⇒ M(T1, T2) |= ϕ

Proof: We prove the contrapositive. Let ϕ be

an authentication or secrecy property. W.l.o.g. let

CE = 〈q0, α1, q1, . . . , αk, qk〉 be a counterexample to

M(T1, T2) |= ϕ. Let qi = (si1, si2, Ei) for 0 ≤ i ≤ k. Then,

by Lemma 2, 〈(s01, s02, Ê0), α1, . . . , αk, (sk1, sk2, Êk)〉 is

a counterexample to M(T1, T2,P) |= ϕ.

Note that, in general, simulation preserves all ACTL*

properties [33]. Thus, our abstraction preserves not only

safety properties (which includes authentication and se-

crecy), but also non-safety properties (such as non-

interference [34]) which are expressible in ACTL*.

In the first step of our methodology we extract an ab-

stract model M of our concrete system using the technique

presented in this section. In the second step, we verify the

desired security property ϕ on M via reachability analysis.

If M |= ϕ, then we know that the concrete system satisfies

ϕ as well. In this case, we exit with “System Secure”.

Otherwise we obtain a counterexample CE – finite trace of

the abstract model M – and proceed with the remaining steps

of counterexample validation and refinement, as described in

the next section.

IV. COUNTEREXAMPLE VALIDATION AND REFINEMENT

Given a counterexample CE on the abstract model,

counterexample validation determines whether CE is a real

counterexample, i.e., it concretizes to a real attack. This

results in one of three possible outcomes:

1) If we determine that CE is a real counterexample,

ASPIER exits with “Real Attack” and a concretization

of CE exhibiting a real attack.

2) If we find that CE does not concretize to any real

attack, i.e., CE is spurious, we proceed to the refine-

ment phase.

3) Finally, if we are unable to determine whether CE

concretizes to a real attack or not (this is possible

since the counterexample validation problem is unde-

cidable), we exit with “Unknown”.

In the refinement phase, we use the spurious CE to update

the abstraction information and repeat the CEGAR loop.

The main property ensured by the refinement process is

that CE does not arise as a counterexample in the refined

model. For completeness, we now provide technical details

of the counterexample validation and refinement procedures.

Readers who are not interested in these details may skip to

the next section without loss of continuity.

Counterexample Validation. Let the counterexample be

a sequence of abstract states CE = 〈q̂0, α1, q̂1, . . . , αk, q̂k〉.
Let q̂i = (s1

i , s
2
i , (Vi, νi,Γi)) for 0 ≤ i ≤ k, and αi =

(St i, Id1) for 1 ≤ i ≤ k.

Counterexample Validity. Recall that the concrete model

is the LTS M(T1, T2) = (S, I,Σ, T). For each 0 ≤ i ≤ k,

and each σ ∈ S, we say that σ |= CE (i) iff there exists a

sequence of concrete states qi, . . . , qk of M(T1, T2), and a

sequence of stores σi, . . . , σk such that: (i) for i ≤ j ≤ k,



qj = (s1
j , s

2
j , (σj , νj ,Γj)), (ii) for i ≤ j < k, (qi, αi, qi+1) ∈

T, and (iii) σi = σ. Intuitively, σ |= CE (i) iff the concrete

model M(T1, T2) has a trace corresponding to the suffix

q̂i, . . . , q̂k of CE starting with the store σ. Finally, CE is

valid iff ∃σ ∈ S � σ |= CE (0).
Checking Validity of CE . The key idea behind checking

the validity of CE is to compute, for each 0 ≤ i ≤ k, an

expression representing all stores σ such that σ |= CE (i).
Such an expression is called a verification condition. For-

mally, for 0 ≤ i ≤ k, the verification condition VC i is

an expression that satisfies the following condition: ∀σ ∈
S � σ |= CE (i) ⇐⇒ σ[VC i] 6= 0. Fortunately, there is

an effective procedure for computing verification conditions

based on weakest preconditions, as defined below:

VC k = TRUE

∧
VC i = WP{VC i+1}[St i+1] for 0 ≤ i < k

Finally, from our definition of validity above, CE is valid iff

VC 0 is satisfiable. This is decided via an automated theorem

prover. If VC 0 is satisfiable, we report CE to be valid. If

the theorem prover does not return a definite answer (since

the problem is undecidable in general), we also report CE to

be valid to preserve the soundness of our approach. If VC 0

is unsatisfiable, then CE is a spurious counterexample, and

we proceed with abstraction refinement, as described in the

next section.

