
Compositional Analysis of Contract Signing Protocols∗

Michael Backes

IBM Zürich Research Lab

mbc@zurich.ibm.com

Anupam Datta

Stanford University

danupam@cs.stanford.edu

Ante Derek

Stanford University

aderek@cs.stanford.edu

John C. Mitchell

Stanford University

jcm@cs.stanford.edu

Mathieu Turuani †

LORIA-INRIA Nancy

turuani@loria.fr

Abstract

We develop a general method for reasoning about

contract-signing protocols using a specialized proto-

col logic. The method is applied to prove properties of

the Asokan-Shoup-Waidner and the Garay-Jacobson-

MacKenzie protocols. Our method offers certain ad-

vantages over previous analysis techniques. First, it

is compositional: the security guarantees are proved

by combining the independent proofs for the three sub-

protocols of which each protocol is comprised. Sec-

ond, the formal proofs are carried out in a “template”

form, which gives us a reusable proof that may be in-

stantiated for the ASW and GJM protocols, as well as

for other protocols with the same arrangement of mes-

sages. Third, the proofs follow the design intuition. In

particular, in proving game-theoretic properties like fair-
ness, we demonstrate that the specific strategy that the

protocol designer had in mind works, instead of show-

ing that one exists. Finally, our results hold even when

an unbounded number of sessions are executed in paral-

lel.

1. Introduction

Contract-signing protocols allow two or more par-
ties to exchange signatures fairly, so that no party re-
ceives a signed contract unless all do. While there are
no fixed-round fair two-party protocols [13, 21], it is

∗ This work was partially supported by the DoD University Re-
search Initiative (URI) program administered by the Office of
NavalResearchunderGrantN00014-01-1-0795, byOSD/ONR
CIP/SW URI through ONR Grant N00014-04-1-0725, byNSF
CCR-0121403, Computational Logic Tools for Research and
Education, and by NSF CyberTrust Grant 0430594, Collabo-
rative research: High-fidelity methods for security protocols.

† Partially supported by AVISPA IST-2001-39252W

possible for two parties to exchange signatures opti-
mistically. In optimistic protocols, the two parties may
exchange signatures if circumstances are favorable, but
if either party chooses, they may ask a trusted third
party to intervene and either complete the exchange or
refuse to complete the exchange for either party. Some
of the history of optimistic contract signing is summa-
rized in [15], for example.

Several methods have been used to analyze contract-
signing protocols and either find errors or suggest their
absence. For example, [22] uses the finite-state enumer-
ation tool Murϕ, [16, 4] use game-theoretic concepts
and the Mocha branching-time temporal logic model
checker, [3] uses inductive arguments, and [5] uses ad
hoc game tree arguments to prove the non-existence of
protocols satisfying certain conditions. However, previ-
ous studies only consider a bounded number of partic-
ipants (usually an initiator, a responder, and a trusted
third party) or involve arguments about an often con-
fusing number of cases. The reason that proving prop-
erties of optimistic contract signing protocols is diffi-
cult is that there are typically three sub-protocols, one
allowing an optimistic exchange to proceed to comple-
tion, one allowing a dissatisfied participant to abort
the exchange, and one allowing either signer to ask the
third party to complete the exchange. Some apprecia-
tion for the inherent difficulty may be gained by read-
ing the proof in [14] which, although otherwise rigor-
ous, overlooks the case leading to an error reported in
[22].

In this paper, we develop a method for reasoning
about contract-signing protocols using a specialized
protocol logic that was originally intended for authen-
tication protocols. Surprisingly, the logic proves appro-
priate to the task, requiring only a minor modification
to accommodate the if-then-else behavior of the trusted
third party. In addition, we find that a direct argument
establishes correctness of a family of related protocols,

without limitation on the number of additional proto-
col sessions that may run in parallel and may provide
alternate sources of signed messages by any of the prin-
cipals. The formal proof proceeds along direct, intuitive
lines and is carried out in a “template” form that may
be instantiated to provide correctness proofs for two
standard protocols and protocol variants that use the
same arrangement of messages. In addition, it is not
necessary to consider interleaving of actions from dif-
ferent subprotocols, since properties of the entire pro-
tocol can be proved compositionally from independent
proofs for the three subprotocols (called the exchange,

abort, and resolve subprotocols in the body of the pa-
per).

The compositional protocol logic was proposed in
[12, 6], which give example proofs for two-party authen-
tication and key exchange protocols, and used by differ-
ent authors in [20] to uncover a previously undetected
bug and establish correctness of group key management
protocols. A version of the logic that is particulary rel-
evant to the present paper is given in [8], where the
idea of proving correctness of protocol templates is ex-
plained. In this approach, a protocol template is an ab-
stract protocol containing function variables for some
of the operations used to construct messages. Correct-
ness of a protocol template may be established un-
der certain assumptions about these function variables.
Then, a proof for an actual protocol is obtained by re-
placing the function variables with combinations of op-
erations that satisfy the proof assumptions. We follow
this method for a family of contract-signing protocols,
establishing correctness of the Asokan-Shoup-Waidner
[1, 2] and Garay-Jacobson-MacKenzie [14] protocols by
instantiation. Although the formal proofs reflect the in-
tricacies associated with any formal logic, the proofs
seem to be direct encodings of natural lines of argu-
ment. In addition to compositional reasoning about
the combined properties of three independent subpro-
tocols, the protocol logic does not require any explicit
reasoning about the possible behavior of any dishonest
party, since the axioms and inference rules are sound
for any hostile environment.

We prove fairness by explicitly showing that if par-
ticipant A takes a certain number of steps, then if the
opposing party B has a contract, party A has one
as well. The actions involved in this certain number
of steps depend on whether A is the protocol initia-
tor or responder, and the state reached so far. In ef-
fect, this form of argument shows that A has a strat-
egy to obtain a contract from any state by explicitly
presenting the strategy. Further, these strategies are
the natural ones inherent in the protocol design. How-
ever, the logic proves unsuitable for showing directly

that it is possible to complete these steps - that is a
modelling assumption that remains outside the formal-
ism. Further, the safety-oriented logic seems less adept
for non-trace-based properties such as abuse freeness
than game-theoretic approaches. Nonetheless, these ax-
iomatic, general proofs for unbounded runs offer addi-
tional validation of optimistic contract signing proto-
cols not readily available through previous approaches.

The rest of this paper is organized as follows. Sec-
tion 2 briefly describes the ASW and GJM protocols
(with further details in Appendix A). Section 3 de-
scribes the protocol description language and logic and
sketches the extensions of the logic required to reason
about these protocols. A summary of the proof sys-
tem used in the axiomatic proofs in the paper is in Ap-
pendix B. Section 4 presents the analysis of the ASW
protocol, emphasizing the compositional proof method.
Complete formal proofs are in Appendix C. Section 5
describes and proves properties of the template for op-
timistic contract signing protocols of which ASW and
GJM are instances. Finally, Section 6 presents our con-
clusions.

2. Contract Signing Protocols

In this section we briefly describe the two proto-
cols of interest. More detailed descriptions including
the arrows-and-messages diagrams are given in Ap-
pendix A.

2.1. Asokan-Shoup-Waidner Protocol

The protocol of Asokan, Shoup, and Waidner (called
the ASW protocol henceforth) [1, 2] consists of three
interdependent subprotocols: exchange, abort, and re-

solve. The parties (an originator O and a responder R)
generally start the exchange by following the exchange

subprotocol. If both O and R are honest and there is
no interference from the network, each obtains a valid
contract upon completion of the exchange subproto-
col. The originator O also has the option of requesting
the trusted third party T to abort an exchange that O
has initiated. To do so, O executes the abort subpro-
tocol with T . Finally, both O and R may each request
that T resolve an exchange that has not been com-
pleted. After receiving the initial message of the ex-

change protocol, they may do so by executing the re-

solve subprotocol with T .

This protocol was designed to provide fairness to
both parties and trusted third party accountability. The
formal presentation of the protocol and its properties
are in Section 4.

2.2. Garay-Jakobsson-MacKenzie Protocol

The protocol of Garay, Jakobsson, and MacKenzie
(called the GJM protocol henceforth) [14] is closely re-
lated to the ASW protocol in that both protocols in-
volve a 4-step exchange subprotocol and similar abort

and resolve subprotocols. Even though the two proto-
cols have similar structure, the actual contents of the
messages differ. Unlike the ASW protocol, the GJM
protocol is designed to guarantee abuse-freeness in ad-
dition to fairness and third party accountability. These
properties are formally modelled and proved in Sec-
tion 5. The GJM protocol relies on the cryptographic
primitive called private contract signature (PCS). We
write PCSO(m,R, T) for party O’s private contract
signature of text m for party R (known as the desig-

nated verifier) with respect to third party T . The main
properties of PCS are as follows: (a) PCSO(m,R, T)
can be verified by R like a conventional signature; (b)
PCSO(m,R, T) can be feasibly computed by either O,
or R, but nobody else; (c) PCSO(m,R, T) can be con-
verted into a conventional signature by either O, or T ,
but nobody else, including R. For the purposes of this
study, we focus on the third-party accountable version of
PCS, in which the converted signatures produced by O
and T can be distinguished. We will call them SigO(m)
and TSigO(m), respectively. Unlike PCS, converted
signatures are universally verifiable by anybody in pos-
session of the correct signature verification key. An ef-
ficient discrete log-based PCS scheme is presented in
[14].

