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Abstract
In Massively Open Online Courses (MOOCs) TA
resources are limited; most MOOCs use peer as-
sessments to grade assignments. Students have to
divide up their time between working on their own
homework and grading others. If there is no risk of
being caught and penalized, students have no rea-
son to spend any time grading others. Course staff
want to incentivize students to balance their time
between course work and peer grading. They may
do so by auditing students, ensuring that they per-
form grading correctly. One would not want stu-
dents to invest too much time on peer grading, as
this would result in poor course performance. We
present the first model of strategic auditing in peer
grading, modeling the student’s choice of effort in
response to a grader’s audit levels as a Stackelberg
game with multiple followers. We demonstrate that
computing the equilibrium for this game is compu-
tationally hard. We then provide a PTAS in order
to compute an approximate solution to the prob-
lem of allocating audit levels. However, we show
that this allocation does not necessarily maximize
social welfare; in fact, there exist settings where
course auditor utility is arbitrarily far from optimal
under an approximately optimal allocation. To cir-
cumvent this issue, we present a natural condition
that guarantees that approximately optimal TA al-
locations guarantee approximately optimal welfare
for the course auditors.

1 Introduction
Massive Open Online Courses (MOOCs), such as Coursera,
offer online courses open to the general public. Those who
enroll in such a course are usually required to complete on-
going assignments as part of the course requirements. How-
ever, as their name suggests, MOOCs tend to have student
enrollment in the thousands, with only a limited number of
teaching assistants available to grade assignments. To over-
come this issue, MOOCs employ peer assessment: the stu-
dents grade each other, with the course staff acting as high-
level moderators. There are several obvious issues with peer
grading. First, students’ ability to grade is likely to be quite

heterogeneous: some students naturally have a better grasp
of course material than others. Second, students may not be
very commited to grading their peers. While Coursera does
impose a 20% grade penalty on students who fail to complete
their grading assignments on time, this says nothing about the
quality of the work. Though there are educational merits to
grading others’ work (being exposed to different solutions,
verifying that one’s solution was correct and so on), even the
most hard working student may not be interested in spending
time on grading if that time can be better spent on completing
their own homework assignments.

That said, if course staff employ an overly strict policy to-
wards students who poorly grade their peers, they risk poor
student performance on class assignments. Students will
spend too much time on peer grading and too little on the
actual assignment. To further complicate matters, students
who feel that staff is treating them unfairly will simply drop
out. Course staff control students’ time division by control-
ling the likelihood that a student’s grading is audited. A high
likelihood of audit will lead to a higher likelihood of being
caught misgrading which in turn leads to the student invest-
ing more into peer grading over working on the assignment.
Since the hours one can spend auditing are limited, one must
carefully assign TAs to student graders in order to ensure that
they behave in a desirable manner. This leads to the following
natural question: what assignment of TA auditors to students
best incentivizes them to optimally balance their time between
grading and completing assignments?

In this work, we provide some insights into this matter.

1.1 Our Contribution
We model this setting as a non-cooperative game between
course staff and students; the solution concept we employ is
a Stackelberg equilibrium. Both choices are natural in this
setting.

First, both students and course staff have actions that
they may take to further their agendas: students’ actions
are a choice of the number of hours to assign to grading
vs. the number of hours to assign to completing the assign-
ment. The course staff/auditors’ actions are an allocation of
TAs/auditors to students. Furthermore, both course staff and
students have natural utility functions; in the case of students
their utility is their grade, and in the case of the course staff
their utility is the overall class grade minus a penalty for each



misgrading that occurs. A misgrading penalty may encode
the number of hours that are invested in dealing with student
complaints or expected dropout rates.

Next, Stackelberg equilibrium is an equilibrium concept
where one side gets to observe the (mixed) strategy of an-
other. The first player who moves is called the defender
and the player who gets to observe the defender’s strategy
is called the attacker. In our setting we think of the course
staff as the defenders and the students as the attackers. Thus,
the course staff publicly declare how they plan to audit stu-
dents (perhaps via their publicly available course handbook).
The students must choose how much effort they invest in their
homework assignments and how much they invest in grading.

