
Compositional Analysis of Contract Signing

Protocols

Michael Backes a , Anupam Datta b , Ante Derek b ,
John C. Mitchell b and Mathieu Turuani c

aSaarland University
bStanford University

cLORIA-INRIA Nancy

Abstract

We develop a general method for proving properties of contract-signing protocols
using a specialized protocol logic. The method is applied to the Asokan-Shoup-
Waidner and the Garay-Jacobson-MacKenzie protocols. Our method offers certain
advantages over previous analysis techniques. First, it is compositional: the security
guarantees are proved by combining the independent proofs for the three subpro-
tocols of each protocol. Second, the formal proofs are carried out in a “template”
form, which gives us a reusable proof that may be instantiated for the two example
protocols, as well as for other protocols with the same arrangement of messages.
Third, the proofs follow the design intuition. In particular, in proving game-theoretic
properties like fairness, we demonstrate success for the specific strategy that the
protocol designer had in mind, instead of nonconstructively proving that a strategy
exists. Finally, our logical proofs demonstrate security when an unbounded number
of sessions are executed in parallel.

1 Introduction

Contract-signing protocols allow two or more parties to exchange signatures
fairly, so that no party receives a signed contract unless all parties are able
to do so. While there are no fixed-round fair two-party protocols [14,22], it
is possible for two parties to exchange signatures optimistically. In optimistic

Email addresses: backes@cs.uni-sb.de (Michael Backes),
danupam@cs.stanford.edu (Anupam Datta), aderek@cs.stanford.edu (Ante
Derek), jcm@cs.stanford.edu (John C. Mitchell), turuani@loria.fr (Mathieu
Turuani).

Preprint submitted to Elsevier Science 23 April 2006

protocols, the two parties may exchange signatures if circumstances are favor-
able, but if either party chooses, they may ask a trusted third party to inter-
vene and either complete the exchange or refuse to complete the exchange for
either party. Some of the history of optimistic contract signing is summarized
in [17].

Several methods have been used to analyze contract-signing protocols and ei-
ther find errors or suggest their absence. In one previous study [23], which
considers the same two protocols explored in this paper, the automated finite-
state enumeration tool Murϕ is used to find errors or anomalies in both proto-
cols. Game-theoretic concepts and the Mocha branching-time temporal logic
model checker are used for analysis in [18,4], while another previous study [3]
uses unformalized inductive arguments about a symbolic model of protocol
execution. Some negative results about optimistic contract-signing protocols
and the ability to achieve “abuse freeness” (a property discussed later in this
paper) are proved in [5], which uses unformalized game tree arguments. These
previous studies only consider a bounded number of participants (usually an
initiator, a responder, and a trusted third party) or involve arguments about
an often confusing number of cases. One reason that proving properties of op-
timistic contract signing protocols is difficult is that there are typically three
sub-protocols, one allowing an optimistic exchange to proceed to completion,
one allowing a dissatisfied participant to abort the exchange, and one allowing
either signer to ask the third party to complete the exchange. Some appre-
ciation for the inherent difficulty may be gained by reading the proof in [15]
which, although otherwise rigorous, overlooks the case leading to an error
discovered by automated analysis and reported in [23].

In this paper, we develop a method for reasoning about contract-signing proto-
cols using a protocol security logic that was originally intended for authentica-
tion protocols. Surprisingly, the logic proves appropriate to the task, requiring
only a minor modification to accommodate the if-then-else behavior of the
trusted third party. In addition, we find that a direct argument establishes
correctness of a family of related protocols, without limitation on the number
of additional protocol sessions that may run in parallel. (The reason why par-
allel sessions are important is that additional sessions may provide alternate
sources of messages signed by one of the principals.) The formal proof proceeds
along direct, intuitive lines and is carried out in a “template” form that may
be instantiated to provide correctness proofs for two standard protocols and
protocol variants that use the same arrangement of messages. In addition, it is
not necessary to consider interleaving of actions from different subprotocols,
since the design of the protocol logic allows properties of the entire protocol
to be proved compositionally from independent proofs for the exchange, abort,
and resolve subprotocols of each contract-signing protocol.

Protocol Composition Logic (PCL) [7,6,13] uses a modal operator similar to

2

Floyd-Hoare logic. Intuitively, the formula ψ [P]X ϕ means that if ψ is true at
some point in the execution of a protocol (in the presence of a malicious at-
tacker), then ϕ will be true after agent X performs the sequence P of actions.
The pre- and post-conditions may describe actions taken by various principals
and characterize the information that is available to or hidden from them. PCL
has been used for a variety of case studies, including proofs of correctness for
the IEEE 802.11i wireless networking standard [16], which includes SSL/TLS.
While PCL was originally formulated over a symbolic model of computation
(used in this paper), we have also developed a computational interpretation
[11] that considers arbitrary probabilistic polynomial-time attacks. An aspect
of the logic that is particulary relevant to the present paper is explored in
[9], where the idea of proving correctness of protocol templates is explained.
In the template method, a protocol template is an abstract protocol contain-
ing function variables for some of the operations used to construct messages.
Correctness of a protocol template may be established under certain assump-
tions about these function variables. Then, a proof for an actual protocol
is obtained by replacing the function variables with combinations of opera-
tions that satisfy the proof assumptions. We follow this method for a family
of contract-signing protocols, establishing correctness of the Asokan-Shoup-
Waidner [1,2] and Garay-Jacobson-MacKenzie [15] protocols by instantiation.
Although the formal proofs reflect the intricacies associated with any formal
logic, the proofs seem to be direct encodings of natural lines of argument. In
addition to compositional reasoning about the combined properties of three
independent subprotocols, the protocol logic does not require any explicit rea-
soning about the possible behavior of any dishonest party, since the axioms
and inference rules are sound for any hostile environment. Furthermore, al-
though the formal proofs in this paper have been conducted manually, they
should be accessible to automated proof techniques; we leave this as future
work.

We prove fairness by explicitly showing that if participant A takes a certain
number of steps, then if the opposing party B has a contract, party A has
one as well. The actions involved in this certain number of steps depend on
whether A is the protocol initiator or responder, and the state reached so far. In
effect, this form of argument shows that A has a strategy to obtain a contract
from any state by explicitly presenting the strategy. Further, these strategies
are the natural ones inherent in the protocol design. However, the logic proves
unsuitable for showing directly that it is possible to complete these steps - that
is a modeling assumption that remains outside the formalism. Further, the
safety-oriented logic seems less adept for non-trace-based properties such as
abuse freeness than game-theoretic approaches. Nonetheless, these axiomatic,
general proofs for unbounded runs offer additional validation of optimistic
contract signing protocols not readily available through previous approaches.

The rest of this paper is organized as follows. Section 2 describes the Asokan-

3

Shoup-Waidner [1,2] and Garay-Jacobson-MacKenzie [15] protocols. Section 3
describes the protocol description language and logic and sketches the exten-
sions of the logic required to reason about these protocols. A summary of
the semantics of the logic and the proof system used in the axiomatic proofs
in this paper appear in Appendix A. Section 4 presents the analysis of the
ASW protocol, emphasizing the compositional proof method. Complete for-
mal proofs are in Appendix B. Section 5 describes and proves properties of
the template for optimistic contract signing protocols of which ASW and GJM
are instances. Finally, Section 6 presents our conclusions.

2 Contract Signing Protocols

In this section, we describe two contract signing protocols. The description of
each protocol is informal, using the “arrows and messages” notation that is
common in the security protocol literature. Since this notation is not sufficient
for rigorous protocol analysis, more formal characterizations of the protocol
actions appear in section 4 and 5, using the protocol programming notation
given in section 3. Further discussion of the design, intended properties, and
limitations of both protocols may be found in the original presentations [1,2,15]
and previous analyses of optimistic contract-signing protocols [3–5,18,23].

2.1 Asokan-Shoup-Waidner Protocol

The protocol of Asokan, Shoup, and Waidner (called the ASW protocol hence-
forth) [1,2] consists of three interdependent subprotocols: exchange, abort, and
resolve. The two main parties, an originator O and a responder R, generally
start the exchange by following the exchange subprotocol. If both O and R
are honest and there is no interference or message loss on the network, each
obtains a valid contract upon the completion of the exchange subprotocol. The
originator O also has the option of asking the trusted third party T to abort
an exchange that O has initiated. To do so, O executes the abort subprotocol
with T . Finally, both O and R may each request that T resolve an exchange
that has not been completed. Intuitively, this is important because there may
be network delays or a lack of response from a devious party. After receiving
the initial message of the exchange protocol, O or R may execute the resolve
subprotocol with T . While the conditions for executing the resolve protocol
are not specified as part of the protocol definition, the resolve protocol allows
the originator or responder to complete the protocol if either times out waiting
for the other.

4

The exchange protocol consists of the following four messages:

O → R me1 = SigO{VO, VR, T, text ,Hash(NO)}
R → O me2 = SigR{me1,Hash(NR)}
O → R me3 = NO

R → O me4 = NR

In the first message, the originator O sends responder R a message consisting
of data VO, VR, T identifying the originator, responder, and trusted third party
(respectively), the text of the contract, and a hash Hash(NO) of a nonce
(random number) NO chosen by the originator, all signed using the originator’s
private signing key. The responder returns a signed message comprising the
first message and a hash Hash(NR) of a nonce NR chosen by the responder.
Intuitively, each message indicates the willingness to be bound by the contract,
but the exchange is not considered complete until both nonces are known. The
third and fourth messages exchange these nonces, so that both parties have a
complete contract.

In the abort protocol, the originator may ask the third party T not to issue a
replacement contract, using the following message and response:

O → T ma1 = SigO{aborted ,me1}
T → O ma2 = Has me1 been resolved already?