This protocol was designed to provide fairness to
both parties and trusted third party accountability. The
formal presentation of the protocol and its properties
are in Section 5.

3. Methodology

3.1. Cord Calculus

One important part of security analysis involves un-
derstanding the way honest agents running a proto-
col will respond to messages from a malicious attacker.
The common informal arrows-and-messages notation
is therefore insufficient, since it only presents the in-
tended executions (or traces) of the protocol. In ad-
dition, the protocol logic requires more information
about a protocol than the set of protocol executions
obtained from honest and malicious parties; we need a
high-level description of the program executed by each
agent performing each protocol role. We used a pro-
gramming language called cords [11].

3.2. A Protocol Logic

The basic protocol logic and proof system are de-
veloped in [11, 6, 7, 10], with [9] providing a relatively
succinct presentation of the most recent form. A sum-
mary of the proof system is included in Appendix B.

The formulas of the logic are given by the grammar
in Table 1, where ρ may be any role, written using the
notation of cord calculus. Here, t and P denote a term
and a thread respectively. We use the word thread to
refer to a principal executing an instance of a role. As
a notational convention, we use X to refer to a thread
belonging to principal X̂. We use φ and ψ to indicate
predicate formulas, and m to indicate a generic term
we call a “message”.

Most protocol proofs use formulas of the form
θ[P]Xφ, which means that after actions P are ex-
ecuted in thread X , starting from a state where
formula θ is true, formula φ is true about the result-
ing state of X . Here are the informal interpretations
of the predicates:

Has(X,x) means principal X̂ possesses information x
in the thread X . This is “possess” in the limited
sense of having either generated the data or re-
ceived it in the clear or received it under encryp-
tion where the decryption key is known.

Send(X,m) means principal X̂ sends messagem in the
thread X .

Receive(X,m), New(X, t), Decrypt(X, t), Verify(X, t)
similarly mean that receive, new, decrypt and sig-
nature verification actions occur.

Fresh(X, t) means the term t generated in X is “fresh”
in the sense that no one else has seen any term
containing t as a subterm. Typically, a fresh term
will be a nonce and freshness will be used to rea-
son about the temporal ordering of actions in runs
of a protocol.

Honest(X̂) means the actions of principal X̂ in the cur-
rent run are precisely an interleaving of initial seg-
ments of traces of a set of roles of the protocol. In
other words, X̂ assumes some set of roles and does
exactly the actions prescribed by them.

Computes(X,m) means that a principal X̂ possesses
enough information in thread X to build term m
of some type. For example, a principal can pos-
sess an encrypted message if he received it in the
past as a part of some message or if he possesses
the plaintext and the encryption key. Computes is
used to describe the latter case.

Start(X) means that the thread X did not execute any
actions in the past.

a1 ≤ a2 means that both actions a1 and a2 happened
in the run and moreover, that the action a2 hap-
pened after the action a1.

3.3. Extensions of the Logic

We extend cord calculus and the protocol logic with
“if” constructs in the spirit of Dijkstra’s guarded com-
mands. These extensions allow us to capture more com-
plicated behavior of protocol participants. Formally,
the grammar of actions is extended by the production
a ::= if t t1 : P1; t2 : P2; . . . tn : Pn; fi , where t, t1,
. . . , tn stand for terms, and P1, . . . , Pn for strands (se-
quences of actions).

Informally, this construct works as a generalization
of pattern matching. If i is the lowest number such that
t matches ti, then the above statement is reduced to
match t/ti : Pi;. The inference rule IF for reasoning
about this construct is given in Table 2 in Appendix B.

4. Analysis of the ASW Protocol

The ASW protocol [1, 2] consists of three interde-
pendent subprotocols: exchange, abort, and resolve. We
first show in Section 4.1 how to model these protocols
in the cords formalism. Section 4.2 discusses the com-
positional proof method used in proving the security
properties of the protocol. Section 4.3 contains the for-
mal definitions and proof sketches of the fairness and
accountability properties. The complete formal proofs
are in Appendix C. We believe that the proof method
illustrated by this application will be useful for analyz-
ing similar properties of related protocols.

We emphasize two high-level aspects of this method
which distinguishes it from existing analysis tech-
niques. First, it is compositional: the security guar-
antees offered by the ASW protocol are proved by
combining independent guarantees offered by the ex-

change, abort, and resolve subprotocols. Second,
the proofs follow the design intuition. In particu-
lar, in the fairness proofs, we demonstrate that the ap-
propriate strategy for a party to obtain a contract
(via the abort/resolve protocols) depending on its lo-
cal state, actually works. For example, if after sending
the first message, the initiator executes the abort pro-
tocol, then he gets the contract if his peer has the
contract. The fact that we prove a specific strat-
egy works as opposed to proving one exists distin-
guishes us from prior game-theoretic analyses [4]. Also,
it seems useful to have analysis techniques which can
take advantage of and inform protocol design princi-
ples.

4.1. Modelling Protocol Parties

The roles of the exchange subprotocol, written us-
ing the cords formalism are given in Figure 1, with one
cord (program) ExchangeInit for the initiator of the
protocol and one cord ExchangeResp for the respon-
der. A role consists of static input parameters, and a
list of actions to be executed. For example, the cord
ExchangeInit represents the program for initiator X̂
starting a protocol with the responder Ŷ and trusted
third party T̂ with contract text. The intuitive read-
ing of the sequence of actions is: generate a new nonce,
send a signature representing a commitment to the con-
tract, receive a message, check that it is a valid com-
mitment for Ŷ , release the nonce, receive a message
and check that it a valid decommitment correspond-
ing to the responders commitment.

The ASW protocol provides for two kinds of con-
tracts. The first one is called a standard contract. Stan-
dard contracts are obtained if the execution of the pro-
tocol successfully finishes without any party aborting
or resolving the protocol. They are formally defined as
follows.

s(X̂, Ŷ , T̂ , text, x, y) ≡ SIG
X̂
{|X̂, Ŷ , T̂ , text,HASH{|x|}|}, x,

SIG
Ŷ
{|SIG

X̂
{|X̂, Ŷ , T̂ , text,HASH{|x|}|}, HASH{|y|}|}, y

The second kind is called a replacement contract. It
is always built by the trusted third party to resolve a
protocol.

r(X̂, Ŷ , T̂ , text,w, z) ≡ SIGT {|SIG
X̂
{|X̂, Ŷ , T̂ , text,w|},

SIG
Ŷ
{|SIG

X̂
{|X̂, Ŷ , T̂ , text,w|}, z|}|}

To improve readability, in the subsequent proofs we
often write s and r instead of s(Â, B̂, T̂ , text, x, y) and

r(Â, B̂, T̂ , text,HASH{|w|}, z), respectively. In the fol-
lowing, we often have to reason about the messages
that are exchanged during the protocol execution. In
particular, the first and second message will be impor-
tant as they grant the respective parties the ability to
resolve a protocol execution. For reasons of readabil-
ity, we introduce syntactic shorthand msg1 and msg2
for these messages, i.e.,

msg1 ≡ SIG
Â
{|Â, B̂, T̂ , text,HASH{|x|}|}

msg2 ≡ SIG
B̂
{|SIG

Â
{|Â, B̂, T̂ , text,HASH{|x|}|}, HASH{|y|}|}.

The abort and resolve subprotocols for the initiator
and the responder are given in Figure 1. We use the
“if” construct to model the fact that agents do not
know in advance which of the two possible responses
they will receive from the trusted third party T̂ .