Note that a Stackelberg security game [Tambe, 2011] tra-
ditionally has one attacker and one defender, whereas our set-
ting handles multiple independent non-uniform attackers.

We begin by showing that finding a TA allocation that max-
imizes the expected utility of the course staff is generally NP-
hard. However, there exists an efficient dynamic program-
ming algorithm that is able to find a TA allocation ε close
to the defender-optimal allocation. This solution is, unfortu-
nately, unsatisfactory: we show that there exist games where a
TA allocation ε close to the optimal allocation does not guar-
antee that the defender’s utility is ε-close to optimal. In fact,
it is possible that a TA allocation that is close to the optimal
but has attacker best-responses that offer an arbitrarily low
utility to the defender. Intuitively, this may happen since stu-
dents who have only slightly less TA resources allocated to
them may decide to switch from investing a lot in peer grad-
ing, to investing nothing. However, we show that under some
mild assumptions on the students’ utility functions, we can
guarantee that TA allocations that are ε-close to the optimal
guarantee ε-optimal utility to the defenders.

We assume that the course staff have full information of
students’ utilities. While this is a rather strong assumption,
it can be justified. As Piech et al. [2013] show, it is possible
to elicit student grading abilities and expected class perfor-
mance based on their past grading performance.

1.2 Related work
The most well-known application of Stackelberg games is se-
curity games [Tambe, 2011; Jain et al., 2010; Kiekintveld et
al., 2009; An et al., 2011]. A key difference between our
work and the standard security game model is that we assume
multiple attackers with different utility functions. While pre-
vious applications of Stackelberg games for physical security
have considered multiple attacks by an attacker [Korzhyk et
al., 2011], none have considered attackers with different ob-
jectives. In our model, defenders want to punish attackers
for misbehaving, but do not want to do so too much. This
assumption is employed in audit games [Blocki et al., 2013;
2015]. However, Blocki et al. [2013] and Blocki et al. [2015]
assume that they are given some parameter α representing
the “punishment level” for the defender. In our setting, over-
auditing of certain students may cause them to invest too
much effort into grading, which may not be optimal for the
course staff. In other words, in our setting the motivation not
to over-audit is intrinsic rather than a given parameter.

The problem of handling low quality peer grading has been

studied from various aspects. Piech et al. [2013] focus on us-
ing machine learning techniques on peer grading networks
in order to find the true scores of homework assignments.
Wright et al. [2015] design and test a peer grading mecha-
nism suitable for small sized courses. Their idea is to initially
let the TA check every student’s grading and then promote
some students to an independent grader level, while adding
the provision that students may complain about their grades.
Shalem et al. [2014] design a graphical model based approach
to predict student performance in a MOOC. Ghosh and Klein-
berg [2013] focus on designing incentive mechanisms to in-
crease student participation in the course discussion forum.
Vallam et al. [2015] model student participation in discussion
forums as a game; Li and Conitzer [2013] use a Stackelberg
game model to set exam questions. However, to the best of
our knowledge, ours is the first work to introduce strategic
TA placement as a method for ensuring grading quality in
MOOCs.

2 Preliminaries
Let N = {1, . . . , n} be the set of students. Each student
i ∈ N needs to decide how much time to allocate to home-
work, and how much to allocate to peer grading. Thus, a stu-
dent’s strategy is a value xi ∈ [0, 1], where xi is the percent-
age of time devoted to homework. The instructor has a total
of ktot resources. It is convenient to think of ktot as the num-
ber of TA-hours available to the instructor. The instructor’s
allocation is a vector k ∈ Rn

≥0 such that
∑n

i=1 ki ≤ ktot ,
where ki is the probability that student i is audited.