Yes : SigT {me1,me2}
No : SigT {aborted ,ma1}

aborted := true

In the first message, the originator sends T a signed message indicating a
request to abort a run of the contract-signing protocol, together with the con-
tents of the first message of this run. If the third party has not already received
a request to resolve this protocol (see next subprotocol), then the third party
can confirm this by sending a signed message indicating that the exchange
has been aborted. Otherwise, the trusted third party must have received the
first and second messages (in order to resolve the contract) and in this case
the third party sends the originator a replacement contract consisting of the
third party’s signature on the first two messages of the exchange protocol.

One confusing aspect of the abort protocol is the meaning of the abort mes-
sage. Since a dishonest originator can send an abort message after completing
the exchange protocol (in which both the originator and responder receive a
contract), the third party may issue an abort message even if both parties
have a contract. Therefore, an abort message from the third party does not
mean that neither party has a contract. Instead, when the third party behaves

5

honestly, the abort message means that neither party can have a replacement
contract issued by the trusted third party.

The resolve protocol may be used by either the originator or the responder to
obtain an alternate form of contract. Intuitively, this is useful if the originator
and/or responder have progressed far enough with the exchange protocol to
be committed to the contract, but have not received the nonce from the other
party. The two messages of the resolve protocol are written below, as if the
protocol is initiated by the responder R:

R → T mr1 = {me1,me2}
T → R mr2 = Has me1 been aborted already?

Yes : SigT {aborted ,ma1}
No : SigT {me1,me2}

resolved := true

The protocol definition in [2] provides two forms of contract:

{me1, NO,me2, NR} (standard contract)

SigT {me1,me2} (replacement contract)

As suggested above, the first form is the contract that both parties will have
after the exchange subprotocol is successfully completed. The second is the
form of contract issued by the third party, on request.

This protocol was designed to provide fairness to both parties and trusted
third party accountability. Fairness is the property that either both parties
may each obtain a contract (of one form or the other), or neither may obtain a
contract. Third party accountability is a property involving evidence to show
misbehavior by any third party that acts dishonestly. In the case that the
third party behaves dishonestly, such as by issuing both an abort message and
a replacement message, the protocol design should guarantee that a collection
of network messages will show definitively that the third party has misbehaved.

2.2 Garay-Jakobsson-MacKenzie Protocol

The protocol of Garay, Jakobsson, and MacKenzie (called the GJM proto-
col henceforth) [15] is closely related to the ASW protocol. Both protocols
provide a 4-step exchange subprotocol and two-step abort and resolve sub-
protocols. Although the ASW and GJM protocols have similar structure, the
contents of the messages differ. Unlike the ASW protocol, the GJM protocol

6

is designed to guarantee abuse-freeness in addition to fairness and third party
accountability. These properties are formally stated and proved in Section 5.
Intuitively, abuse-freeness involves the inability of any party to prove control
of the outcome to an outsider. More specifically, the originator O controls the
outcome, at a certain point in execution of the contract-signing protocol, if
O can either choose to give both parties a contract or choose to prevent both
parties from obtaining a contract. If O controls the outcome, and can demon-
strate this to an outsider, then O might be able to “abuse” R by using R’s
commitment to get a better contract from an outsider. For example, if O can
show an alternative buyer that R will pay a certain amount for an item O has
offered for sale, then the alternative buyer may offer more, and O can abort
the contract to sell the item to R.

The GJM protocol relies on the cryptographic primitive called private contract
signature (PCS). We write PCSO(m,R, T) for party O’s private contract sig-
nature of text m for party R (known as the designated verifier) with respect to
third party T . The main properties of PCS are as follows: (a) PCSO(m,R, T)
can be verified by R like a conventional signature; (b) PCSO(m,R, T) can
be feasibly computed by either O, or R, but nobody else; (c) PCSO(m,R, T)
can be converted into a conventional signature by either O, or T , but nobody
else, including R. For the purposes of this study, we focus on the third-party
accountable version of PCS, in which the converted signatures produced by
O and T can be distinguished. We will call them SigO(m) and T SigO(m),
respectively. Unlike PCS, converted signatures are universally verifiable by
anybody in possession of the correct signature verification key. An efficient
discrete log-based PCS scheme is presented in [15].

This protocol was designed to provide fairness to both parties and trusted third
party accountability. The formal presentation of the protocol and its properties
are in Section 5.

The GJM exchange protocol is similar to the ASW exchange protocol, using
private contract signatures instead of regular digital signatures in the first two
messages, and with actual signatures on the contract m exchanged in the last
two messages:

O → R me1 = PCSO(m,R, T)

R → O me2 = PCSR(m,O, T)

O → R me3 = SigO(m)

R → O me4 = SigR(m)

The GJM abort protocol is similar in spirit to the ASW abort protocol de-

7

scribed above.

O → T ma1 = SigO(m,O,R, abort)

T → O ma2 = Has O or R resolved already?

Yes : SigR(m) if R has resolved, or

T SigR(m) if O has resolved

No : SigT (ma1)

aborted := true

When T receives an abort request, T checks its permanent database of past
actions to decide how to proceed. If T has not previously been requested to
resolve this instance of the protocol, T marks m as aborted in its permanent
database and sends an abort token to O. If m is already marked as resolved,
this means that T has previously resolved this exchange in response to an ear-
lier request. As a result of the resolution procedure (described below), honest
T must have obtained both O’s and R’s universally-verifiable signatures of m.
Therefore, in response to O’s abort request, T forwards O either SigR(m) or
T SigR(m), either of which can serve as a proof that R indeed signed m.

The GJM resolve protocol is also similar in spirit to the ASW resolve protocol
described above.

R → T mr1 = PCSO(m,R, T), SigR(m)

T → R mr2 = Has O aborted already?

Yes : Send SigT (SigO(m,O, R, abort))

No : Has O resolved already?

Yes : Send SigO(m)

No : Store SigR(m)

Convert PCSO(m,R, T) to T SigO(m)

Send T SigO(m)

resolved := true

Either party may request that T resolve the exchange. In order to do so,
the party must possess the other party’s PCS of the contract (with T as the
designated third party), and submit it to T along with its own universally-
verifiable signature of the contract. Therefore, R can send a resolve request at
any time after receiving me1, and O can do so at any time after receiving me2.
When T receives a resolve request, it checks whether the contract is already
marked as aborted. If it is, T replies with the abort token. If the contract has
been resolved by the other party, T replies with that party’s signature. Finally,
if the contract has been neither aborted, nor resolved by the other party, T

8

converts PCS into a universally-verifiable signature, sends it to the requestor,
and stores the requestor’s own signature in its private database.

3 Methodology

3.1 Protocol notation

We use a simple “protocol programming language” based on [13,7,6] to repre-
sent a protocol by a set of roles, such as “Originator”, “Responder” or “Third-
Party”, each role specifying a sequence of actions to be executed by a honest
participant. The syntax of terms and actions is given in Table 1.

We use X̂, Ŷ , . . . as names for protocol participants. Since a particular par-
ticipant might be involved in more than one session at a time, we will give
unique names to sessions and use a pair (X̂, s) to designate a particular thread
being executed by X̂. Although this notational convention may seem strange
initially, we generally use a Roman capital letter X to refer to an arbitrary
thread of agent X̂.

Terms are expressions for messages and their parts, including variables x,
keys K, threads X, nonces n, and pairs 〈t, t〉. We write SIGK{|t|} for term
t signed with key K, and HASH{|t|} for the hash of t. Since the protocols
we consider assume a public-key infrastructure, we may write a thread name
for its associated key. The relation m ⊆ m′ indicates that m is a subterm of
m′ ∈ t.

Actions include nonce generation, pattern matching, and communication. The
action new n chooses a new nonce n different from all other values associated
with protocol execution to this point. The action match t1/t2 matches a term
t1 against a term t2 representing a pattern. A variable occurring in the pattern
t2 will thereafter be replaced by the appropriate subterm of t1. For example,
match x/SIGK{|y|} will verify that x, which might have been a message re-

ceived through communication, is a valid signature with key K. In this case,
y will subsequently refer to the message that is signed in x. If x is not a valid
signature with the correct key, then this action cannot occur, and subsequent
actions in the remainder of the protocol role will not occur either. Send and
receive actions, send t and receive x are largely straightforward.

An action not considered in previous papers on protocol composition logic
is the “if” construct in the spirit of Dijkstra’s guarded commands that we
add here. This construct is used to express conditional behavior of protocol
participants. This construct behaves like a generalization of pattern matching.

9

Terms
t ::= x |K |X |n | 〈t, t〉 |SIGK{|t|} |HASH{|t|}

Actions

a ::= new n | match t/t | send t | receive x | if t t1 : P1; . . . tn : Pn; fi

Table 1
Syntax of protocol terms and actions

If i is the lowest number such that t matches ti, then if t t1 : P1; . . . tn :
Pn; fi simplifies to match t/ti : Pi; In other words, this conditional action
performs Pi iff t is equal to ti.

The operational semantics of the protocol programming language is defined
in the style of process calculus (see [6]). Execution begins from an initial
configuration. The initial configuration of a protocol Q is determined by: (1)
A set of principals, some of which are designated as honest; (2) A multiset of
roles (programs determining a sequence of actions) constructed by assigning
roles of Q to threads of honest principals; (3) A collection of intruder actions,
which may use keys of dishonest principals; (4) A finite number of buffer
actions, enough to accommodate every send action by honest threads and the
intruder threads. A run R is a sequence of reaction steps from the initial
configuration, subject to the constraint that every send/receive reaction step
happens between some buffer action and some (nonbuffer) thread. A reaction
step is either a local action executed by a principal or a communication action
which involves a send action by some thread and a receive action by another.

3.2 Protocol Logic

The basic protocol logic and proof system are developed in [12,7,8,10], with
[6] providing a relatively succinct presentation of a consistent form that unfor-
tunately differs from more recent papers in some syntactic ways. A summary
of the relevant portions of the semantics and proof system appears in Appen-
dix A.