In analyzing the ASW protocol, we do not model
the program of the trusted third party explicitly. In-
stead we capture its desired behavior by a set of log-
ical formulas. Using the extensions of the logic pre-
sented in this paper, it is easy to write down the cord

Action formulas
a ::= Send(P,m) |Receive(P,m) |New(P, t) |Decrypt(P, t) |Verify(P, t) | Start(P)
Formulas
φ ::= a |Has(P, t) |Computes(P, t) |Fresh(P, t) |Honest(N) |φ ∧ φ | ¬φ | ∃x.φ | a ≤ a

Modal form
Ψ ::= φ ρ φ

Table 1. Syntax of the logic

ExchangeInit ≡ (X̂, Ŷ , T̂ , text)[

new x;

send X̂, Ŷ , SIG
X̂
{|X̂, Ŷ , T̂ , text,HASH{|x|}|};

receive Ŷ , X̂, z;

match z/SIG
Ŷ
{|SIG

X̂
{|X̂, Ŷ , T̂ , text,HASH{|x|}|}, w|};

send X̂, Ŷ , x;

receive Ŷ , X̂, y;

match HASH{|y|}/w;]X

ExchangeResp ≡ (X̂, Ŷ , T̂ , text)[

receive Ŷ , X̂, z;

match z/SIG
Ŷ
{|Ŷ , X̂, T̂ , text, y|};

new x;

send X̂, Ŷ , SIG
X̂
{|z, HASH{|x|}|};

receive Ŷ , X̂, w;

match HASH{|w|}/y;

send X̂, Ŷ , x;]X

Abort ≡ (X̂, Ŷ , T̂ , msg1)[

send X̂, T̂ , SIG
X̂
{|Abort, msg1|}

receive T̂ , X̂, z;

if z

SIG
T̂
{|Aborted, msg1|} :;

r(Â, B̂, T̂ , text,HASH{|x|}, w) :;

fi]X

Resolve ≡ (X̂, Ŷ , T̂ , msg1,msg2)[

send X̂, T̂ , msg1, msg2;

receive T̂ , X̂, z;

if z

SIG
T̂
{|Aborted, msg1|} :;

r(Â, B̂, T̂ , text,HASH{|x|}, w) :;

fi]X

Figure 1. Roles of the ASW protocol

for the trusted third party and prove that these log-
ical formulas represent properties of its protocol. We
omit the technical details.

4.2. Compositional proof method

In this section, we sketch the method used to prove
properties of the protocol. In the ASW protocol, there
is more than one intended run. For example, after send-
ing the first message, the initiator can decide not to
wait for the response but to run the abort subproto-
col instead. Using the protocol logic, we are able to
analyze the components of the ASW protocol indepen-
dently, and combine the proofs using the composition
theorems presented in [6, 9]. We focus primarily on the
guarantees for the initiator in the protocol.

Runs of the ASW protocol There are three possible ex-
ecution scenarios for the initiator in the ASW proto-
col. The initiator can complete the exchange subpro-

tocol; complete the resolve subprotocol after sending
the third message of the exchange subprotocol; or com-
plete the abort protocol after sending the first message
of the exchange subprotocol (Figure 2). The design in-
tent was that each of these three combinations should
result in the initiator obtaining a valid contract when-
ever the responder already has one (see [2] for discus-
sion). We will use ExchangeInit3(Â, B̂, T̂ , text) to de-
note the prefix of the initiator role in the protocol upto
the second send action (send of the third message in
the protocol) and ExchangeInit1(Â, B̂, T̂ , text) to de-
note the prefix upto the first send action.

Formulas of the logic and sequential composition Most
logical statements that we use are of the form Γ ⊢
φ[P]Aθ. The intuitive reading of such statement is:
“Given that the set of assumptions Γ holds in every
state, and a thread A has finished executing the pro-
gram P starting in a state where φ holds, then in the
resulting state θ holds.”

ExchangeInit(Â,B̂,T̂ ,text) // ExchangeInit1(Â,B̂,T̂ ,text)//

Abort(Â,B̂,T̂ ,msg1)

��

ExchangeInit3(Â,B̂,T̂ ,text)//

Resolve(Â,B̂,T̂ ,msg1,msg2)

��

Figure 2. Possible runs for the initiator in the ASW protocol

In this paper, Γ will typically contain a set of as-
sumptions about the behavior of the trusted third
party T which can be later discharged by analyzing
T ’s program. For example, one of the assumptions we
use is that T never sends a replacement contract if it
has issued the abort token in the past.

We will combine statements about different subpro-
tocols using sequential composition of the roles. We
state below a variant of the theorem from [9] that we
use for this purpose. The precise form in which this the-
orem will be employed will become clearer in the next
section.

Theorem 1 (Sequential composition) For sets of

assumptions Γ1 and Γ2, cords P and Q, and formulas

φ, θ and ψ if Γ1 ⊢ φ[P]Xθ and Γ2 ⊢ θ[Q]Xψ than

Γ1 ∪ Γ2 ⊢ φ[P;Q]ψ, where P;Q is a sequential com-

position of cords P and Q.

4.3. Proving protocol properties

In this section, we show how to express and prove
the desired properties in the underlying logic using the
described proof method. Complete formal proofs are
given in Appendix C. Here, we sketch the proof struc-
ture and focus on the main steps.

4.3.1. Fairness We start with the fairness property
of the protocol. Informally, fairness means that after
the protocol has been successfully completed, either
both parties have a signed contract or neither does.
In our model, fairness is expressed using a set of logi-
cal formulas. As described in the previous section, we
look separately at the three possible scenarios for the
initiator to complete the protocol.

Initiator completes the exchange subprotocol Formula
φ0 states that the initiator A has a valid contract af-
ter the successful execution of the exchange protocol.
This is the optimistic part of the protocol.

φ0 ≡Start(A)

[ExchangeInit(Â, B̂, T̂ , text)]A

Has(A, s(Â, B̂, T̂ , text, x, y))

The formal proof of this property is given in Ap-
pendix C. We show that:

⊢ φ0 (1)

Therefore, in this scenario fairness holds without any
assumptions about the behavior of the trusted third
party or the responder in the protocol.

Initiator runs the abort protocol If A started the proto-
col as the initiator but did not complete it, we want to
show that whenever some other party has a valid con-
tract, then A will get the replacement contract if it exe-
cutes the abort subprotocol after sending the first mes-
sage. This part of the analysis is done using the com-
positional proof method. First, we identify a sufficient
precondition that needs to hold in order for the initia-
tor to get the contract after executing the abort sub-
protocol; then we show that the precondition is satis-
fied if the initiator only executed his role upto the first
send action.

A sufficient precondition for this to hold is that A’s
nonce x has been kept secret, i.e.

θ1 = HasAlone(A, x)

where HasAlone(X, t) is defined by HasAlone(X, t) ≡
Has(X, t) ∧ (Has(Y, t) ⊃ X = Y . It is easy to verify
that θ1 holds in the state where A has only sent the
first message of the protocol, since this message only
contains the hash of x.

The property of the abort subprotocol needed for
fairness is given below. Informally, it states that if at
some state θ1 holds then, after executing the abort
subprotocol, if some thread X possesses any contract
(standard or replacement) corresponding to A’s nonce
x and if T is honest, A will posses the replacement con-
tract corresponding to the same nonce x.

φ1 ≡θ1

[Abort(Â, B̂, T̂ , msg1)]A

(Has(X, s) ∨ Has(X, r) ∧ Honest(T̂)) ⊃ Has(A, r)

The formal proof of fairness in this scenario involves
showing that θ1 holds after A executed the first part of
the exchange subprotocol, and that φ1 holds as long as
the trusted third party T̂ behaves properly. The com-
plete proof of both statements are given in Appendix C.

⊢Start(A)[ExchangeInit(Â, B̂, T̂ , text)1]Aθ1 (2)

Γ1
T ⊢φ1 (3)

The fairness property in this case simply follows from
the sequential composition theorem (Theorem 1).

Above, Γ1
T is a set of assumptions about the behav-

ior of the trusted third party T , which we will now
define. Γ1

T says that T̂ will never issue both a replace-
ment contract and the abort token. Therefore Γ1

T is

only going to hold if T̂ is completely honest. A misbe-
having T̂ might otherwise cheat on A if A executed the
abort protocol after receiving the first message. For-
mally Γ1

T is defined as follows:

Γ1

T ={Honest(T̂) ∧ Send(T, T̂ , B̂, r(Â, B̂, T̂ , text, x, z)) ⊃

¬Send(T, T̂ , Â, SIG
T̂
{|Aborted, msg1|})}.

Initiator runs the resolve protocol Finally, we want to
show that if A has received the second message of the
protocol, then it can obtain a valid contract by execut-
ing the resolve subprotocol, provided that it created the
nonce x itself and did not send the abort message cor-
responding to that nonce in the past, i.e., for

θ2 = New(A, x) ∧ ¬Send(A, Â, T̂ , SIG
Â
{|Abort, msg1|})

we define φ2 by

φ2 ≡ θ2

[Resolve(Â, B̂, T̂ , msg1, msg2)]A
(Has(X, s) ∨ Has(X, r)∧

Honest(T̂) ∧ Honest(Â)) ⊃ Has(A, r)

It is easy to verify that θ2 holds in the state where
A has received the second message of the protocol and
sent the third message of the protocol.