Refinement. We refine our abstraction by changing our

set of predicates to P ′ = P ∪ {VC 0, . . . ,VC k}. In other

words, we add all the verification conditions computed

while validating CE to our set of predicates. We now

argue that the abstract model computed with P ′ can never

yield a counterexample labeled with the same sequence

of actions as CE . Indeed, suppose that we get a new

counterexample CE ′ = 〈q̂′0, α1, q̂′1, . . . , αk, q̂′k〉 such that

q̂′i = (s1
i , s

2
i , (V

′
i , ν′

i,Γ
′
i)) for 0 ≤ i ≤ k.

Since VC 0 is unsatisfiable, V ′
0(VC 0) = FALSE. Using

the definition of the predicate valuation transformer RSt,P ,

and the definition of VC i, it can be shown that for 0 ≤ i <

k�V ′
i (VC i) = V ′

i+1(VC i+1). Therefore V ′
k(VC k) = FALSE.

But note that VC k = TRUE. Therefore, from the definition

of RSt,P , the transition (q̂′k−1, αk, q̂′k) is not possible,

which is a contradiction.

Soundness and Completeness. The soundness and com-

pleteness of our approach (modulo the correctness of the

library routine SSMs used) is summarized as follows:

1) If our approach reports that a protocol Q satisfies a

property ϕ under a configuration Conf , then Q is

indeed satisfies ϕ under Conf .

2) If our approach reports an attack on a protocol and

the theorem prover gave a definite answer during the

counterexample validation step, then it is a real attack

on the protocol.

3) Our approach is incomplete in general, i.e. it may not

terminate. This is acceptable since the overall problem

is undecidable.

V. TOOL IMPLEMENTATION

We implemented ASPIER by extending the COPPER [29]

tool. The input to ASPIER consists of: (i) the source code for

the implementation of a protocol Q, (ii) the authentication or

secrecy property ϕ to be verified, (iii) a configuration Conf

of Q, and (iv) a mapping κ from cryptographic libraries to

finite state machine labeled with actions.

The output of ASPIER is either (i) “System Secure” –

indicating that ϕ holds for Q under Conf , (ii) “Real Attack”

– indicating the existence of an attack, or (iii) “Unknown”

– indicating that ASPIER could not arrive at either of the

previous two conclusions. In the case of a “Real Attack”,

ASPIER also emits a trace that exhibits a possible attack

on Q under Conf that leads to a violation of ϕ. We now

discuss the implementation of each step of our framework,

highlighting specific augmentations to COPPER involved.

Thread Construction. The threads are obtained from the

source code by constructing the control flow graph, replacing

every cryptographic library call l with the state machine κ(l),
and instantiating the input parameters of the different roles.

To implement this step, we augmented COPPER’s machinery

for representing and inlining library routine SSMs so that

the transitions in these SSMs are labeled with cryptographic

terms instead of uninterpreted symbols.

Abstraction. The abstract model is then computed by

using the definitions and concepts for constructing abstract

thread composition presented in Section III. The key change

to COPPER required in this step was the combination of the

two abstract transformers – RV
St,P and RMsg

St . As originally

implemented in COPPER, the Simplify theorem prover is

used to compute RV
St,P . To compute RMsg

St , we implemented

and experimented with two decision procedures for message

derivation. The first decision procedure (called Simplify)

works by: (a) formalizing the attacker model as a logical

theory, (b) reducing the message derivation problem to a

validity problem in this theory, and (c) checking validity

using Simplify.

The second decision procedure (called Decons-Cons) is

based on the idea that message derivation can be decided via

deconstruction followed by construction [27]. In essence, to

decide if Γ ⊢ m, we first compute the set of all terms that

can be derived from Γ′ using the second and sixth rules in

Figure 5. Next, we compute the set of all terms Γ′′ that can

be derived from Γ′ using the remaining rules in Figure 5.

Finally, Γ ⊢ m ⇐⇒ m ∈ Γ′′. Note that Decons-Cons

is a valid decision procedure for ASPIER since we only

use atomic keys. Experimental results comparing between

Simplify and Decons-Cons are presented in Section VI. For

simplicity, our technical presentation of predicate abstraction

was based on a global set of predicates. In practice, ASPIER

inherits COPPER’s use of predicate localization [35] for

efficiency, i.e., it employs different sets of predicates at

different CFG nodes.



Verification. Verification is performed via explicit state

reachability analysis. Recall that a connection topology is a

function mapping each client session C to the server with

which C initiates a connection. A key aspect of ASPIER,

compared to COPPER, is that each possible connection

topology (modulo a simple symmetry reduction) is verified

separately, thereby trading off time for space. This technique

is motivated by the observation that different connection

topologies yield fairly disjoint statespaces. For example, the

statespace of a system where the first client session connects

with the first server session is quite different from the one

where the first client session connects with the attacker.