Observe that specifying k is enough to recover a probabil-
ity distribution over pure allocations of TAs to students — i.e.
an instructor mixed strategy — by the Birkhoff von-Neumann
decomposition (see [Korzhyk et al., 2011] for details, and
[Birkhoff, 1946] for the original result).

The game proceeds as follows. First, the instructor chooses
a vector k such that

∑
i∈N ki ≤ ktot . Each student i ∈ N

observes k, and chooses xi ∈ [0, 1] that maximizes her utility.
We assume that every student’s utility is completely identifi-
able with her grades on the assignment. More formally, a stu-
dent’s utility function is given by two real-valued functions:
Hi and Mi. Hi(x) is the expected grade of i if she invests
an x portion of her time in homework, and Mi(1 − x) is the
expected probability that she is punished for misgrading her
peers if audited assuming she invests (1 − x) percent of her
time on grading. The punishment is scaling, as we do not
want to have a case where the punishment is greater than the
student’s entire homework score. Putting it all together, we
get that the expected utility of student i under k if she invests
an xi portion of her time in homework is

Ui(xi, ki) = Hi(xi) (1− kiMi(1− xi)) . (1)
We assume that Hi is monotone increasing; similarly, we

assume that Mi is monotone decreasing. We note that there
still may be a chance of misgrading even with a high amount
of effort. That is, we are not guaranteed that Mi(1) = 0.

Next, let us consider the utility of the instructor. The in-
structor is interested in getting students to put reasonable ef-
fort into both their homework assignment and into peer grad-
ing. The utility that the instructor gets from homework is



simply a weighted average over students. That is, each stu-
dent is associated with a weight αi, and the instructor’s utility
from homework if students’ strategies are given by x is given
by
∑n

i=1 αiHi(xi). Similarly, the instructor incurs a penalty
βi for each student i that has misgraded; thus, the instruc-
tor’s expected penalty given x is

∑n
i=1 βiMi(1− xi). These

different values of αi and βi represent a weighted average
over the different types of student. For example, undergradu-
ate students may be expected to perform better on homework,
masters students may be expected to focus more on grading,
and students who are auditing the class may be expected to
spend less time overall. Putting it all together, the instructor’s
utility function is given by

U INST (x1, . . . xn) =

n∑
i=1

(αiHi(xi)− βiMi(1− xi)) (2)

We are interested in finding a TA allocation k that maximizes
the instructor’s utility, assuming that students observe k and
then play a best response to their level of audit.

Definition 2.1 (Instructor-Optimal Stackelberg Equilibrium).
An instance of INSTRUCTOROPTEQ is given by:

• A number of students N

• For each student a homework and misgrading function
Hi,Mi : [0, 1]→ [0, 1]

• For each student an instructor utility function weighted
by (α1, . . . , αn); (β1, . . . , βn)

• Audit resources given by ktot
• Target value V

It is a “yes” instance if there exists some instructor mixed
strategy k such that for students’ best response to k, the in-
structor’s utility is at least V ; it is a “no” instance otherwise.

The optimization variant of Definition 2.1 is

max

n∑
i=1

αiHi(xi)− βiMi(1− xi) (3)

s.t. xi ∈ arg max
x∈[0,1]

Ui(x, ki) ∀i ∈ N

n∑
i=1

ki ≤ ktot

ki ∈ [0, 1] ∀i ∈ N.

3 Computing Instructor-Optimal Strategies
We begin by showing that INSTRUCTOROPTEQ is compu-
tationally intractable for simple step-shaped homework and
misgrading functions.

Theorem 3.1. INSTRUCTOROPTEQ is NP-hard.

Proof. Our reduction is from the KNAPSACK problem [Garey
and Johnson, 1979]. An instance of KNAPSACK is given
by a list of n objects N = {1, . . . , n}, each with a posi-
tive weight wi and positive value vi, a value V ∈ R+ and
a weight W ∈ R+. It is a “yes” instance if there is some
S ⊆ N such that

∑
i∈S wi ≤ W and

∑
i∈S vi ≥ V , and

a “no” instance otherwise. Given an instance of KNAPSACK
〈N = {1, . . . , n},w,v, V,R〉, We assume that vi and wi are
positive integers for all i ∈ N ; furthermore, we assume that
W ≥ wi for all i ∈ N , and that V > v(N) =

∑n
i=1 vi.