The formal proof of fairness in this scenario involves
showing that θ2 holds after A executed the first part
of the exchange subprotocol, and that φ2 holds as long

as the trusted third party T̂ behaves properly. The re-
quired fairness guarantee is obtained by the compo-
sition theorem as before. The complete proof of both
statements are given in Appendix C.

⊢Start(A)[ExchangeInit(Â, B̂, T̂ , text)3]Aθ2 (4)

Γ2

T ⊢φ2 (5)

In this case the assumption about the behavior of the
trusted third party Γ2

T says that T̂ will never send an
abort token unless A has initiated the abort subproto-
col for the corresponding commitment.

Γ2

T ={Honest(T̂) ∧ Send(T, T̂ , Â, SIG
T̂
{|Aborted, msg1|}) ⊃

Receive(T, Â, T̂ , SIG
Â
{|Abort, msg1|})}.

This completes the proof for fairness for the initiator
in the ASW protocol.

Discussion Notice that the property we prove in the
optimistic part of the protocol is weaker than in the
other two cases. Namely, we only show that the initia-
tor has a contract corresponding to his nonce, it could

be possible that the responder (or attacker) has ob-
tained other contracts corresponding to the same initia-
tor’s nonce and different responder’s nonce. As demon-
strated in [22] that is indeed the case. We rediscovered
the same attack when the proof of the stronger prop-
erty failed. The following formula does not hold for the
protocol:

Start(A)

[ExchangeInit(Â, B̂, T̂ , text)]A

Has(X, s(Â, B̂, T̂ , text, x, w)) ⊃ Has(A, s(Â, B̂, T̂ , text, x, w))

The interpretation of this formula is that no other
thread X can have any other standard contract except
the one obtained by A after executing the exchange
subprotocol.

Fairness for the responder in the protocol Similar prop-
erty can be shown for the responder in the ASW pro-
tocol. We omit the details.

4.3.2. Accountability Accountability means that if
one of the parties gets cheated as a result of T̂ ’s misbe-
havior, then it will be able to hold T̂ accountable. More
precisely, at the end of every run where an agent gets
cheated, its trace together with a contract of the other
party should provide non-repudiable evidence that T̂
misbehaved.

The first step in the formalization of this property is
to precisely define what it means for a set of terms to
be a non-repudiable proof of T̂ ’s misbehavior. One ap-
proach is to require that, assuming the correctness of
T̂ as specified by the set of formulas Γ, we can formally
derive that if anyone possesses certain terms (typically

involving T̂ ’s signature), then Honest(T̂) does not hold.
It is easy to prove that the replacement contract and
the abort token corresponding to the same nonce con-
stitute non-repudiable proofs that T̂ misbehaved. For-
mally, for ΓT := Γ1

T ∪ Γ2
T we prove:

ΓT ⊢Has(X, r(Â, B̂, T̂ , text,HASH{|x|}, w))∧

Has(A, SIG
T̂
{|Aborted, msg1|}) ⊃ ¬Honest(T̂)

Again we reason from the initiator’s point of view and
consider three scenarios.

Initiator completes the exchange subprotocol We already
proved that A has a contract in that case, regardless
of T̂ ’s behavior and therefore A cannot get cheated in
this case.

Initiator runs the abort protocol In this case, we prove
two things. First of all, no one can have a standard
contract. Secondly, after executing the abort subpro-
tocol A will either get the abort token or the replace-
ment contract. Therefore, if A gets cheated it has to
be the case that some other party X has a replace-
ment contract, while A has the abort token for the cor-
responding nonce. As explained above, these two terms

are non-repudiable proofs that T̂ misbehaved. We cap-
ture both properties with a single logical formula given
below.

⊢θ1

[Abort(Â, B̂, T̂ , msg1)]A
¬Has(X, s) ∧ (Has(A, r) ∨ Has(A, SIG

T̂
{|Aborted, msg1|}))

Initiator runs the resolve protocol This case is similar to
the one above, and we omit the details.

4.3.3. Abuse-Freeness Abuse-freeness means that
no party can ever prove to the third party that it
has the power to both enforce and cancel the contract.
More precisely, a protocol is abuse-free for the initiator
if in every state where the responder has publicly verifi-
able information that the initiator is bound to the con-
tract it has to be that the responder is also bound to
the contract.

Modelling the property that the responder has pub-
licly verifiable information that the initiator is bound
to the contract is beyond the scope of the logic. How-
ever, if we fix the set of terms t1, . . . , tn that we consider
to constitute such information we can express abuse-
freeness for the initiator in the following way: whenever
a party X possess terms t1, . . . , tn, the initiator has a
strategy to obtain a contract. As pointed in the long
version of [4], the definition of abuse-freeness that we
are able to prove in the logic is strictly stronger than
the standard definition of abuse-freeness that we first
mentioned above.

For the ASW protocol, if we consider the signa-
ture in the first message as a proof that the initia-
tor is bound to the contract, it is easy to see that the
protocol does not provide this property for the initia-
tor. In the logic, this is reflected in the fact that the
proof of the following formula fails:

ΓT ⊢θ1 ∧ Has(X, SIG
Â
{|Â, B̂, T̂ , text,HASH{|x|}|}

[Abort(Â, B̂, T̂ , msg1)]A

Honest(T̂) ⊃ Has(A, r)

5. Template for Optimistic Contract

Signing Protocols

Both the ASW and GJM protocols consist of three
interdependent subprotocols: exchange, abort, and re-

solve. The structure of these two protocols suggests
a general pattern for two-party optimistic contract-
signing protocols. Specifically, the exchange subproto-
col proceeds in two stages. In the first stage, the two
parties commit to the contract and in the second they
open their commitment, in effect, ensuring that they
are bound to the contract. Given this observation, it

seems natural to ask if we could provide a unified rep-
resentation and proof for these two protocols and their
properties. In this section, we answer this question in
the affirmative. The technical machinery used toward
this end is presented in [8].

5.1. Abstraction and Refinement Method-
ology

The concept of protocol templates and an
abstraction-instantiation method using templates
to develop unified proofs for related protocols is intro-
duced in [8]. In order to make this paper self-contained,
we reproduce the main ideas below.

Protocol Templates: A protocol template is a protocol
that uses function variables. An example of an abstract
challenge-response based authentication protocol using
the informal trace notation is given below.

A→ B : m
B → A : n, F (B,A, n,m)
A→ B : G (A,B,m, n)

Here, m and n are fresh nonces and F and G are func-
tion variables. Substituting cryptographic functions for
F and G with the parameters appropriately filled in
yields real protocols. For example, instantiating F and
G to signatures yields the standard signature-based
challenge-response protocol from the ISO-9798-3 fam-
ily, whereas instantiating F and G to a keyed hash
yields the SKID3 protocol.

Characterizing protocol concepts: Protocol templates
provide a useful method for formally characterizing de-
sign concepts. Our methodology for formal proofs in-
volves the following two steps.

1. Assuming properties of the function variables and
some invariants, prove properties of the protocol
templates. Formally,

Q,Γ ⊢ φ1[P]Aφ2

Here, Q is an abstract protocol and P is a pro-
gram for one role of the protocol. Γ denotes the
set of assumed properties and invariants.

2. Instantiate the function variables to cryptographic
functions and prove that the assumed properties
and invariants are satisfied by the real protocol.
Hence conclude that the real protocol possesses
the security property characterized by the proto-
col templates.

If Q′ ⊢ Γ′, then Q′ ⊢ φ′1[P
′]Aφ

′

2

Here, the primed versions of the protocol, hy-
potheses, etc. are obtained by applying the substi-
tution σ used in the instantiation.

The correctness of the method follows from the
soundness of substitution and the transitivity of en-
tailment in the logic.

5.2. Template for ASW and GJM Proto-
cols

The roles of the template for the ASW and GJM
protocols are given in Figure 3. Let us examine the
program of the initiator. Notice that the initiator first
sends his commitment (commit1), receives the respon-
der’s commitment (commit2), checks its validity, opens
his commitment (open), and finally expects a message
opening the responder’s commitment. The responder’s
program is symmetric. commit1, commit2 and open
are function variables representing the messages sent
by X̂ and Ŷ during the protocol. The function variable
chk models the verification performed by each partic-
ipant after receiving its last message. These functions
are instantiated for ASW and GJM as follows.