Thus, independent exploration of different parameter instan-

tiations is not penalized heavily by redundant work. As our

experimental results indicate, this strategy appears to be a

good foil to the statespace explosion problem in practice.

We believe that symbolic reachability algorithms – used by

tools like OFMC [28] – have the potential of making this

verification step even more efficient.

Counterexample Validation and Refinement. These

two steps in ASPIER augment the corresponding COPPER

stages with protocol specific concepts. In particular, these

changes are driven by the fact that transitions in the li-

brary routine SSMs, and abstract models, are labeled by

cryptographic terms instead of uninterpreted symbols. A

few points are worth noting here. First, our counterexample

validation procedure is based on weakest preconditions.

However, counterexample validation based on strongest

post-conditions [36] are also relevant. Second, instead of

adding the verification conditions themselves as predicates,

we add predicates derived from the “UNSAT core”, i.e., the

smallest reason for the unsatisfiability of VC 0. Finally, our

abstraction refinement approach is also based on weakest

preconditions. There are other abstraction refinement tech-

niques, such as those based on interpolants [37], which are

also applicable.

VI. OPENSSL CASE STUDY

We experimented with the OpenSSL 0.9.6c implementa-

tion of the SSL handshake using a 2.4 GHz machine with

4 GB of RAM.

Benchmarks. We obtained our benchmarks by:

1) Extracting parts of OpenSSL that deal with the core

handshake implementation. These were files named

s3_clnt.c and s3_srvr.c for the client and

server respectively.

2) Manually eliding code fragments that deal with log-

ging, reconnection, etc., while retaining code that

implements a first time handshake. The final prepro-

cessed C files that we analyzed consisted of about

1200 LOC for each server and each client.

3) Manually creating SSMs for each library routine called

by the top-level functions – ssl3_accept for the

server and ssl3_connect for the client. We derived

the behavior of each such routine via manual code and

document inspection, and created SSMs that soundly

abstract the behavior of their corresponding routines.

Task 1. Detecting Version-Rollback Attack. We con-

firmed the “version-rollback” attack in OpenSSL when it

allows version negotiation during handshake. Since the ver-

sion is not adequately integrity protected, the attacker forces

a client and a server to use SSL 2.0 even when both intend to

use SSL 3.0. Let OpenSSL23 be the OpenSSL allowing ver-

sion negotiation, and OpenSSL3 be the OpenSSL hardwired

to version 3.0. We validated – for configurations of up to 2

servers and 2 clients – that version-rollback is absent with

either OpenSSL3 clients or servers. This is because integrity

protection of the version by even one party prevents version-

rollback. We also confirmed – for configurations of up to

2 servers and 2 clients – that when both roles implement

OpenSSL23, version-rollback exists.

Our results are tabulated in Figure 8. For configurations

with one server and one client, the cases without rollback

completed very quickly, while the cases with rollback re-

quired more time and memory. This is because, for these

configurations, the abstract statespaces were quite small (in

the order of a few thousand) and hence verification required

less resources than abstraction refinement.

For configurations with two servers and two clients, the

situation was just the reverse. In these cases, the abstract

statespaces were much larger (in the order of millions),

and hence verification completely swamped out abstraction

refinement. Moreover, for the cases without rollback, all

25 parameter instantiations had to be verified. In contrast,

for the cases with rollback, the very first parameter in-

stantiation lead to the discovery of an attack, and hence

to the termination of the verification procedure. Finally,

it is noteworthy that as the number of OpenSSL23 roles

increase, so does the resource consumption. This is because

OpenSSL23 roles enable more behavior (since they allow

version negotiation) and hence lead to larger statespace.

The obvious exception to this trend is when all roles are

OpenSSL3, as explained above. Finally, verifying absence

of client rollback requires more time and memory since

the corresponding authentication property involves a longer

sequence of events, and hence entails a deeper search.

Task 2. Verifying OpenSSL3. In the second task we

verified, for configurations of up to three servers and three

clients, the following three security properties: (i) AuthSrvr

– the protocol ensures that every server is always correctly

authenticated to a client, (ii) AuthClnt – the protocol ensures

that every client is always correctly authenticated to a server,

and (iii) Secrecy – the protocol ensures that a client’s secret

can never be derived by the attacker.