The formulas of the logic are given by the grammar in Table 2. Here, t and
X denote a term and a thread respectively. As mentioned above, we use the
word thread to refer to a principal executing an instance of a role, and we use
X to refer to a thread belonging to principal X̂. We use φ and ψ to indicate
predicate formulas, and m to indicate a generic term we call a “message”.

Most protocol proofs use formulas of the form θ[P]Xφ, which means that after
actions P are executed in thread X, starting from a state where formula θ is
true, formula φ is true about the resulting state of X. Here are the informal

10

Action formulas

a ::= Send(X, t) |Receive(X, t) |New(X, t) |Decrypt(X, t) |Verify(X, t) | Start(X)

Formulas

φ ::= a |Has(X, t) |Computes(X, t) |Honest(X̂) |φ ∧ φ | ¬φ | ∃x.φ |
Modal form

Ψ ::= φ [P]X φ

Table 2
Syntax of the logic

interpretations of the predicates:

Has(X, x) means principal X̂ possesses information x in the thread X. This is
“possess” in the limited sense of having either generated the data or received
it in the clear or received it under encryption where the decryption key is
known.

Send(X,m) means principal X̂ sends message m in the thread X.
Receive(X, m), New(X, t), Decrypt(X, t), Verify(X, t) similarly mean that re-

ceive, new, decrypt and signature verification actions occur.
Honest(X̂) means the actions of principal X̂ in the current run are precisely

an interleaving of initial segments of traces of a set of roles of the protocol.
In other words, X̂ assumes some set of roles and does exactly the actions
prescribed by them.

Computes(X, m) means that a principal X̂ possesses enough information in
thread X to build term m of some type. For example, a principal can possess
an encrypted message if he received it in the past as a part of some message
or if he possesses the plaintext and the encryption key. Computes is used to
describe the latter case.

Start(X) means that the thread X did not execute any actions in the past.

4 Analysis of the ASW Protocol

The ASW protocol [1,2] consists of three interdependent subprotocols: ex-
change, abort, and resolve. We first show in Section 4.1 how to model these
protocols as programs. Section 4.2 discusses the compositional proof method
used in proving the security properties of the protocol. Section 4.3 contains
the formal definitions and proof sketches of the fairness and accountability
properties. The complete formal proofs are in Appendix B. We believe that
the proof method illustrated by this application will be useful for analyzing
similar properties of related protocols.

11

We emphasize two high-level aspects of this method which distinguishes it
from existing analysis techniques. First, it is compositional: the security guar-
antees offered by the ASW protocol are proved by combining independent
guarantees offered by the exchange, abort, and resolve subprotocols. Second,
the proofs follow the design intuition. In particular, in the fairness proofs, we
demonstrate that the appropriate strategy for a party to obtain a contract
(via the abort/resolve protocols) depending on its local state, actually works.
For example, if after sending the first message, the initiator executes the abort
protocol, then he gets the contract if his peer has the contract. The fact that
we prove a specific strategy works as opposed to proving one exists distin-
guishes us from prior game-theoretic analyses [4]. Also, it seems useful to have
analysis techniques which can take advantage of and inform protocol design
principles.

4.1 Modelling Protocol Parties

The roles of the exchange subprotocol are given in Figure 1, with one
program ExchangeInit for the initiator of the protocol and one program
ExchangeResp for the responder. A role consists of static input parameters,
and a list of actions to be executed. For example, ExchangeInit represents the
program for initiator X̂ starting a protocol with the responder Ŷ and trusted
third party T̂ with contract text. The intuitive reading of the sequence of ac-
tions is: generate a new nonce, send a signature representing a commitment
to the contract, receive a message, check that it is a valid commitment for Ŷ ,
release the nonce, receive a message and check that it is a valid decommitment
corresponding to the responders commitment.

The ASW protocol provides for two kinds of contracts. The first one is called
a standard contract. Standard contracts are obtained if the execution of the
protocol successfully finishes without any party aborting or resolving the pro-
tocol. They are formally defined as follows.

s(X̂, Ŷ , T̂ , text, x, y) ≡ SIGX̂{|X̂, Ŷ , T̂ , text, HASH{|x|}|}, x,

SIGŶ {|SIGX̂{|X̂, Ŷ , T̂ , text,HASH{|x|}|},HASH{|y|}|}, y

The second kind is called a replacement contract. It is always built by the
trusted third party to resolve a protocol.

r(X̂, Ŷ , T̂ , text, w, z) ≡ SIGT {|SIGX̂{|X̂, Ŷ , T̂ , text, w|},
SIGŶ {|SIGX̂{|X̂, Ŷ , T̂ , text, w|}, z|}|}

To improve readability, in the subsequent proofs we often write s and r instead
of s(Â, B̂, T̂ , text, x, y) and r(Â, B̂, T̂ , text, HASH{|w|}, z), respectively. In the
following, we often have to reason about the messages that are exchanged
during the protocol execution. Especially the first and second message will be

12

ExchangeInit ≡ (X̂, Ŷ , T̂ , text)[
new x;
send X̂, Ŷ , SIGX̂{|X̂, Ŷ , T̂ , text, HASH{|x|}|};
receive Ŷ , X̂, z;
match z/SIGŶ {|SIGX̂{|X̂, Ŷ , T̂ , text, HASH{|x|}|}, w|};
send X̂, Ŷ , x;
receive Ŷ , X̂, y;
match HASH{|y|}/w;]X

ExchangeResp ≡ (X̂, Ŷ , T̂ , text)[

receive Ŷ , X̂, z;
match z/SIGŶ {|Ŷ , X̂, T̂ , text, y|};
new x;
send X̂, Ŷ , SIGX̂{|z, HASH{|x|}|};
receive Ŷ , X̂, w;
match HASH{|w|}/y;

send X̂, Ŷ , x;]X

Abort ≡ (X̂, Ŷ , T̂ ,msg1)[

send X̂, T̂ , SIGX̂{|Abort, msg1|}
receive T̂ , X̂, z;
if z

SIGT̂ {|Aborted, msg1|} :;

r(Â, B̂, T̂ , text, HASH{|x|}, w) :;
fi]X

Resolve ≡ (X̂, Ŷ , T̂ , msg1,msg2)[

send X̂, T̂ , msg1,msg2;
receive T̂ , X̂, z;
if z

SIGT̂ {|Aborted, msg1|} :;

r(Â, B̂, T̂ , text, HASH{|x|}, w) :;
fi]X

Fig. 1. Roles of the ASW protocol

important as they grant the respective parties the ability to resolve a protocol
execution. For reasons of readability, we introduce syntactic shortcuts msg1

and msg2 for these messages, i.e.,

msg1 ≡ SIGÂ{|Â, B̂, T̂ , text, HASH{|x|}|}
msg2 ≡ SIGB̂{|SIGÂ{|Â, B̂, T̂ , text, HASH{|x|}|},HASH{|y|}|}.

The abort and resolve subprotocols for the initiator and the responder are
given in Figure 1. We use the “if” construct to model the fact that agents
do not know in advance which of the two possible responses they will receive
from the trusted third party T̂ .

In analyzing the ASW protocol, we do not model the program of the trusted

13

third party explicitly. Instead we capture its desired behavior by a set of logical
formulas—Γ1

T and Γ2
T below. Using the extensions of the logic presented in this

paper, it is easy to write down the program for the trusted third party and
prove that these logical formulas represent properties of its protocol. Since the
proofs are similar to other proofs presented in this paper, we omit them here.

Γ1
T ={Honest(T̂) ∧ Send(T, T̂ , B̂, r(Â, B̂, T̂ , text, x, z)) ⊃

¬Send(T, T̂ , Â, SIGT̂ {|Aborted, msg1|})}
Γ2

T ={Honest(T̂) ∧ Send(T, T̂ , Â, SIGT̂ {|Aborted,msg1|}) ⊃
Receive(T, Â, T̂ , SIGÂ{|Abort, msg1|})}

Γ1
T says that T̂ will never issue both a replacement contract and the abort

token. Γ2
T says that T̂ will never send an abort token unless A has initiated

the abort subprotocol for the corresponding commitment.

4.2 Compositional proof method

In this section, we sketch the method used to prove properties of the protocol.
In the ASW protocol, there is more than one intended run. For example,
after sending the first message, the initiator can decide not to wait for the
response but to run the abort subprotocol instead. Using the protocol logic,
we are able to analyze the components of the ASW protocol independently,
and combine the proofs using the composition theorems presented in [7,6]. We
focus primarily on the guarantees for the initiator in the protocol.

Runs of the ASW protocol There are three possible execution scenarios
for the initiator in the ASW protocol. The initiator can complete the exchange
subprotocol; complete the resolve subprotocol after sending the third message
of the exchange subprotocol; or complete the abort protocol after sending
the first message of the exchange subprotocol (Figure 2). The design intent
was that each of these three combinations should result in the initiator ob-
taining a valid contract whenever the responder already has one. We will use
ExchangeInit3(Â, B̂, T̂ , text) to denote the prefix of the initiator role in the
protocol up to and including the second send action (send of the third mes-
sage in the protocol) and ExchangeInit1(Â, B̂, T̂ , text) to denote the prefix
up to and including the first send action.

Formulas of the logic and sequential composition Most logical state-
ments that we use are of the form Γ ` φ[P]Aθ. The intuitive reading of such
statement is: “Given that the set of assumptions Γ holds in every state, and
a thread A has finished executing the program P starting in a state where φ
holds, then in the resulting state θ holds.”