We construct the following game: The items are the stu-
dents. For each student i ∈ N we define

Hi(x) =

{
vi
C if x = 1

0 otherwise,

where C > 0 is some very large constant. We also write

Mi(x) =

{
W
wiC

if x = 0

0 otherwise.

We set αi = 0 and βi = wi, making the instructor utility
−
∑

i∈N wiviMi(1−xi). That is, the instructor does not care
at all about students’ performance in the course, just about
minimizing their misgrading probability, weighted by wivi.
We assume that the staff has ktot = 1, and our student utility
is −W

C (v(N) − V ). Suppose that student i is audited with
probability ki and she assigns all of her efforts to doing her
homework; then Ui(1, ki) =

1
C vi(1− ki

W
wi

). For any x < 1,
Ui(x, pi) = 0. Therefore, the best response of i to ki is xi =
1 if ki < wi

W , and is xi < 1 otherwise.
Suppose that we have a “yes” instance of knapsack. This

means that there is some set of students S∗ such that∑
i∈S∗ wi ≤ W and their total value is ≥ V . Suppose that

we set k∗i = wi

W for all i ∈ S∗ and k∗i = 0 for all i ∈ N \ S∗.
Since

∑
i∈S∗ wi ≤ W this is a valid instructor strategy. Un-

der this strategy, instructor utility is

−
n∑

i=1

wiviMi(1− xi) = −
W

C

∑
i∈N\S∗

wi
vi
wi

= −W
C

∑
i∈N\S∗

vi

≥ −W
C

(v(N)− V ).

On the other hand, if there exists an audit strategy k∗ that
guarantees utility of at least−W

C (v(N)−V ) we observe that
setting k∗i >

wi

W to student i adds no benefit to the instructor,
and if k∗i <

wi

W one may as well set k∗i = 0. Thus, we assume
w.l.o.g. that k∗i ∈ {0, wi

W } for all i ∈ N . Then, the students
audited with probability wi

W correspond to a subset of items
that weigh less than W and have a value of at least V , which
concludes the proof.

4 Finding Approximately Optimal Strategies
Since computing the optimal solution is computationally in-
feasible, we then consider finding an approximate solution. If
we limit the precision with which we express the probabilities
kt, then we obtain an efficient dynamic programming algo-
rithm for solving the instructor-optimal Stackelberg equilib-
rium problem. Our algorithm involves solving sub-problems
where we only consider a subset of our students with a subset
of our resources. We define xj(k) to represent the maximum
possible utility our instructor can get from all the students



with indices t ≤ j with k amount of audit resource to al-
locate. Note that this k is not necessarily a whole number.
Additionally, note that if k > j, xj(k) = xj(j) as at most
there is one resource allocated to each student.

Furthermore, define ft(k) to be the utility the instructor
gets from just the student t when k audit resources are allo-
cated to him. In general, computing ft(k) is dependent on the
student’s utility functions. Let ||f || be the worst case evalua-
tion time of this utility response function.

Suppose we allocate our auditors with maximum bit preci-
sion b. From this, we propose Algorithm 1:

Algorithm 1: Solving Fixed Precision K
Data: b, ktot, T = {1, 2, . . . n}, ft(k)
Result: xt(ktot)
∀t,k : xt(k) = −∞;
for j = 1; j ≤ n; j++ do

for k = 0; k ≤ ktot; k = k + 2−b do
if j = 1 then

xj(k) = max(xj(0), xj(k − 2−b), fj(k));
else

for l = 0; l ≤ 1; l = l + 2−b do
xj(k) =
max(xj−1(k − l) + fj(l), xj(k));

Theorem 4.1. If we are limited to specifying our audit strat-
egy with b bits of precision, Algorithm 1 finds the instructor-
optimal equilibrium with running time in O(ktot4

bn||f ||).