ASW :

commit1(X̂, Ŷ , T̂ , text, h) =SIG
X̂
{|X̂, Ŷ , T̂ , text, h|}

commit2(X̂, Ŷ , T̂ , text, z, h) =SIG
X̂
{|z, h|}

open(X̂, text, x) =x

chk(w) =HASH{|w|}

GJM :

commit1(X̂, Ŷ , T̂ , text, h) =PCS
X̂
{|text, Ŷ , T̂ |}

commit2(X̂, Ŷ , T̂ , text, z, h) =PCS
X̂
{|text, Ŷ , T̂ |}

open(X̂, text, x) =SIG
X̂
{|text|}

chk(w) =w

In the ASW instantiation, the commitment messages
are signatures over hashed nonces and the opening mes-
sages reveal the corresponding nonces. The verification
action involves checking that the hash of the revealed
nonce matches the hash in the commitment message.
In the GJM instantiation, a commitment message is a
PCS over the contract and the opening message is the
corresponding universally verifiable signature. The ver-
ification action involves verifying the signature.

To improve readability, we usemsg1(Â, B̂, T̂ , text, x)

and msg2(Â, B̂, T̂ , text, x, y) as short-cuts for the first
and second message of the exchange subproto-
col, i.e.,

msg1(Â, B̂, T̂ , text, x) ≡commit1(Â, B̂, T̂ , text,HASH{|x|})

msg2(Â, B̂, T̂ , text, x, y) ≡commit2(B̂, Â, T̂ , text,

msg1(Â, B̂, T̂ , text, x),HASH{|y|})

The protocol definition provides two forms of a con-
tract. A standard contract, s, is obtained on success-
ful completion of the exchange subprotocol. This is the
‘optimistic’ aspect of these protocols. A replacement

contract, r, is issued by the trusted third party in case
of dispute. The syntactic forms of these contracts for
the ASW and GJM protocols as well as some other mes-
sage components used in the abort and resolve proto-
cols are given below. Note that we work with the mod-
ified version of the GJM protocol as presented in [22].
The only difference is that in the resolve protocol, the
responder sends his PCS to the trusted third party in-
stead of his signature.

ASW :

abortreq(Â, B̂, text,msg1) =SIG
X̂
{|Abort, msg1|}

tpabort(Â, B̂, T̂ , text,msg1) =SIG
T̂
{|Aborted,

abortreq(Â, B̂, text,msg1)|}

tpresp(Â, B̂, T̂ , text, x, y, Ẑ) =SIG
T̂
{|msg1(X̂, Ŷ , T̂ , text, x),

msg2(X̂, Ŷ , T̂ , text, x, y)|}

s(Â, B̂, T̂ , text, x, y) =msg1(Â, B̂, T̂ , text, x),

msg2(Â, B̂, T̂ , text, x, y),

open(Â, text, x), open(B̂, text, y)

r(Â, B̂, T̂ , text, x, y) =tpresp(Â, B̂, T̂ , text, x, y, Â)

GJM :

abortreq(Â, B̂, text,msg1) =SIG
Â
{|text, Â, B̂, Abort|}

tpabort(Â, B̂, T̂ , text,msg1) =SIG
T̂
{|abortreq(Â, B̂, text,msg1)|}

tpresp(Â, B̂, T̂ , text, x, y, Ẑ) =open(Ẑ, text,w)

With w = x if Z = A

and w = y if Z = B.

s(Â, B̂, T̂ , text, x, y) =open(Â, text, x), open(B̂, text, y)

r(Â, B̂, T̂ , text, x, y) =open(Â, text, x), open(B̂, text, y)

We now examine the templates for the abort and re-

solve sub-protocols, also given in Figure 3. The initia-
tor A has the option of requesting the trusted third
party T to abort an exchange that A has initiated by
executing the abort subprotocol with T . Finally, both
the initiator and the responder may request that T re-
solve an exchange that has not been completed by ex-
ecuting the resolve subprotocol with T .

Other instances Although we focus on the ASW and
GJM instances, we note that simple variants of the
non-repudiation protocols of [18, 19, 24] are also in-
stances of this template. Specifically, these variants are
similar to the ASW protocol, the only difference being
that the hash of the nonce is replaced by the encryp-
tion of nonce with a secret key which is later revealed
in the decommit message. This indicates that the tem-
plate provides a characterization of a broad class of op-
timistic contract signing protocols.1

1 We are aware of only one timely, optimistic fair exchange pro-
tocol that substantially differs fromour template [23]. The pro-
tocol in [23] is started by the responder sending a specific gen-
eration message that serves as a characterization of the consid-
ered secret, and that can be used to circumvent the prevalent

ExchangeInit ≡ (X̂, Ŷ , T̂ , text)[

new x;

send X̂, Ŷ , commit1(X̂, Ŷ , T̂ , text,HASH{|x|});

receive Ŷ , X̂, z;

match z/commit2(Ŷ , X̂, T̂ , text, commit1(. . .), y);

send X̂, Ŷ , open(X̂, text, x);

receive Ŷ , X̂, w;

match chk(w)/open(Ŷ , text, y);]X

ExchangeResp ≡ (X̂, Ŷ , T̂ , text)[

receive Ŷ , X̂, z;

match z/commit1(Ŷ , X̂, T̂ , text, y);

new x;

send X̂, Ŷ , commit2(X̂, Ŷ , T̂ , text, z, HASH{|x|});

receive Ŷ , X̂, w;

match chk(w)/open(Ŷ , text, y);

send X̂, Ŷ , open(X̂, text, x);]X

Abort ≡ (X̂, Ŷ , T̂ , msg1, text, x)[

send X̂, T̂ , abortreq(X̂, Ŷ , text,msg1)

receive T̂ , X̂, z;

if z

tpabort(X̂, Ŷ , T̂ , text,msg1) :;

tpresp(X̂, Ŷ , T̂ , text, x, y, Ŷ) :;

fi]X

ResolveInit ≡ (X̂, Ŷ , T̂ , msg1, msg2, text, x)[

send X̂, T̂ , msg1,msg2;

receive T̂ , X̂, z;

if z

tpabort(X̂, Ŷ , T̂ , text,msg1) :;

tpresp(X̂, Ŷ , T̂ , text, x, y, Ŷ) :;

fi]X

Figure 3. Roles of the protocol template

5.3. Hypotheses associated with the Tem-
plate

We prove the security properties of the protocol
template under the following hypotheses. It is easy to
check that these assumptions are satisfied when the
template is instantiated to the ASW and GJM pro-
tocols. We omit the rather straightforward proofs. One
way to think about these hypotheses is that they repre-
sent general high-level specifications that we might ex-
pect any optimistic contract signing protocols to sat-
isfy. They can be naturally divided into two classes.

⊢Has(Z, msg1(Â, B̂, T̂ , text, x))∧

Has(Z, msg2(Â, B̂, T̂ , text, x, y))∧

Has(Z, open(Â, text, x))∧ (6)

Has(Z, open(B̂, text, y)) ⊃ Has(Z, s(Â, B̂, T̂ , text, x, y))

⊢Has(A, text, x) ⊃

Has(A,msg1(Â, B̂, T̂ , text, x), open(Â, text, x)) (7)

⊢Has(Z, w) ∧ Has(Z, commit2(Ŷ , X̂, T̂ , text,m, y))

[match chk(w)/open(X̂, text, y)]Z

Has(Z, commit2(Ŷ , X̂, T̂ , text,m,HASH{|w|}),

open(X̂, text,w)) (8)

⊢Has(Z, s(Â, B̂, T̂ , text, x, y)) ⊃

Has(Z, open(Â, text, x)) (9)

The first class of assumptions identify the message
components that a principal must possess in order to
obtain a standard contract. (6) states that any partici-
pant possessing the four messages exchanged in the ’op-
timistic’ protocol execution also possess the standard

commitment-based message flows.

contract. It would be strange if an optimistic contract
signing protocol did not satisfy this property! (7) states
that an initiator A has enough information to produce
the first and third messages of an optimistic protocol
exchange. (8) ensures that given two messages from the
responder, the chk function allows the initiator to ver-
ify that these messages constitute a valid commit–open
pair. Finally, (9) shows that given a valid contract, one
can extract the initiator’s open message from it.

⊢Has(Z, r(Â, B̂, T̂ , text, x, y)) ∧ Honest(T̂) ⊃ ∃Z′.∃Z′′

Send(T, Ẑ′, tpresp(Â, B̂, T̂ , text, x, y, Ẑ′′))

∨ Has(Z, open(Â, text, x)) (10)

⊢Has(Z, open(Â, text, x)) ∧ ¬Send(A, open(Â, text, x))∧

Honest(T̂ , Â) ∧ New(A,x) ⊃ (Z = A) ∨ ∃Z′.∃Z′′

Send(T, Ẑ′, tpresp(Â, B̂, T̂ , text, x, y, Ẑ′′)) (11)

⊢Has(Z, tpresp(Â, B̂, T̂ , text, x, y, B̂), open(A, text, x)) ⊃

Has(Z, r(Â, B̂, T̂ , text, x, y)) (12)

The second class of assumptions capture the hard-
ness of constructing the replacement contract. More
precisely, (10) states that the only ways to acquire a re-
placement contract are to get it from the trusted third
party or to construct it from the open messages, while
(11) states that the open message for the initiator can
only be computed by initiator herself or extracted from
the replacement contract issued by the trusted third
party. Also, (12) states that given the initiator’s open-
ing message and the response of the trusted third party
to an accepted resolve request, one can build the re-
placement contract.