14

ExchangeInit(Â,B̂,T̂ ,text)// ExchangeInit1(Â,B̂,T̂ ,text)//

Abort(Â,B̂,T̂ ,msg1)
²²

ExchangeInit3(Â,B̂,T̂ ,text)//

Resolve(Â,B̂,T̂ ,msg1,msg2)

²²

Fig. 2. Possible runs for the initiator in the ASW protocol

In this paper, Γ will typically contain a set of assumptions about the behavior
of the trusted third party T which can be later discharged by analyzing T ’s
program. For example, one of the assumptions we use is that T never sends a
replacement contract if it has issued the abort token in the past.

We will combine statements about different subprotocols using sequential com-
position of the roles. Here we state a variant of the theorem from [6] that we
use for this purpose. The precise form in which this theorem will be employed
will become clearer in the next section.

Theorem 1 (Sequential composition) For sets of assumptions Γ1 and Γ2,
programs P and Q, and formulas φ, θ and ψ if Γ1 ` φ[P]Xθ and Γ2 ` θ[Q]Xψ
than Γ1 ∪ Γ2 ` φ[P;Q]ψ, where P;Q is a sequential composition of programs
P and Q.

4.3 Proving protocol properties

In this section, we show how to express and prove the desired properties in the
underlying logic using the described proof method. Complete formal proofs are
given in Appendix B. Here, we sketch the proof structure and emphasize the
crucial steps.

4.3.1 Fairness

We start with the fairness property of the protocol. Informally, fairness means
that after the protocol has been successfully completed, either both parties
have a signed contract or neither does. In our model, fairness is expressed
using a set of logical formulas. As described in the previous section, we look
separately at the three possible scenarios for the initiator to complete the
protocol.

Initiator completes the exchange subprotocol Formula φ0 states that
the initiator A has a valid contract after the successful execution of the ex-

15

change protocol. This is the optimistic part of the protocol.

φ0 ≡Start(A)

[ExchangeInit(Â, B̂, T̂ , text)]A
Has(A, s(Â, B̂, T̂ , text, x, y))

The formal proof of this property is given in Appendix B. We show that:

` φ0 (1)

Therefore, in this scenario fairness holds without any assumptions about the
behavior of the trusted third party or the responder in the protocol.

Initiator runs the abort protocol If A started the protocol as the initia-
tor but did not complete it, we want to show that whenever some other party
has a valid contract, then A will get the replacement contract if it executes
the abort subprotocol after sending the first message. This part of the analysis
is done using the compositional proof method. First, we identify a sufficient
precondition that needs to hold in order for the initiator to get the contract
after executing the abort subprotocol; then we show that the precondition is
satisfied if the initiator only executed his role upto the first send action.

A sufficient precondition for this to hold is that A’s nonce x has been kept
secret, i.e.

θ1 = HasAlone(A, x)

where HasAlone(X, t) is defined by HasAlone(X, t) ≡ Has(X, t)∧ (Has(Y, t) ⊃
X = Y . It is easy to verify that θ1 holds in the state where A has only sent
the first message of the protocol, since this message only contains the hash of
x.

The property of the abort subprotocol needed for fairness is given below. In-
formally, it states that if at some state θ1 holds then, after executing the
abort subprotocol, if some thread X possesses any contract (standard or re-
placement) corresponding to A’s nonce x and if T is honest, A will posses the
replacement contract corresponding to the same nonce x.

φ1 ≡θ1

[Abort(Â, B̂, T̂ , msg1)]A
((Has(X, s) ∨ Has(X, r)) ∧ Honest(T̂)) ⊃ Has(A, r)

The formal proof of fairness in this scenario involves showing that θ1 holds
after A executed the first part of the exchange subprotocol, and that φ1 holds
as long as the trusted third party T̂ behaves properly. The complete proof of

16

both statements are given in Appendix B.

`Start(A)[ExchangeInit(Â, B̂, T̂ , text)1]Aθ1 (2)

Γ1
T `φ1 (3)

The fairness property in this case simply follows from the sequential compo-
sition theorem (Theorem 1). Recall that Γ1

T is a set of assumptions about the
behavior of the trusted third party T defined in Section 4.1. Informally, Γ1

T

says that T̂ will never issue both a replacement contract and the abort token.
Therefore Γ1

T is only going to hold if T̂ is completely honest. A misbehaving
T̂ might otherwise cheat on A if A executed the abort protocol after receiving
the first message.

Initiator runs the resolve protocol Finally, we want to show that if A
has received the second message of the protocol, then it can obtain a valid
contract by executing the resolve subprotocol, provided that it created the
nonce x itself and did not send the abort message corresponding to that nonce
in the past, i.e., for

θ2 = New(A, x) ∧ ¬Send(A, Â, T̂ , SIGÂ{|Abort, msg1|})

we define φ2 by

φ2 ≡ θ2

[Resolve(Â, B̂, T̂ ,msg1,msg2)]A
(Has(X, s) ∨ Has(X, r)∧
Honest(T̂) ∧ Honest(Â)) ⊃ Has(A, r)

It is easy to verify that θ2 holds in the state where A has received the second
message of the protocol and sent the third message of the protocol.

The formal proof of fairness in this scenario involves showing that θ2 holds
after A executed the first part of the exchange subprotocol, and that φ2 holds
as long as the trusted third party T̂ behaves properly. The required fairness
guarantee is obtained by the composition theorem as before. The complete
proof of both statements are given in Appendix B.

`Start(A)[ExchangeInit(Â, B̂, T̂ , text)3]Aθ2 (4)

Γ2
T `φ2 (5)

In this case, the assumption about the behavior of the trusted third party Γ2
T

says that T̂ will never send an abort token unless A has initiated the abort
subprotocol for the corresponding commitment. This completes the proof for
fairness for the initiator in the ASW protocol.

17

Discussion Notice that the property we prove in the optimistic part of the
protocol is weaker than in the other two cases. Namely, we only show that
the initiator has a contract corresponding to his nonce, it could be possible
that the responder (or attacker) has obtained other contracts corresponding to
the same initiator’s nonce and different responder’s nonce. As demonstrated
in [23] that is indeed the case. We rediscovered the same attack when the proof
of the stronger property failed. The following formula does not hold for the
protocol:

Start(A)

[ExchangeInit(Â, B̂, T̂ , text)]A
Has(X, s(Â, B̂, T̂ , text, x, w)) ⊃ Has(A, s(Â, B̂, T̂ , text, x, w))

The interpretation of this formula is that no other thread X can have any
other standard contract except the one obtained by A after executing the
exchange subprotocol.

Fairness for the responder in the protocol A similar property can be
shown for the responder in the ASW protocol. The proof structure is identical
to the proof for the initiator. For brevity, we do not get into the details.

4.3.2 Accountability

Accountability means that if one of the parties gets cheated as a result of
T̂ ’s misbehavior, that it will be able to hold T̂ accountable. More precisely,
at the end of every run where an agent gets cheated, its trace together with
a contract of the other party should provide non-repudiable evidence that T̂
misbehaved.

The first step in the formalization of this property is to precisely define what it
means for a set of terms to be a non-repudiable proof of T̂ ’s misbehavior. One
approach is to require that, assuming the correctness of T̂ as specified by the
set of formulas Γ, we can formally derive that if anyone possesses certain terms
(typically involving T̂ ’s signature), then Honest(T̂) does not hold. It is easy to
prove that the replacement contract and the abort token corresponding to the
same nonce constitute non-repudiable proofs that T̂ misbehaved. Formally, for
ΓT := Γ1

T ∪ Γ2
T we prove:

ΓT `Has(X, r(Â, B̂, T̂ , text, HASH{|x|}, w))∧
Has(A,SIGT̂ {|Aborted,msg1|}) ⊃ ¬Honest(T̂)

Again we reason from the initiator’s point of view and consider three scenarios.

18

Initiator completes the exchange subprotocol We already proved that
A has a contract in that case, regardless of T̂ ’s behavior and therefore A
cannot get cheated in this case.

Initiator runs the abort protocol In this case, we prove two things. First
of all, no one can have a standard contract. Secondly, after executing the abort
subprotocol A will either get the abort token or the replacement contract.
Therefore, if A gets cheated it has to be the case that some other party X
has a replacement contract, while A has the abort token for the corresponding
nonce. As explained above, these two terms are non-repudiable proofs that T̂
misbehaved. We capture both properties with a single logical formula given
below.

`θ1

[Abort(Â, B̂, T̂ ,msg1)]A
¬Has(X, s) ∧ (Has(A, r) ∨ Has(A,SIGT̂ {|Aborted, msg1|}))

Initiator runs the resolve protocol This case is similar to the one above,
and we omit the details.

4.3.3 Abuse-Freeness

Abuse-freeness means that no party can ever prove to the third party that
it has the power to both enforce and cancel the contract. More precisely, a
protocol is abuse-free for the initiator if in every state where the responder
has publicly verifiable information that the initiator is bound to the contract
it has to be that the responder is also bound to the contract.

Modelling the property that the responder has publicly verifiable information
that the initiator is bound to the contract is beyond the scope of the logic.
However, if we fix the set of terms t1, . . . , tn that we consider to constitute such
information we can express abuse-freeness for the initiator in the following
way: whenever a party X possess terms t1, . . . , tn, the initiator has a strategy
to obtain a contract. As pointed in the long version of [4], the definition of
abuse-freeness that we are able to prove in the logic is strictly stronger than
the standard definition of abuse-freeness that we first mentioned above.

For the ASW protocol, if we consider the signature in the first message as
a proof that the initiator is bound to the contract, it is easy to see that the
protocol does not provide this property for the initiator. In the logic, this is

19

reflected in the fact that the proof of the following formula fails:

ΓT `θ1 ∧ Has(X, SIGÂ{|Â, B̂, T̂ , text,HASH{|x|}|}
[Abort(Â, B̂, T̂ , msg1)]A
Honest(T̂) ⊃ Has(A, r)

5 Template for Optimistic Contract Signing Protocols

Both the ASW and GJM protocols consist of three interdependent subpro-
tocols: exchange, abort, and resolve. The structure of these two protocols
suggests a general pattern for two-party optimistic contract-signing protocols.
Specifically, the exchange subprotocol proceeds in two stages. In the first stage,
the two parties commit to the contract and in the second they open their com-
mitment, in effect, ensuring that they are bound to the contract. Given this
observation, it seems natural to ask if we could provide a unified representa-
tion and proofs for these two protocols and their properties. In this section,
we answer this question in the affirmative.