Proof. First, we reason about the correctness of the algo-
rithm. Suppose for the current iteration of the loop in the
algorithm, the indices are j and k. We can show that for all
integral j′ and for all k′ with b bits of precision, we will have
already found the optimal solution to the subproblem xj′(k

′).
We do so using induction on j.

Our base case where j = 1 computes the following. We
iterate through all possible values of f1(l) and take the one
that gives the most utility.

For any later loops, inductively assume that we have solved
the subproblem for all values j′ < j, and for all possible
values of k. Our optimal solution will assign at most 1 unit
of audit to the jth target. We consider every possible fj(l) +
xj−1(k − l). Since our total utility is equal to the sum of the
utility from each target, the maximum of this value will be
the maximum possible utility for xj(k). This completes our
claim about optimality in each iteration j.

Thus, at the end of our algorithm we get the maximum
possible utility for xn(ktot), and therefore we will have the
maximum possible utility our instructor can achieve with the
resources available to them.

Regarding the running time: note that we have three levels
of loops. The inner loop will iterate at most 2b times, the
second level loop will iterate ktot2b times, and the topmost
will iterate at most n times. At the core of each loop, we
will need to compute fj(k − l) and compare several values.

Recall that computing fj(k − l) takes worst case ||f || time.
Therefore, our algorithm will take time O(ktot4

bn||f ||).

While the above algorithm is efficient for a fixed b (or
for a b proportional to log(ktot)), the important question is
whether we can guarantee that the discrete rounded solution
provides utility close to the optimal solution. In section 4.2,
we identify the conditions under which we can provide ε′-
approximation guarantees for any constant ε′. In the next sec-
tion, we demonstrate that guaranteeing an approximate best
response from the students could potentially result in a non-
negligible loss of utility for the instructor.

4.1 ε-Best Response
Suppose we are given an optimal (unrounded) solution ki and
the students’ responses are xi. Suppose we evaluate an ap-
proximate strategy ki∗ that is within ε (ε = 2−b) of the true
solution. Additionally, suppose that the student’s utility func-
tions are Lipschitz continuous, which means that the func-
tion’s rate of change is limited. We can then show that xi is
an ε-best response to ki∗, meaning that we can cap the loss
of utility that a student has for playing xi instead of whatever
is the true optimal response to k∗i . In order to show this, we
first prove the following lemma.

Lemma 4.2. Let f : [0, 1]2 → R be a function such that
for any fixed x0 and y0, f(x, y0) and f(x0, y) are Lipschitz
continuous with constant c. Then the function

F (y) = max
x∈[0,1]

f(x, y)

is Lipschitz continuous with constant c, i.e.,

|F (y1)− F (y2)| < cε.

Proof. Let y1, y2 ∈ [0, 1] be two points such that |y1 −
y2| ≤ ε; let x∗1, x

∗
2 be two points such that x∗1 ∈

argmaxx∈[0,1] f(x, y1) and x∗2 ∈ argmaxx∈[0,1] f(x, y2).
As these function are Lipschitz continuous over a com-
pact set, the max values are within the compact set. Then
F (y1) = f(x∗1, y1) and F (y2) = f(x∗2, y2). Without loss
of generality, let F (y1) ≥ F (y2). Since |y1 − y2| ≤ ε,
|f(x∗1, y2)− f(x∗1, y1)| ≤ cε.

Now, either f(x∗1, y1) ≥ f(x∗1, y2) or f(x∗1, y1) <
f(x∗1, y2). If f(x∗1, y1) < f(x∗1, y2), then using the fact
from above about x∗2 that f(x∗1, y2) ≤ f(x∗2, y2) we can con-
clude f(x∗1, y1) < f(x∗2, y2). The last inequality is noth-
ing but F (y1) < F (y2). This is a contradiction. Therefore
f(x∗1, y1) ≥ f(x∗1, y2).