As in the previous task, due to symmetry, it sufficed to

verify AuthSrvr only for the first server, and AuthClnt and

Secrecy only for the first client. Also, each property was

verified independently for every possible instantiation of the



Server Client Server-Rollback Client-Rollback

Present Inst T1 T2 Mem Present Inst T1 T2 Mem

1-SSL3 1-SSL3 No 4 4.8 4.5 18.8 No 4 5.8 5.1 18.8

1-SSL3 1-SSL23 No 4 5.2 4.7 18.9 No 4 6.2 5.3 19.2

1-SSL23 1-SSL3 No 4 6.0 5.2 19.7 No 4 7.3 6.0 19.7

1-SSL23 1-SSL23 Yes 4 79.9 77.8 37.7 Yes 4 79.3 78.7 34.0

2-SSL3 2-SSL3 No 25 72749 35893 415 No 25 99224 50165 437

2-SSL3 2-SSL23 No 25 96740 49868 520 No 25 134869 111530 632

2-SSL23 2-SSL3 No 25 171308 86373 966 No 25 258459 162185 1294

2-SSL23 2-SSL23 Yes 1 5292 2719 136 Yes 1 4249 2711 139

Figure 8. Experimental results for “version-rollback” attack. n-SSL3 = n OpenSSL3 clients/servers; n-SSL23 = n OpenSSL23 clients/servers; Present =
whether rollback was detected; Inst = no. of parameter instantiations; T1 = time (in seconds) with Simplify for message derivation; T2 = time (in seconds)
with Decons-Cons for message derivation; Mem = memory requirement (in MB) with Decons-Cons for message derivation; memory requirement with
Simplify was slightly higher.

C# S# AuthSrvr AuthClnt Secrecy

Inst Time Mem Inst Time Mem Inst Time Mem

2 2 25 34987 410 25 48539 434 25 43936 424

3 3 225 226953 625 225 499535 1583 225 399279 1132

Figure 9. Experimental results for different configurations of OpenSSL3 servers and clients. C# = no. of clients; S# = no. of servers; Inst = no. of
parameter instantiations; Time = time (in seconds) with Decons-Cons for message derivation; Mem = memory requirement (in MB).

input parameters (modulo symmetry) of the client roles. We

started each experiment with an initial set of predicates,

derived manually from the branch conditions in the C code

and the property being verified. We believe that, eventu-

ally, these predicates would be inferred by the abstraction

refinement process. Therefore, starting with them simply

speeds up the verification. The selected initial predicates

sufficed to prove the security properties of interest. Figure 9

summarizes our results. Once again, verifying AuthClnt

requires more time and memory than AuthSrvr since it

involves a longer sequence of events, and hence entails

a deeper search. Verifying Secrecy takes more time than

AuthSrvr but less time than AuthClnt.

VII. RELATED WORK

We summarize below some complementary approaches

reported in recent work. Goubault-Larrecq and Par-

rennes [38] use Horn clauses to represent the intruder

deduction relation, and a model derived from C proto-

col implementations via inter-procedural analysis. Secrecy

properties are expressed as satisfiability problems for a set

of Horn clauses. The method is applied to the Needham-

Schroeder protocol, where Horn clauses are constructed for

one role; clauses for other roles are supplied via an external

trust model. They handle secrecy, but not authentication.

Bhargavan et al. [39] develop a method, and tool, for

establishing security properties of protocols written in F#

by translating it into the applied π-calculus and using

PROVERIF [40], an automated tool, for verifying the result-

ing translation. They incorporate a symbolic attacker, and in

recent work [41], extend this approach to the computational

model. Their security results hold for an unbounded number

of concurrent sessions. Their approach does not apply to C

code. In contrast, we verify C implementations with bounded

sessions using CEGAR. In a related effort, Bengtson et

al. use a type system to verify authentication properties of

protocols written in F# [42].

Udrea et al. [43] develop PISTACHIO, a static analysis

tool for checking that implementations of protocols such

as SSH conform to rule-based specifications capturing the

protocol description in the RFC. They identify several bugs

in protocol implementations. They focus on ensuring that

the implementation conforms to the RFC specification and

do not explicitly model an attacker.

A number of projects [23], [35] have explored CEGAR

for verifying software correctness. Software model check-

ing tools [44], [45], [46] have also been used to verify

network protocol implementations. However, our work is

distinguished by the inclusion of an explicit attacker model.

VIII. CONCLUSION AND FUTURE WORK

The ASPIER framework described in this paper makes

progress towards automated analysis of security protocol

implementations. We identify three areas for future work:

(a) improved support for a richer class of C features, such

as pointers and bit-wise operations; (b) discharging the

control flow integrity assumption; and (c) justifying the

soundness of library routine specifications. To this end, we

plan to leverage progress in integrating pointer analysis [23]

and bitwise semantics [47] with software model checkers,

runtime enforcement of control flow integrity [30], and

analysis of cryptographic libraries [48].
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