5.1 Abstraction and Refinement Methodology

The concept of protocol templates and an abstraction-instantiation method
using templates to develop unified proofs for related protocols is introduced
in [9]. In order to make this paper self-contained, we reproduce the main ideas
below.

Protocol Templates: A protocol template is a protocol that uses function
variables. An example of an abstract challenge-response based authentication
protocol using the informal trace notation is given below.

A → B : m

B → A : n, F (B, A, n, m)

A → B : G (A,B,m, n)

Here, m and n are fresh nonces and F and G are function variables. Substi-
tuting cryptographic functions for F and G with the parameters appropriately
filled in yields real protocols. For example, instantiating F and G to signa-
tures yields the standard signature-based challenge-response protocol from the
ISO-9798-3 family, whereas instantiating F and G to a keyed hash yields the
SKID3 protocol.

20

Characterizing protocol concepts: Protocol templates provide a useful
method for formally characterizing design concepts. Our methodology for for-
mal proofs involves the following two steps.

(1) Assuming properties of the function variables and some invariants, prove
properties of the protocol templates. Formally,

Q, Γ ` φ1[P]Aφ2

Here, Q is an abstract protocol and P is a program for one role of the
protocol. Γ denotes the set of assumed properties and invariants.

(2) Instantiate the function variables to cryptographic functions and prove
that the assumed properties and invariants are satisfied by the real proto-
col. Hence conclude that the real protocol possesses the security property
characterized by the protocol templates.

If Q′ ` Γ′, then Q′ ` φ′1[P
′]Aφ′2

Here, the primed versions of the protocol, hypotheses, etc. are obtained
by applying the substitution σ used in the instantiation.

The correctness of the method follows from the soundness of substitution and
the transitivity of entailment in the logic.

5.2 Template for ASW and GJM Protocols

The roles of the template for the ASW and GJM protocols are given in Fig-
ure 3. Let us examine the program of the initiator. Notice that the initiator
first sends his commitment (commit1), receives the responder’s commitment
(commit2), checks its validity, opens his commitment (open), and finally ex-
pects a message opening the responder’s commitment. The responder’s pro-
gram is symmetric. commit1, commit2 and open are function variables rep-
resenting the messages sent by X̂ and Ŷ during the protocol. The function
variable chk models the verification performed by each participant after re-
ceiving its last message. These functions are instantiated for ASW and GJM

21

ExchangeInit ≡ (X̂, Ŷ , T̂ , text)[
new x;
send X̂, Ŷ , commit1(X̂, Ŷ , T̂ , text,HASH{|x|});
receive Ŷ , X̂, z;
match z/commit2(Ŷ , X̂, T̂ , text, commit1(. . .), y);

send X̂, Ŷ , open(X̂, text, x);

receive Ŷ , X̂, w;
match chk(w)/open(Ŷ , text, y);]X

ExchangeResp ≡ (X̂, Ŷ , T̂ , text)[

receive Ŷ , X̂, z;
match z/commit1(Ŷ , X̂, T̂ , text, y);
new x;
send X̂, Ŷ , commit2(X̂, Ŷ , T̂ , text, z, HASH{|x|});
receive Ŷ , X̂, w;
match chk(w)/open(Ŷ , text, y);

send X̂, Ŷ , open(X̂, text, x);]X

Abort ≡ (X̂, Ŷ , T̂ ,msg1, text, x)[

send X̂, T̂ , abortreq(X̂, Ŷ , text, msg1)

receive T̂ , X̂, z;
if z

tpabort(X̂, Ŷ , T̂ , text, msg1) :;

tpresp(X̂, Ŷ , T̂ , text, x, y, Ŷ) :;
fi]X

ResolveInit ≡ (X̂, Ŷ , T̂ ,msg1, msg2, text, x)[

send X̂, T̂ , msg1,msg2;
receive T̂ , X̂, z;
if z

tpabort(X̂, Ŷ , T̂ , text, msg1) :;

tpresp(X̂, Ŷ , T̂ , text, x, y, Ŷ) :;
fi]X

Fig. 3. Roles of the protocol template

as follows.

ASW :

commit1(X̂, Ŷ , T̂ , text, h) =SIGX̂{|X̂, Ŷ , T̂ , text, h|}
commit2(X̂, Ŷ , T̂ , text, z, h) =SIGX̂{|z, h|}

open(X̂, text, x) =x

chk(w) =HASH{|w|}

GJM :

commit1(X̂, Ŷ , T̂ , text, h) =PCSX̂{|text, Ŷ , T̂ |}
commit2(X̂, Ŷ , T̂ , text, z, h) =PCSX̂{|text, Ŷ , T̂ |}

open(X̂, text, x) =SIGX̂{|text|}
chk(w) =w

22

In the ASW instantiation, the commitment messages are signatures over
hashed nonces and the opening messages reveal the corresponding nonces.
The verification action involves checking that the hash of the revealed nonce
matches the hash in the commitment message. In the GJM instantiation, a
commitment message is a PCS over the contract and the opening message
is the corresponding universally verifiable signature. The verification action
involves verifying the signature.

To improve readability, we use msg1(Â, B̂, T̂ , text, x) and

msg2(Â, B̂, T̂ , text, x, y) as shorthand for the first and second message
of the exchange subprotocol, i.e.,

msg1(Â, B̂, T̂ , text, x) ≡commit1(Â, B̂, T̂ , text, HASH{|x|})
msg2(Â, B̂, T̂ , text, x, y) ≡commit2(B̂, Â, T̂ , text,

msg1(Â, B̂, T̂ , text, x),HASH{|y|})

The protocol definition provides two forms of a contract. A standard contract,
s, is obtained on successful completion of the exchange subprotocol. This is
the ‘optimistic’ aspect of these protocols. A replacement contract, r, is issued
by the trusted third party in case of dispute. The syntactic forms of these
contracts for the ASW and GJM protocols as well as some other message
components used in the abort and resolve protocols are given below. Note
that we work with the modified version of the GJM protocol as presented
in [23]. The only difference is that in the resolve protocol, the responder sends

23

his PCS to the trusted third party instead of his signature.

ASW :

abortreq(Â, B̂, text, msg1) =SIGÂ{|Abort, msg1|}
tpabort(Â, B̂, T̂ , text, msg1) =SIGT̂ {|Aborted,

abortreq(Â, B̂, text, msg1)|}
tpresp(Â, B̂, T̂ , text, x, y, Ẑ) =SIGT̂ {|msg1(Â, B̂, T̂ , text, x),

msg2(Â, B̂, T̂ , text, x, y)|}
s(Â, B̂, T̂ , text, x, y) =msg1(Â, B̂, T̂ , text, x),

msg2(Â, B̂, T̂ , text, x, y),

open(Â, text, x), open(B̂, text, y)

r(Â, B̂, T̂ , text, x, y) =tpresp(Â, B̂, T̂ , text, x, y, Â)

GJM :

abortreq(Â, B̂, text, msg1) =SIGÂ{|text, Â, B̂, Abort|}
tpabort(Â, B̂, T̂ , text, msg1) =SIGT̂ {|abortreq(Â, B̂, text, msg1)|}
tpresp(Â, B̂, T̂ , text, x, y, Ẑ) =open(Ẑ, text, w)

With w = x if Z = A

and w = y if Z = B.

s(Â, B̂, T̂ , text, x, y) =open(Â, text, x), open(B̂, text, y)

r(Â, B̂, T̂ , text, x, y) =open(Â, text, x), open(B̂, text, y)

We now examine the templates for the abort and resolve sub-protocols, also
given in Figure 3. The initiator A has the option of requesting the trusted
third party T to abort an exchange that A has initiated by executing the
abort subprotocol with T . Finally, both the initiator and the responder may
request that T resolve an exchange that has not been completed by executing
the resolve subprotocol with T .

We model the trusted third party’s behavior using a set ΓT of logical formulas.
It is straightforward to write down the program for the trusted third party and
establish these properties using the honesty rule for PCL (see Appendix A).
In the same way, we will capture the desired behavior of the variable functions
commit1, commit2, open and chk using a set of logical formulas Λ, and show
that both ASW and GJM satisfy Λ. Γ1

T is the same assumption about the
behavior of the trusted third party T as in Section 4. It says that if T is
honest, then it will never issue both a replacement contract and the abort
token. Naturally, a misbehaving trusted third party T could easily cheat on
any of the participants. Formally, Γ1

T is defined as follows:

Γ1
T ={Honest(T) ∧ Send(T, T̂ , Ẑ, tpresp(Â, B̂, T̂ , text, x, z, Ẑ ′))

⊃ ¬Send(T, T̂ , Â, tpabort(Â, B̂, T̂ , text,

msg1(Â, B̂, T̂ , text, x)))}

24

Γ2
T is the second assumption about the behavior of the trusted third party.

It says that T will abort the protocol (by sending the abort token) only if she
received an abort request from the initiator.

Γ2
T ={Send(T, T̂ , Â, tpabort(Â, B̂, T̂ , text,

msg1(Â, B̂, T̂ , text, x)))

⊃ Receive(T, Â, T̂ , abortreq(Â, B̂, text,

msg1(Â, B̂, T̂ , text, x)))}

Other instances Although we focus on the ASW and GJM instances, we
note that simple variants of the non-repudiation protocols of [20,21,25] are also
instances of this template. Specifically, these variants are similar to the ASW
protocol, the only difference being that the hash of the nonce is replaced by the
encryption of nonce with a secret key which is later revealed in the decommit
message. This indicates that the template provides a characterization of a
broad class of optimistic contract signing protocols. We are aware of only
one timely, optimistic fair exchange protocol that substantially differs from
our template [24]. The protocol in [24] is started by the responder sending a
specific generation message that serves as a characterization of the considered
secret, and that can be used to circumvent the prevalent commitment-based
message flows.