5.4. Proving Template Properties

In this section, we prove the security properties of
the protocol template. We focus on fairness; the proof
of accountability is analogous. Abuse-freeness for the
GJM protocol reduces to fairness, because of the prop-
erties of private contract signatures.

Fairness The proof structure parallels that of the
ASW fairness proof, the only difference being that we
work with the templates instead of the concrete proto-
cols. Some steps in the proof use the hypotheses listed
in the previous section.

Initiator completes the exchange protocol Formula φ0

states that the initiator A has a valid contract after
the successful execution of the exchange protocol. This
is the optimistic part of the protocol.

φ0 ≡Start(A)

[ExchangeInit(Â, B̂, T̂ , text)]A
Has(A, s)

We formally show in Appendix C that:

⊢φ0 (13)

Initiator runs the abort protocol If A started the proto-
col as the initiator, but did not complete, we want to
show that, whenever some other party has a valid con-
tract then it must be the case that A will get the re-
placement contract if it executes abort subprotocol af-
ter sending the first message. A necessary prerequisite
for this to hold is that A’s open message was not sent
yet, i.e., for

θ1 = ¬Send(A, open(Â, text, x)) ∧ New(A,x)

we define the formula φ1 by

φ1 ≡θ1

[Abort(Â, B̂, T̂ , msg1)]A

(Has(X, s) ∨ Has(X, r)) ∧ Honest(T̂) ∧ Honest(Â)

⊃ (Has(A, s) ∨ Has(A, r))

It is easy to verify that θ1 holds in the state where
A has only sent the first message of the protocol. We
formally show in Appendix C that:

⊢Start(A)[ExchangeInit(Â, B̂, T̂ , text)1]Aθ1 (14)

Γ1

T ⊢φ1 (15)

The fairness property in this case follows from the se-
quential composition theorem. Here Γ1

T is the same as-
sumption about the behavior of the trusted third party
T as in Section 4. It says that if T is honest, then it will
never issue both a replacement contract and the abort
token. Naturally, a misbehaving trusted third party T

could easily cheat on any of the participants. Formally,
Γ1

T is defined as follows:

Γ1

T ={Honest(T) ∧ Send(T, T̂ , Ẑ, tpresp(Â, B̂, T̂ , text, x, z, Ẑ′))

⊃ ¬Send(T, T̂ , Â, tpabort(Â, B̂, T̂ , text,

msg1(Â, B̂, T̂ , text, x)))}

Initiator runs the resolve protocol : Finally, we show
that if A has received the second message of the pro-
tocol then it can obtain a valid contract by executing
the resolve subprotocol, provided that he did not abort
the protocol in the part, i.e., for

θ2 =¬Send(A, Â, T̂ , abortreq(Â, B̂, text,

msg1(Â, B̂, T̂ , text, x))) ∧ New(A, x)

we define φ2 by

φ2 ≡θ2

[Resolve(Â, B̂, T̂ , msg1, msg2)]A
(Has(X, s) ∨ Has(X, r))∧

Honest(T̂) ∧ Honest(Â) ⊃ Has(A, r)

It is easy to verify that θ2 holds in the state where A
has received the second message and sent the third mes-
sage of the protocol. To formally prove fairness from
the point of view of the initiator (assuming the de-
sired properties of the trusted third party), we need to
show the following :

⊢Start(A)[ExchangeInit(Â, B̂, T̂ , text)3]Aθ2 (16)

Γ2

T ⊢φ2 (17)

Here Γ2
T is the second assumption about the behavior

of the trusted third party. It says that T will abort the
protocol (by sending the abort token) only if received
an abort request from the initiator.

Γ2

T ={Send(T, T̂ , Â, tpabort(Â, B̂, T̂ , text,

msg1(Â, B̂, T̂ , text, x)))

⊃ Receive(T, Â, T̂ , abortreq(Â, B̂, text,

msg1(Â, B̂, T̂ , text, x)))}

6. Conclusion

We show how to reason compositionally about
contract-signing protocols, using a specialized proto-
col logic to prove properties about general forms of
exchange, abort, and resolve subprotocols and com-
bine these properties using logical composition rules.
The method is surprisingly direct for contract sign-
ing, given that the logic we used was originally
aimed at two-party authentication protocols. The for-
mal proof proceeds along direct, intuitive lines and is
carried out in a “template” form that may be instan-
tiated to provide correctness proofs for two standard

protocols and protocol variants that use the same ar-
rangement of messages. In addition, the compositional
approach makes it unnecessary to consider interleav-
ing of actions from different subprotocols. This is
fortunate since interaction between separate subpro-
tocols appears to have been a significant source of
difficulty in previous studies. Further, the use of pro-
tocol templates gives us a single “reusable” proof that
may be instantiated for the Asokan-Shoup-Waidner
protocol [1, 2], the Garay-Jacobson-McKenzie [14]
protocol, and other protocols such as variants us-
ing the primitives explored in [18, 24], for example. In
this sense, we prove the relatively intuitive but oth-
erwise difficult to state theorem that any protocol
of a certain form has precise correctness proper-
ties.

Contract signing fairness for party A is proved by
explicit reasoning about specific actions taken by A.
In effect, this form of argument shows that A has a
strategy to obtain a contract by explicitly presenting
the strategy. However, the logic is not suited to show-
ing directly that it is possible to complete these steps
- that is a modelling assumption that remains outside
the formalism. Further, the safety-oriented logic seems
less adept at non-trace-based properties such as abuse
freeness than game-theoretic approaches. Nonetheless,
these axiomatic, general proofs for unbounded runs of-
fer additional validation of optimistic contract signing
protocols not readily available through previous ap-
proaches.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Asynchronous
protocols for optimistic fair exchange. Technical Report
RZ 2976, IBM Research, 1997.

[2] N. Asokan, V. Shoup, and M. Waidner. Asynchronous
protocols for optimistic fair exchange. In Proceedings of
the IEEE Symposium on Research in Security and Pri-
vacy, pages 86–99. IEEE, 1998.

[3] R. Chadha, M. Kanovich, and A. Scedrov. Inductive
methods and contract-signing protocols. In 8-th ACM
Conference on Computer and Communications Secu-
rity, pages 176–185. ACM Press, 2001.

[4] R. Chadha, S. Kremer, and A. Scedrov. Formal anal-
ysis of multi-party contract signing. In Proceedings of
the 17th IEEE Computer Security Foundations Work-
shop, pages 266–279. IEEE, 2004.

[5] R. Chadha, J. C. Mitchell, A. Scedrov, and
V. Shmatikov. Contract signing, optimism, and
advantage. In 14th International Conference on Con-
currency Theory (CONCUR ’03), volume 2761 of Lec-
ture Notes in Computer Science. Springer-Verlag,
2003.

[6] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A
derivation system for security protocols and its logical
formalization. In Proceedings of 16th IEEE Computer
Security Foundations Workshop, pages 109–125. IEEE,
2003.

[7] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Se-
cure protocol composition (Extended abstract). In Pro-
ceedings of ACM Workshop on Formal Methods in Secu-
rity Engineering, pages 11–23, 2003.

[8] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Ab-
straction and refinement in protocol derivation. In Pro-
ceedings of 17th IEEE Computer Security Foundations
Workshop, pages 30–45. IEEE, 2004.

[9] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A
derivation system and compositional logic for security
protocols. Journal of Computer Security (to appear),
2004.

[10] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Se-
cure protocol composition. In Proceedings of 19th An-
nual Conference on Mathematical Foundations of Pro-
gramming Semantics, volume 83 of Electronic Notes in
Theoretical Computer Science, 2004.

[11] N. Durgin, J. C. Mitchell, and D. Pavlovic. A compo-
sitional logic for protocol correctness. In Proceedings of
14th IEEE Computer Security Foundations Workshop,
pages 241–255. IEEE, 2001.

[12] N. Durgin, J. C. Mitchell, and D. Pavlovic. A composi-
tional logic for proving security properties of protocols.
Journal of Computer Security, 11:677–721, 2003.

[13] S. Even and Y. Yacobi. Relations among public key sig-
nature schemes. Technical Report 175, Computer Sci-
ence Deptartment, Technion, Israel, 1980.

[14] J. A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-
free optimistic contract signing. In Proceedings of
the 19th Annual International Cryptology Conference
on Advances in Cryptology, pages 449–466. Springer-
Verlag, 1999.

[15] S. Kremer, O. Markowitch, and J. Zhou. An intensive
survey of non-repudiation protocols. Computer Com-
munications, 25(17):1606–1621, 2002.