5.3 Hypotheses associated with the Template

We prove the security properties of the protocol template under the following
hypotheses. It is easy to check that these assumptions are satisfied when the
template is instantiated to the ASW and GJM protocols. We omit the rather
straightforward proofs. One way to think about these hypotheses is that they
represent general high-level specifications that we might expect any optimistic
contract signing protocols to satisfy. They can be naturally divided into two

25

classes.

`Has(Z,msg1(Â, B̂, T̂ , text, x))∧
Has(Z,msg2(Â, B̂, T̂ , text, x, y))∧
Has(Z, open(Â, text, x))∧ (6)

Has(Z, open(B̂, text, y)) ⊃ Has(Z, s(Â, B̂, T̂ , text, x, y))
`Has(A, text, x) ⊃
Has(A,msg1(Â, B̂, T̂ , text, x), open(Â, text, x)) (7)

`Has(Z,w) ∧ Has(Z, commit2(B̂, Â, T̂ , text, m, y))

[match chk(w)/open(Â, text, y)]Z
Has(Z, commit2(B̂, Â, T̂ , text, m,HASH{|w|}),

open(Â, text, w)) (8)

`Has(Z, s(Â, B̂, T̂ , text, x, y)) ⊃
Has(Z, open(Â, text, x)) (9)

The first class of assumptions identify the message components that a prin-
cipal must possess in order to obtain a standard contract. (6) states that any
participant possessing the four messages exchanged in the ’optimistic’ proto-
col execution also possess the standard contract. It would be strange if an
optimistic contract signing protocol did not satisfy this property! (7) states
that an initiator A has enough information to produce the first and third mes-
sages of an optimistic protocol exchange. (8) ensures that given two messages
from the responder, the chk function allows the initiator to verify that these
messages constitute a valid commit–open pair. Finally, (9) shows that given
a valid contract, one can extract the initiator’s open message from it. These
assumptions are discharged for the instances based purely on the properties of
the functions used to construct the open and commit messages (e.g., in order
to compute the hash of a message, it is essential to possess the message).

`Has(Z, r(Â, B̂, T̂ , text, x, y)) ∧ Honest(T̂) ⊃ ∃Z ′.∃Z ′′
Send(T, Ẑ ′, tpresp(Â, B̂, T̂ , text, x, y, Ẑ ′′))

∨ Has(Z, open(Â, text, x)) (10)

`Has(Z, open(Â, text, x)) ∧ ¬Send(A, open(Â, text, x))∧
Honest(T̂ , Â) ∧ New(A, x) ⊃ (Z = A) ∨ ∃Z ′.∃Z ′′
Send(T, Ẑ ′, tpresp(Â, B̂, T̂ , text, x, y, Ẑ ′′)) (11)

`Has(Z, tpresp(Â, B̂, T̂ , text, x, y, B̂), open(A, text, x)) ⊃
Has(Z, r(Â, B̂, T̂ , text, x, y)) (12)

The second class of assumptions capture the hardness of constructing the re-
placement contract. More precisely, (10) states that the only ways to acquire
a replacement contract are to get it from the trusted third party or to con-
struct it from the open messages, while (11) states that the open message for
the initiator can only be computed by initiator herself or extracted from the
replacement contract issued by the trusted third party. Also, (12) states that

26

given the initiator’s opening message and the response of the trusted third
party to an accepted resolve request, one can build the replacement contract.
These assumptions are discharged in the template instances based on the re-
lations between the various open and commit messages as well as the protocol
steps of the various parties.

5.4 Proving Template Properties

In this section, we prove the security properties of the protocol template. We
focus on fairness; the proof of accountability is analogous. Abuse-freeness for
the GJM protocol reduces to fairness, because of the properties of private
contract signatures.

Fairness

The proof structure parallels that of the ASW fairness proof, the only differ-
ence being that we work with the templates instead of the concrete protocols.
Some steps in the proof use the hypotheses listed in the previous section.

Initiator completes the exchange protocol Formula φ0 states that the
initiator A has a valid contract after the successful execution of the exchange
protocol. This is the optimistic part of the protocol.

φ0 ≡Start(A)

[ExchangeInit(Â, B̂, T̂ , text)]A
Has(A, s)

We formally show in Appendix B that:

`φ0 (13)

Initiator runs the abort protocol Consider the case that A started the
protocol as the initiator but did not complete it. We then want to show that
whenever some other party has a valid contract then it must be the case that A
will get the replacement contract if it executes abort subprotocol after sending
the first message. A necessary prerequisite for this to hold is that A’s open
message was not sent yet, i.e., for

θ1 = ¬Send(A, open(Â, text, x)) ∧ New(A, x)

27

we define the formula φ1 by

φ1 ≡θ1

[Abort(Â, B̂, T̂ , msg1)]A
(Has(X, s) ∨ Has(X, r)) ∧ Honest(T̂) ∧ Honest(Â)
⊃ (Has(A, s) ∨ Has(A, r))

It is easy to verify that θ1 holds in the state where A has only sent the first
message of the protocol. We formally show in Appendix B that:

`Start(A)[ExchangeInit(Â, B̂, T̂ , text)1]Aθ1 (14)

Γ1
T `φ1 (15)

The fairness property in this case follows from the sequential composition
theorem. Here Γ1

T is the same assumption about the behavior of the trusted
third party T as in Section 4. It says that if T is honest, then it will never
issue both a replacement contract and the abort token.

Initiator runs the resolve protocol : Finally, we show that if A has re-
ceived the second message of the protocol then it can obtain a valid contract by
executing the resolve subprotocol, provided that he did not abort the protocol
in the part, i.e., for

θ2 =¬Send(A, Â, T̂ , abortreq(Â, B̂, text,

msg1(Â, B̂, T̂ , text, x))) ∧ New(A, x)

we define φ2 by

φ2 ≡θ2

[Resolve(Â, B̂, T̂ ,msg1,msg2)]A
(Has(X, s) ∨ Has(X, r))∧
Honest(T̂) ∧ Honest(Â) ⊃ Has(A, r)

It is easy to verify that θ2 holds in the state where A has received the second
message and sent the third message of the protocol. To formally prove fairness
from the point of view of the initiator (assuming the desired properties of the
trusted third party), we need to show the following :

`Start(A)[ExchangeInit(Â, B̂, T̂ , text)3]Aθ2 (16)

Γ2
T `φ2 (17)

Here Γ2
T is the second assumption about the behavior of the trusted third

party. It says that T will abort the protocol (by sending the abort token) only
if she received an abort request from the initiator.

28

6 Conclusion

We show how to reason compositionally about contract-signing protocols, us-
ing a specialized protocol logic to prove properties about general forms of
exchange, abort, and resolve subprotocols and combine these properties us-
ing logical composition rules. The method is surprisingly direct for contract
signing, given that the logic we used was originally aimed at two-party au-
thentication protocols. The formal proof proceeds along direct, intuitive lines
and is carried out in a “template” form that may be instantiated to provide
correctness proofs for two standard protocols and protocol variants that use
the same arrangement of messages. In addition, the compositional approach
makes it unnecessary to consider interleaving of actions from different sub-
protocols. This is fortunate since interaction between separate subprotocols
appears to have been a significant source of difficulty in previous studies. Fur-
ther, the use of protocol templates gives us a single “reusable” proof that
may be instantiated for the Asokan-Shoup-Waidner protocol [1,2], the Garay-
Jacobson-McKenzie [15] protocol, and other protocols such as variants using
the primitives explored in [20,25]. In this sense, we prove the relatively intu-
itive but otherwise difficult to state theorem that any protocol of a certain
form has precise correctness properties.

Contract signing fairness for party A is proved by explicit reasoning about
specific actions taken by A. In effect, this form of argument shows that A has
a strategy to obtain a contract by explicitly presenting the strategy. However,
the logic is not suited to showing directly that it is possible to complete these
steps - that is a modelling assumption that remains outside the formalism.
Further, the safety-oriented logic seems less adept at non-trace-based prop-
erties such as abuse freeness than game-theoretic approaches. Nonetheless,
these axiomatic, general proofs for unbounded runs offer additional validation
of optimistic contract signing protocols not readily available through previous
approaches.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic
fair exchange. Technical Report RZ 2976, IBM Research, 1997.

[2] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic
fair exchange. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 86–99. IEEE, 1998.

[3] R. Chadha, M. Kanovich, and A. Scedrov. Inductive methods and contract-
signing protocols. In 8-th ACM Conference on Computer and Communications
Security, pages 176–185. ACM Press, 2001.

29

[4] R. Chadha, S. Kremer, and A. Scedrov. Formal analysis of multi-party contract
signing. In Proceedings of the 17th IEEE Computer Security Foundations
Workshop, pages 266–279. IEEE, 2004.

[5] R. Chadha, J. C. Mitchell, A. Scedrov, and V. Shmatikov. Contract signing,
optimism, and advantage. In 14th International Conference on Concurrency
Theory (CONCUR ’03), volume 2761 of Lecture Notes in Computer Science.
Springer-Verlag, 2003.

[6] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system
and compositional logic for security protocols. Journal of Computer Security,
14:423.

[7] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for
security protocols and its logical formalization. In Proceedings of 16th IEEE
Computer Security Foundations Workshop, pages 109–125. IEEE, 2003.

[8] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition
(Extended abstract). In Proceedings of ACM Workshop on Formal Methods in
Security Engineering, pages 11–23, 2003.