[16] S. Kremer and J.-F. Raskin. Game analysis of abuse-
free contract signing. In Proceedings of the 15th IEEE
Computer Security Foundations Workshop, pages 206–
220. IEEE, 2002.

[17] Z. Manna and A. Pnueli. Temporal Verification of Reac-
tive Systems: Safety. Springer-Verlag, 1995.

[18] O.Markowitch and S.Kremer. A multi-party optimistic
non-repudiation protocol. In Proceedings of the Third
International Conference on Information Security and
Cryptology, pages 109–122. Springer-Verlag, 2001.

[19] O. Markowitch and S. Saeednia. Optimistic fair ex-
change with transparent signature recovery. In Proceed-
ings of the 5th International Conference on Financial
Cryptography, pages 339–350. Springer-Verlag, 2001.

[20] C. Meadows and D. Pavlovic. Deriving, attacking and
defending the GDOI protocol. In Proceedings of 9th Eu-
ropean Symposium On Research in Computer Security,
pages 53–72, 2004.

[21] H. Pagnia andF.C. Gärtner. On the impossibility of fair
exchange without a trusted third party. Technical Re-
port TUD-BS-1999-02, Department of Computer Sci-
ence, Darmstadt University of Technology, Darmstadt,
Germany, 1999.

[22] V. Shmatikov and J. C. Mitchell. Finite-state analysis
of two contract signing protocols. Theoretical Computer
Science, 283(2):419–450, 2002.

[23] H. Vogt. Asynchronous optimistic fair exchange based
on revocable items. In Proceedings of the 7th Inter-
national Conference on Financial Cryptography, pages
208–222. Springer-Verlag, 2003.

[24] J. Zhou, R. Deng, and F. Bao. Evolution of fair non-
repudiation with TTP. In Proceedings of the 4th Aus-
tralasian Conference on Information Security and Pri-
vacy, volume1587ofLectureNotes inComputer Science,
pages 258–269. Springer-Verlag, 1999.

A. Contract Signing Protocols

A.1. Asokan-Shoup-Waidner Protocol

The ASW protocol consists of three interdependent
subprotocols: exchange, abort, and resolve. The parties
(O and R) generally start the exchange by following
the exchange subprotocol. If both O and R are hon-
est and there is no interference from the network, each
obtains a valid contract upon the completion of the ex-

change subprotocol. The originator O also has the op-
tion of requesting the trusted third party T to abort
an exchange that O has initiated. To do so, O exe-
cutes the abort subprotocol with T . Finally, both O
and R may each request that T resolve an exchange
that has not been completed. After receiving the ini-
tial message of the exchange protocol, they may do so
by executing the resolve subprotocol with T .

The exchange protocol is given below.

O → R me1 = SigO{VO , VR, T, text , Hash(NO)}
R → O me2 = SigR{me1, Hash(NR)}
O → R me3 = NO

R → O me4 = NR

The abort protocol is given below.

O → T ma1 = SigO{aborted , me1}
T → O ma2 = Has me1 been resolved already?

Yes : SigT {me1, me2}
No : SigT {aborted , ma1}

aborted := true

The resolve protocol is given below.

R → T mr1 = {me1, me2}
T → R mr2 = Has me1 been aborted already?

Yes : SigT {aborted , ma1}
No : SigT {me1, me2}

resolved := true

The protocol definition in [2] provides two forms of
contract:

{me1, NO , me2, NR} (standard contract)
SigT {me1, me2} (replacement contract)

This protocol was designed to provide fairness to
both parties and trusted third party accountability. The
formal presentation of the protocol and its properties
are in Section 4.

A.2. Garay-Jakobsson-MacKenzie Proto-
col

The GJM protocol is closely related to the ASW
protocol described above. Both involve a 4-step ex-

change subprotocol, and similar abort and resolve

subprotocols. Even though the two protocols have sim-
ilar structure, the actual contents of the messages
differ. Unlike the ASW protocol, the GJM proto-
col is designed to guarantee abuse-freeness in addition
to fairness and third party accountability. These prop-
erties are formally modelled and proved in Section 5.
The GJM protocol relies on the cryptographic primi-
tive called private contract signature (PCS). We write
PCSO(m,R, T) for party O’s private contract sig-
nature of text m for party R (known as the desig-

nated verifier) with respect to third party T . The main
properties of PCS are as follows: (a) PCSO(m,R, T)
can be verified like a conventional signature; (b)
PCSO(m,R, T) can be feasibly computed by ei-
ther O, or R, but nobody else; (c) PCSO(m,R, T)
can be converted into a conventional signature by ei-
ther O, or T , but nobody else, including R. For the
purposes of this study, we focus on the third-party ac-

countable version of PCS, in which the converted
signatures produced by O and T can be distin-
guished. We will call them SigO(m) and TSigO(m),
respectively. Unlike PCS, converted signatures are uni-
versally verifiable by anybody in possession of the
correct signature verification key. An efficient dis-
crete log-based PCS scheme is presented in [14].

The exchange protocol is given below.

O → R me1 = PCSO(m, R, T)
R → O me2 = PCSR(m, O, T)
O → R me3 = SigO(m)
R → O me4 = SigR(m)

The abort protocol is given below.

O → T ma1 = SigO(m,O, R, abort)
T → O ma2 = Has O or R resolved already?

Yes : SigR(m) if R has resolved, or
T − SigR(m) if O has resolved

No : SigT (ma1)
aborted := true

The resolve protocol is given below.

R → T mr1 = PCSO(m, R, T), SigR(m)
T → R mr2 = Has O aborted already?

Yes : Send SigT (SigO(m,O, R, abort))
No : Has O resolved already?

Yes : Send SigO(m)
No : Store SigR(m)

Convert PCSO(m, R, T) to T − SigO(m)
Send T − SigO(m)

resolved := true

B. Protocol Logic

B.1. Proof System

B.1.1. Axioms and Inference Rules A represen-
tative fragment of the axioms and inference rules in the
proof system are collected in Table 2. For expositional
convenience, we divide the axioms into five groups.

The axioms about protocol actions state properties
that hold in the state reached by executing one of the
actions in a state in which formula φ holds. Note that
the a in axiom AA1 is any one of the 5 actions and a

is the corresponding predicate in the logic.

VER and SRC respectively refer to the unforge-
ability of signatures and the need to possess the sym-
metric key in order to decrypt a message encrypted
with that key. The additional condition requiring prin-
cipal X̂ to be honest guarantees that the intruder is
not in possession of the private keys. These axioms
(together with a few more axioms not described in
this summary) provide an abstraction of the standard
Dolev-Yao intruder model.

Axioms P1, P2, and P3 capture the fact that most
predicates are preserved by additional actions. For ex-
ample, if in some state Has(X,n) holds, then it contin-
ues to hold, when X executes additional actions.

B.1.2. The Honesty Rule The honesty rule is es-
sentially an invariance rule for proving properties of
all roles of a protocol. It is similar to the basic invari-
ance rule of LTL [17]. The honesty rule is used to com-
bine facts about one role with inferred actions of other
roles.

For example, suppose Alice receives a response from
a message sent to Bob. Alice may wish to use prop-
erties of Bob’s role to reason about how Bob gener-
ated his reply. In order to do so, Alice may assume
that Bob is honest and derive consequences from this
assumption. Since honesty, by definition in this frame-
work, means “following one or more roles of the proto-
col,” honest principals must satisfy every property that
is a provable invariant of the protocol roles.

Since the honesty rule depends on the protocol, we
write Q ⊢ θ[P]φ if θ[P]φ is provable using the honesty
rule for Q and the other axioms and proof rules. Using
the notation just introduced, the honesty rule may be
written as follows.

[]X φ ∀ρ ∈ Q.∀PǫBS(ρ). φ [P]X φ

Q ⊢ Honest(X̂) ⊃ φ
HON

no free variable
in φ except X
bound in [P]X

In words, if φ holds at the beginning of every role of
Q and is preserved by all its basic sequences, then ev-
ery honest principal executing protocol Q must satisfy
φ. The side condition prevents free variables in the con-
clusion Honest(X̂) ⊃ φ from becoming bound in any
hypothesis. Intuitively, since φ holds in the initial state
and is preserved by all basic sequences, it holds at all
pausing states of any run.

C. Formal Proofs

Formal proofs are collected in Tables 3 through 8.
Formal proofs of some formulas have been left out due
to space constrains.