[9] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Abstraction and
refinement in protocol derivation. In Proceedings of 17th IEEE Computer
Security Foundations Workshop, pages 30–45. IEEE, 2004.

[10] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol
composition. In Proceedings of 19th Annual Conference on Mathematical
Foundations of Programming Semantics, volume 83 of Electronic Notes in
Theoretical Computer Science, 2004.

[11] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic
polynomial-time semantics for a protocol security logic. In Proceedings of
the 32nd International Colloquium on Automata, Languages and Programming
(ICALP ’05), Lecture Notes in Computer Science. Springer-Verlag, 2005.

[12] N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for protocol
correctness. In Proceedings of 14th IEEE Computer Security Foundations
Workshop, pages 241–255. IEEE, 2001.

[13] N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for proving
security properties of protocols. Journal of Computer Security, 11:677–721,
2003.

[14] S. Even and Y. Yacobi. Relations among public key signature schemes.
Technical Report 175, Computer Science Deptartment, Technion, Israel, 1980.

[15] J. A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract
signing. In Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology, pages 449–466. Springer-Verlag, 1999.

[16] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular
correctness proof of IEEE 802.11i and TLS. In CCS ’05: Proceedings of the
12th ACM conference on Computer and communications security, 2005.

30

[17] S. Kremer, O. Markowitch, and J. Zhou. An intensive survey of non-repudiation
protocols. Computer Communications, 25(17):1606–1621, 2002.

[18] S. Kremer and J.-F. Raskin. Game analysis of abuse-free contract signing. In
Proceedings of the 15th IEEE Computer Security Foundations Workshop, pages
206–220. IEEE, 2002.

[19] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995.

[20] O. Markowitch and S. Kremer. A multi-party optimistic non-repudiation
protocol. In Proceedings of the Third International Conference on Information
Security and Cryptology, pages 109–122. Springer-Verlag, 2001.

[21] O. Markowitch and S. Saeednia. Optimistic fair exchange with transparent
signature recovery. In Proceedings of the 5th International Conference on
Financial Cryptography, pages 339–350. Springer-Verlag, 2001.

[22] H. Pagnia and F. C. Gärtner. On the impossibility of fair exchange without
a trusted third party. Technical Report TUD-BS-1999-02, Department of
Computer Science, Darmstadt University of Technology, Darmstadt, Germany,
1999.

[23] V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract signing
protocols. Theoretical Computer Science, 283(2):419–450, 2002.

[24] H. Vogt. Asynchronous optimistic fair exchange based on revocable items.
In Proceedings of the 7th International Conference on Financial Cryptography,
pages 208–222. Springer-Verlag, 2003.

[25] J. Zhou, R. Deng, and F. Bao. Evolution of fair non-repudiation with TTP.
In Proceedings of the 4th Australasian Conference on Information Security and
Privacy, volume 1587 of Lecture Notes in Computer Science, pages 258–269.
Springer-Verlag, 1999.

A Protocol Composition Logic

A.1 Semantics

The formulas of the logic are interpreted over runs, which are finite sequences
of reaction steps from an initial configuration. An equivalent view is to think
of a run as a linear sequence of states. Transition from one state to the next
is effected by an action carried out by some principal in some role. A formula
is true in a run if it is true in the last state of that run.

The main semantic relation, Q, R |= φ, may be read, “formula φ holds for
run R of protocol Q.” If Q is a protocol, then let Q̄ be the set of all initial

31

configurations of protocol Q, each including a possible intruder program. Let
Runs(Q̄) be the set of all runs of protocol Q with intruder, each a sequence of
reaction steps within a cord space. If φ has free variables, then Q,R |= φ if we
have Q,R |= σφ for all substitutions σ that eliminate all the free variables in
φ. For a set of formulas Γ, we say that Γ |= φ if Q, R |= Γ implies Q, R |= φ.
We write Q |= φ if Q, R |= φ for all R ∈ Runs(Q̄).

In the following, EVENT (R,X, P, ~n, ~x) means that in run R, thread X exe-
cutes actions P , receiving data ~n into variables ~x, where ~n and ~x are the same
length.

Action Formulas:

• Q, R |= Send(A,m) if EVENT (R,A, send m, ∅, ∅).
• Q, R |= Receive(A,m) if EVENT (R, A, receive x,m, x).
• Q, R |= New(A,m) if EVENT (R,A, new x,m, x).
• Q, R |= Decrypt(A,ENCK{|m|}) if EVENT (R, A, (match ENCK{|m|}/SIGK{|x|}),m, x)

Note: Decrypt(A, n) is false if n 6= ENCK{|m|} for some m and K.
• Q, R |= Verify(A, SIGK{|m|}) if EVENT (R, A, (match SIGK{|m|}/ENCK{|m|}), ∅, ∅)

Note: Verify(A, n) is false if n 6= SIGK{|m|} for some m and K.

Other Formulas:

• Q, R |= Has(A,m) if there exists an i such that Hasi(A,m) where Hasi is
inductively as follows:

(Has0(A,m) if ((m ∈ FV (R|A))
∨ EVENT (R, A, new x,m, x)
∨ EVENT (R, A, receive x,m, x)

and Hasi+1(A,m) if Hasi(A,m)∨ (Hasi(A,m′)
∨ (Hasi(A,m′) ∧ Hasi(A,m′′)

∧ ((m = m′,m′′) ∨ (m = m′′,m′)))
∨(Hasi(A,m′) ∧ Hasi(A,K)
∧m = ENCK{|m′|})

∨(Hasi(A, a) ∧ Hasi(A, gb)
∧m = gab)

∨(Hasi(A, gab) ∧m = gba)
Intuitively, Has0 holds for terms that are known directly, either as a free
variable of the role, or as the direct result of receiving or generating the
term. Hasi+1 holds for terms that are known by applying i operations (de-
composing via pattern matching, composing via encryption or tupling, or
by computing a Diffie-Hellman secret) to terms known directly.

• Q, R |= Honest(Â) if Â ∈ HONEST (C) in initial configuration C for R and
all threads of Â are in a “pausing” state in R. More precisely, R|Â is an

32

interleaving of basic sequences of roles in Q.
• Q, R |= Contains(t1, t2) if t2 ⊆ t1.
• Q, R |= (φ1 ∧ φ2) if Q, R |= φ1 and Q, R |= φ2

• Q, R |= ¬φ if Q, R 6|= φ
• Q, R |= ∃x.φ if Q, R |= (d/x)φ, for some d, where (d/x)φ denotes the

formula obtained by substituting d for x in φ.
• Q, R |= Start(X) if R|X is empty. Intuitively this formula means that X

didn’t execute any actions in the past.

Modal Formulas:

• Q, R |= φ1 [P]A φ2 if R = R0R1R2, for some R0, R1 and R2, and either
P does not match R1|A or P matches R1|A and Q, R0 |= σφ1 implies
Q, R0R1 |= σφ2, where σ is the substitution matching P to R1|A.

A.2 Proof System

A.2.1 Axioms and Inference Rules

The axioms and inference rules of the proof system that are used in this
paper are collected in Table A.1. AA1 states that if a principal has executed
an action in some role, then the corresponding predicate asserting that the
action had occurred in the past is true. VER captures the unforgeability of
signatures of honest principals by the attacker. This axiom (together with a
few more axioms not described in this summary) provide an abstraction of the
standard Dolev-Yao intruder model. Axioms P1 and P3 capture the fact that
most predicates are preserved by additional actions. For example, if in some
state Has(X, n) holds, then it continues to hold, when X executes additional
actions. The generic rules are used to reason about modal formulas in the style
of Floyd-Hoare logic. The conditional rule is used for reasoning about the “if”
construct introduced in this paper.

A.2.2 The Honesty Rule

The honesty rule is essentially an invariance rule for proving properties of all
roles of a protocol. It is similar to the basic invariance rule of LTL [19]. The
honesty rule is used to combine facts about one role with inferred actions of
other roles.

For example, suppose Alice receives a response from a message sent to Bob.
Alice may wish to use properties of Bob’s role to reason about how Bob gen-
erated his reply. In order to do so, Alice may assume that Bob is honest and

33

Axioms for protocol actions

AA1 true[a]X a

AA2 Start(X)[]X ¬a(X)
AA3 ¬Send(X, t)[b]X¬Send(X, t) if σSend(X, t) 6= σb for all substitutions σ

AN2 true[newx]X Has(Y, x) ⊃ (Y = X)
ARP Receive(X, p(x))[matchq(x)/q(t)]X Receive(X, p(t))

Possession Axioms

ORIG New(X,x) ⊃ Has(X, x)
REC Receive(X,x) ⊃ Has(X, x)
TUP Has(X,x) ∧ Has(X, y) ⊃ Has(X, (x, y))

PROJ Has(X, (x, y)) ⊃ Has(X, x) ∧ Has(X, y)
SIG Has(X,SIGŶ {|x|}) ⊃ Has(X, x)

Signature

VER Honest(X̂) ∧ Verify(Y, SIGX̂{|x|}) ∧ X̂ 6= Ŷ ⊃ ∃X.Send(X, [SIGX̂{|x|}])

Preservation Axioms
Persist ∈ {Has, a}:

P1 Persist(X, t)[a]XPersist(X, t)

P3 HasAlone(X, n)[a]XHasAlone(X, n), where n 6⊆v a or a 6= 〈m〉

HasAlone(X, t) ≡ Has(X, t) ∧ (Has(Y, t) ⊃ X = Y)
Generic Rules

θ[P]Xφ θ[P]Xψ
θ[P]Xφ ∧ ψ

G1 θ[P]Xφ θ′ ⊃ θ φ ⊃ φ′

θ′[P]Xφ′
G2 φ

θ[P]Xφ
G3

Conditional
φ[match t/t1;P1]ψ1 φ[match t/t2; P2]ψ2 . . . φ[match t/tn; Pn]ψn

φ[if t t1 : P1; t2 : P2; . . . tn : Pn; fi]ψ1 ∨ ψ2 ∨ · · · ∨ ψn
IF

Table A.1
Relevant Fragment of the PCL Proof System

derive consequences from this assumption. Since honesty, by definition in this
framework, means “following one or more roles of the protocol,” honest prin-
cipals must satisfy every property that is a provable invariant of the protocol
roles.