Axioms for protocol actions

AA1 φ[a]X a

AA2 Start(X)[]X ¬a(X)

AA3 ¬Send(X, t)[b]X¬Send(X, t) if σSend(X, t) 6= σb for all substitutions σ

AA4 φ[a1; a2; . . . ; ak]Xa1 < a2 ∧ · · · ∧ ak−1 < ak

AN2 φ[newx]X Has(Y, x) ⊃ (Y = X)

AN3 φ[newx]X Fresh(X,x)

ARP Receive(X, p(x))[matchq(x)/q(t)]X Receive(X, p(t))

Possession Axioms

ORIG New(X,x) ⊃ Has(X,x)

REC Receive(X,x) ⊃ Has(X,x)

TUP Has(X,x) ∧ Has(X, y) ⊃ Has(X, (x, y))

ENC Has(X,x) ∧ Has(X,K) ⊃ Has(X,ENCK{|x|})

PROJ Has(X, (x, y)) ⊃ Has(X,x) ∧ Has(X, y)

DEC Has(X,ENCK{|x|}) ∧ Has(X,K) ⊃ Has(X,x)

Encryption and Signature

SEC Honest(X̂) ∧ Decrypt(Y,ENC
X̂
{|x|}) ⊃ (Ŷ = X̂)

VER Honest(X̂) ∧ Verify(Y, SIG
X̂
{|x|}) ∧ X̂ 6= Ŷ ⊃ ∃X.Send(X, [SIG

X̂
{|x|}])

Preservation Axioms

for Persist ∈ {Has,FirstSend, a}:

P1 Persist(X, t)[a]XPersist(X, t)
P2 Fresh(X, t)[a]XFresh(X, t), where t 6⊆ a or a 6= 〈m〉
P3 HasAlone(X,n)[a]XHasAlone(X,n), where n 6⊆v a or a 6= 〈m〉

HasAlone(X, t) ≡ Has(X, t) ∧ (Has(Y, t) ⊃ X = Y)

Generic Rules

θ[P]Xφ θ[P]Xψ
θ[P]Xφ ∧ ψ

G1
θ[P]Xφ θ′ ⊃ θ φ ⊃ φ′

θ′[P]Xφ
′ G2

φ
θ[P]Xφ

G3

Conditional

φ[match t/t1;P1]ψ1 φ[match t/t2;P2]ψ2 . . . φ[match t/tn;Pn]ψn

φ[if t t1 : P1; t2 : P2; . . . tn : Pn; fi]ψ1 ∨ ψ2 ∨ · · · ∨ ψn
IF

Table 2. Fragment of the Proof System

AA1,ORIG,G2 Start(A)[new x]AHas(A, x) (18)

AA1,ARP φ[receive A, B̂, Â, z; match z/SIG
B̂
{|msg1, w|}]A

Receive(A,SIG
B̂
{|msg1, w|}) (19)

(19),PROJ φ[receive A, B̂, Â, z; match z/SIG
B̂
{|msg1, w|}]A

Has(A,msg1) (20)

AA1,ARP,REC Receive(A,SIG
B̂
{|msg1, w|}

[receive A, B̂, Â, w; match HASH{|w|}/y]A
Has(A, y) ∧ Has(A,SIG

B̂
{|msg1, HASH{|y|}|}) (21)

(18), (19), (20), (21),P1,TUP φ

[ExchangeInit(Â, B̂, T̂ , text)]A
Has(A, s(Â, B̂, T̂ , text, x, y)) (22)

Table 3. Proof of Equation 1

P3 HasAlone(A, x)

[Abort(Â, B̂, T̂ ,msg1)]A
HasAlone(A, x) (23)

PROJ Has(X, s) ⊃ Has(X,x) (24)

(24),P3 HasAlone(A, x) ∧A 6= X ⊃ ¬Has(X, s) (25)

(25) ¬Send(B, s) ∧A 6= B ⊃ ¬Has(A, s) (26)

VER Honest(T̂) ∧ Verify(X, r) ∧ X̂ 6= T̂ ⊃ Send(T, T̂ , X̂, r) (27)

Γ1
T , (25), (26), (27) HasAlone(A, x) ∧ (Has(X, s) ∨ Has(X, r))

⊃ (Honest(T̂) ⊃ ¬Send(T, T̂ , Â, SIG
T̂
{|Aborted,msg1|})) (28)

(28), IF θ1
[Abort(Â, B̂, T̂ ,msg1)]A
(Has(X, s) ∨ Has(X, r)) ∧ Honest(T̂) ⊃ Has(A, r) (29)

Table 4. Proof of Equation 3

VER,HON Honest(Â) ∧ Â 6= T̂ ∧ Receive(T, Â, T̂ , SIG
Â
{|Abort,msg1|})

⊃ Send(A, Â, T̂ , SIG
Â
{|Abort,msg1|}) (30)

(30), θ2 ∧ Honest(Â) ∧ Â 6= T̂ ⊃ ¬Receive(T, Â, T̂ , SIG
T̂
{|Aborted,msg1|}) (31)

(31),Γ2
T θ2 ∧ Honest(Â) ∧ Â 6= T̂ ⊃ ¬Send(T, T̂ , Â, SIG

T̂
{|Aborted,msg1|}) (32)

(32), IF θ2
[Resolve(Â, B̂, T̂ ,msg1,msg2)]A
(Has(X, s) ∨ Has(X, r)) ∧ Honest(T̂) ⊃ Has(A, r) (33)

Table 5. Proof of Equation 5

AA1,ORIG,G2 Start(A)[new x]AHas(A, x) (34)

(34), (7),G2 Start(A)[new x]AHas(A,msg1(Â, B̂, T̂ , text, x), open(Â, text, x)) (35)

AA1,ARP,REC φ

[receive A, B̂, Â, z; match z/commit2(B̂, Â, T̂ , text,msg1(Â, B̂, T̂ , text, x), y)]A
Has(A, commit2(B̂, Â, T̂ , text,msg1(Â, B̂, T̂ , text, x), y)) (36)

AA1,REC, (8),S1 Has(A, commit2(B̂, Â, T̂ , text,msg1(Â, B̂, T̂ , text, x), y))

[receive A, B̂, Â, w; match chk(w)/open(B̂, text, y)]A
Has(A, open(B̂, text, w),msg2(Â, B̂, T̂ , text, x, w)) (37)

(35), (37),P1, (6),G2 φ

[ExchangeInit(Â, B̂, T̂ , text)]A
Has(A, s(Â, B̂, T̂ , text, x, y)) (38)

Table 6. Proof of Equation 13

γ = Honest(T) ∧ Honest(A) ∧ (Has(Z, s(Â, B̂, T̂ , x, y)) ∨ Has(Z, r(Â, B̂, T̂ , x, y)))

(10), (11), (9) θ1 ∧ γ ⊃ (Z = A) ∨ ∃Z ′.∃Z ′′.Send(T, Ẑ ′, tpresp(Â, B̂, T̂ , text, x, y, Ẑ ′′)) (39)

(39), (15) θ1 ∧ γ ⊃ (Z = A) ∨ ¬Send(T, T̂ , Â, tpabort(Â, B̂, T̂ , text,msg1(Â, B̂, T̂ , text, x))) (40)

(40) θ1 ∧ γ ⊃ (Z = A) ∨ ¬Receive(A, T̂ , Â, tpabort(Â, B̂, T̂ , text,msg1(Â, B̂, T̂ , text, x))) (41)

(41), IF,P1 θ1[Abort]Aγ ⊃ (Z = A) ∨ Receive(A, T̂ , Â, tpresp(Â, B̂, T̂ , text, x, y, B̂)) (42)

(42),REC θ1[Abort]Aγ ⊃ (Z = A) ∨ Has(A, tpresp(Â, B̂, T̂ , text, x, y, B̂)) (43)

(43), (12) θ1[Abort]Aγ ⊃ Has(A, s(Â, B̂, T̂ , x, y)) ∨ Has(A, r(Â, B̂, T̂ , x, y))

Table 7. Proof of Equation 15

VER Honest(Â) ∧ Â 6= T̂ ∧ Receive(T, Â, T̂ , abortreq(Â, B̂, text,msg1(Â, B̂, T̂ , text, x))) (44)

⊃ Send(A, Â, T̂ , abortreq(Â, B̂, text,msg1(Â, B̂, T̂ , text, x))) (45)

(45) θ2 ∧ Honest(Â) ∧ Â 6= T̂ ⊃ ¬Receive(T, Â, T̂ , abortreq(Â, B̂, text,msg1(Â, B̂, T̂ , text, x))) (46)

(46),Γ2
T θ2 ∧ Honest(Â) ∧ Â 6= T̂ ⊃ ¬Send(T, T̂ , Â, abortreq(Â, B̂, text,msg1(Â, B̂, T̂ , text, x))) (47)

(47), IF θ2[Resolve]AHonest(T̂) ∧ Honest(Â) ∧ (Has(X, s) ∨ Has(X, r)) ⊃ Has(A, r) (48)

Table 8. Proof of Equation 17