Since the honesty rule depends on the protocol, we write Q ` θ[P]φ if θ[P]φ
is provable using the honesty rule for Q and the other axioms and proof rules.

34

Using the notation just introduced, the honesty rule may be written as follows.

[]X φ ∀ρ ∈ Q.∀PεBS(ρ). φ [P]X φ

Q ` Honest(X̂) ⊃ φ
HON

no free variable

in φ except X

bound in [P]X

In words, if φ holds at the beginning of every role of Q and is preserved
by all its basic sequences, then every honest principal executing protocol Q
must satisfy φ. The side condition prevents free variables in the conclusion
Honest(X̂) ⊃ φ from becoming bound in any hypothesis. Intuitively, since φ
holds in the initial state and is preserved by all basic sequences, it holds at all
pausing states of any run.

B Formal Proofs

Formal proofs are collected in Tables B.1 through B.10.

AA1,ORIG,G2 Start(A)
[new x]A
Has(A, x) (B.1)

AA1,ARP φ

[receive A, B̂, Â, z; match z/SIGB̂{|msg1, w|}]A
Receive(A,SIGB̂{|msg1, w|}) (B.2)

(B.2),PROJ φ

[receive A, B̂, Â, z; match z/SIGB̂{|msg1, w|}]A
Has(A,msg1) (B.3)

AA1,ARP,REC Receive(A,SIGB̂{|msg1, w|}
[receive A, B̂, Â, w; match HASH{|w|}/y]A
Has(A, y) ∧ Has(A, SIGB̂{|msg1, HASH{|y|}|})(B.4)

(B.1), (B.2), (B.3), (B.4),P1,TUP φ

[ExchangeInit(Â, B̂, T̂ , text)]A
Has(A, s(Â, B̂, T̂ , text, x, y)) (B.5)

Table B.1
Proof of Equation 1

35

AA1,ORIG,AN2 Start(A)
[new x]A
Has(A, x) ∧ (Has(B, x) ⊃ (B = A)) (B.6)

(B.6),P3 Start(A)

[new x; send Â, B̂,msg1]A
HasAlone(A, x) (B.7)

(B.7) Start(A)

[ExchangeInit(Â, B̂, T̂ , text)1]A
θ1 (B.8)

Table B.2
Proof of Equation 2

P3 HasAlone(A, x)

[Abort(Â, B̂, T̂ , msg1)]A
HasAlone(A, x) (B.9)

PROJ Has(X, s) ⊃ Has(X, x) (B.10)
(B.10),P3 HasAlone(A, x) ∧A 6= X ⊃ ¬Has(X, s) (B.11)

(B.11) ¬Send(B, s) ∧A 6= B ⊃ ¬Has(A, s) (B.12)

VER Honest(T̂) ∧ Verify(X, r) ∧ X̂ 6= T̂

⊃ Send(T, T̂ , X̂, r) (B.13)
Γ1

T , (B.11), (B.12), (B.13) HasAlone(A, x) ∧ (Has(X, s) ∨ Has(X, r))

⊃ (Honest(T̂) ⊃
¬Send(T, T̂ , Â, SIGT̂ {|Aborted, msg1|})) (B.14)

(B.14), IF θ1

[Abort(Â, B̂, T̂ , msg1)]A
(Has(X, s) ∨ Has(X, r)) ∧ Honest(T̂)
⊃ Has(A, r) (B.15)

Table B.3
Proof of Equation 3

36

AA2 Start(A)
[]A
¬Send(A, Â, T̂ , SIGÂ{|Abort,msg1|}) (B.16)

AA1 [New(x)]ANew(A, x) (B.17)
(B.16), (B.17),AA3 Start(A)

[ExchangeInit(Â, B̂, T̂ , text)3]A
θ2 (B.18)

Table B.4
Proof of Equation 4

VER,HON Honest(Â) ∧ Â 6= T̂ ∧ Receive(T, Â, T̂ , SIGÂ{|Abort, msg1|})
⊃ Send(A, Â, T̂ , SIGÂ{|Abort, msg1|}) (B.19)

(B.19), θ2 ∧ Honest(Â) ∧ Â 6= T̂

⊃ ¬Receive(T, Â, T̂ , SIGT̂ {|Aborted, msg1|}) (B.20)

(B.20),Γ2
T θ2 ∧ Honest(Â) ∧ Â 6= T̂

⊃ ¬Send(T, T̂ , Â, SIGT̂ {|Aborted, msg1|}) (B.21)
(B.21), IF θ2

[Resolve(Â, B̂, T̂ , msg1,msg2)]A
(Has(X, s) ∨ Has(X, r)) ∧ Honest(T̂) ⊃ Has(A, r) (B.22)

Table B.5
Proof of Equation 5

37

AA1,ORIG,G2 Start(A)[new x]AHas(A, x) (B.23)
(B.23), (7),G2 Start(A)

[new x]A
Has(A,msg1(Â, B̂, T̂ , text, x),

open(Â, text, x)) (B.24)
AA1,ARP,REC φ

[receive A, B̂, Â, z;

match z/commit2(B̂, Â, T̂ , text,

msg1(Â, B̂, T̂ , text, x), y)]A
Has(A, commit2(B̂, Â, T̂ , text,

msg1(Â, B̂, T̂ , text, x), y))(B.25)

AA1,REC, (8),S1 Has(A, commit2(B̂, Â, T̂ , text,

msg1(Â, B̂, T̂ , text, x), y))

[receive A, B̂, Â, w;

match chk(w)/open(B̂, text, y)]A
Has(A, open(B̂, text, w),

msg2(Â, B̂, T̂ , text, x, w)) (B.26)
(B.24), (B.26),P1, (6),G2 φ

[ExchangeInit(Â, B̂, T̂ , text)]A
Has(A, s(Â, B̂, T̂ , text, x, y)) (B.27)

Table B.6
Proof of Equation 13

AA1,P1,AN2 Start(A)

[new x; send Â, B̂, msg1(Â, T̂ , text, x)]A
New(A, x) (B.28)

AA3 Start(A)

[new x; send Â, B̂, msg1(Â, T̂ , text, x)]A
¬Send(A, open(Â, text, x)) (B.29)

(B.28), (B.29),G1 Start(A)

[ExchangeInit(Â, B̂, T̂ , text)1]A
θ1 (B.30)

Table B.7
Proof of Equation 14

38

AA2 Start(A)
[]A
¬Send(A, abortreq(Â, B̂, text, msg1)) (B.31)

AA1 [New(x)]ANew(A, x) (B.32)
(B.31), (B.32),AA3 Start(A)

[ExchangeInit(Â, B̂, T̂ , text)3]A
θ2 (B.33)

Table B.8
Proof of Equation 16

γ = Honest(T) ∧ Honest(A) ∧ (Has(Z, s(Â, B̂, T̂ , x, y)) ∨ Has(Z, r(Â, B̂, T̂ , x, y)))
(10), (11), (9) θ1 ∧ γ

⊃ (Z = A) ∨ ∃Z ′.∃Z ′′.Send(T, Ẑ ′, tpresp(Â, B̂, T̂ , text, x, y, Ẑ ′′)) (B.34)
(B.34), (15) θ1 ∧ γ

⊃ (Z = A) ∨ ¬Send(T, T̂ , Â, tpabort(Â, B̂, T̂ , text,

msg1(Â, B̂, T̂ , text, x))) (B.35)
(B.35) θ1 ∧ γ

⊃ (Z = A) ∨ ¬Receive(A, T̂ , Â, tpabort(Â, B̂, T̂ , text,

msg1(Â, B̂, T̂ , text, x))) (B.36)
(B.36), IF,P1 θ1[Abort]Aγ

⊃ (Z = A) ∨ Receive(A, T̂ , Â, tpresp(Â, B̂, T̂ , text, x, y, B̂)) (B.37)
(B.37),REC θ1[Abort]Aγ

⊃ (Z = A) ∨ Has(A, tpresp(Â, B̂, T̂ , text, x, y, B̂)) (B.38)
(B.38), (12) θ1[Abort]Aγ

⊃ Has(A, s(Â, B̂, T̂ , x, y)) ∨ Has(A, r(Â, B̂, T̂ , x, y))

Table B.9
Proof of Equation 15

39

VER Honest(Â) ∧ Â 6= T̂ ∧ Receive(T, Â, T̂ , abortreq(Â, B̂, text,

msg1(Â, B̂, T̂ , text, x))) (B.39)

⊃ Send(A, Â, T̂ , abortreq(Â, B̂, text,msg1(Â, B̂, T̂ , text, x))) (B.40)

(B.40) θ2 ∧ Honest(Â) ∧ Â 6= T̂

⊃ ¬Receive(T, Â, T̂ , abortreq(Â, B̂, text,

msg1(Â, B̂, T̂ , text, x))) (B.41)

(B.41), Γ2
T θ2 ∧ Honest(Â) ∧ Â 6= T̂

⊃ ¬Send(T, T̂ , Â, abortreq(Â, B̂, text, msg1(Â, B̂, T̂ , text, x)))(B.42)

(B.42), IF θ2[Resolve]AHonest(T̂) ∧ Honest(Â) ∧ (Has(X, s) ∨ Has(X, r))
⊃ Has(A, r) (B.43)

Table B.10
Proof of Equation 17

40