Next, by Lipschitz continuity we know that

f(x∗1, y1) ≤ cε+ f(x∗1, y2).

Using the fact from above about x∗2 that f(x∗1, y2) ≤
f(x∗2, y2). Combining above two inequalities we conclude
f(x∗1, y1) ≤ cε + f(x∗2, y2), which is same as |F (y1) −
F (y2)| ≤ cε. Thus, F (y) is Lipschitz continuous.

We are now ready to prove the following result:



Theorem 4.3. Suppose thatHi andMi are Lipschitz continu-
ous with constant c. Suppose that ki is the instructor-optimal
solution. Let xi be the student’s best response to an audit
level of ki, and choose k∗i such that |ki − k∗i | ≤ ε.

Then xi is a cε-best response to k∗i

Proof. We have thatHi andMi are Lipschitz continuous. Let
OPT (ki) be the best response of student i to an audit level
of ki. According to Equation 1, student utility is given by

Ui(x, ki) = Hi(x)(1− kiMi(1− x)).

In an equilibrium, students will play their best response
strategies in response to ki. We thus define the utility of a
student playing their optimal strategy as

OPT (ki) = max
x∈[0,1]

Hi(x)(1− kiMi(1− x)).

We have that both Hi and Mi are Lipschitz continuous.
Therefore, for a fixed k0 we have UTIL(x, k0) is Lipschitz
continuous. Suppose we are given y1, y2 such that |y1−y2| <
ε. Since both Hi and Mi are positive and bounded by 1 we
have that for any fixed x0

|Ui(x0, y1)− Ui(x0, y2)| < ε.

Thus, applying Lemma 4.2 we claim that OPT (ki) is Lip-
schitz continuous, i.e.,

|OPT (y1)−OPT (y2)| < cε.

Therefore, if |ki−k∗i | ≤ ε, then |OPT (ki)−OPT (k∗i )| ≤
cε.

4.2 Exact Best Response
However, even if xi is an cε-best response to k∗i , what could
be said about the exact best response x∗i to k∗i ? We would
hope that this response x∗i would be close to xi. Unfortu-
nately, that need not be true for an arbitrary Lipschitz contin-
uous function, as we show in the following example.
Example 4.4. Define our utility functions to be:

Hi(xt) =

{
1
10 if xi > 1

2
1
10 + 1

5 (
1
2 − xi) if xi ≤ 1

2

M(xt) =

{
9
10 if xi > 1

2
9
10 −

1
5 (

1
2 − xi) if xi ≤ 1

2

If we then plug these values into our utility function:

Hi(xi)(1− kiMi(1− xi))

=

{
( 1
10 + 1

5 (
1
2 − xi))(

1
10 ) if xi < 1

2

( 1
10 )(1− ki(

9
10 −

1
5 (xi −

1
2 ))) if xi ≥ 1

2

If we consider the two cases disjointly, the two strategies
that the student would consider are xi = 0 and xi = 1. The
payoffs the student will get from those strategies are 1

10 (1 −
4
5ki) and 1

5 (
1
10 ) respectively.

If ki = 1, we can see that the student could potentially
choose 1. However, if ki is any less, the student would opt
for 0. Remember that the utility function of our instructor is
of the form: ∑

i

(αiHi(xi)− βiMi(1− xi))

If we then set αi = 0, we get that this represents a signifi-
cant drop in the instructor’s utility.

Next we characterize the cases where Algorithm 1 guaran-
tees the instructor utility to be close to the optimal. In order to
do this, we first present conditions under which the student’s
strategy is stable under small changes to ki.
Theorem 4.5. Let ki and k∗i be two different possible audit
levels such that |ki − k∗i | < ε. Let xi and x∗i be the response
of our student under ki and k∗i respectively.

Suppose the student’s utility functions ∀k0 : f(x, k0) is
strictly concave, ∀k0 : f ′′(x, k0) < −d, and ∀x0, k0 :
f(x, k0), f(x0, k) are Lipschitz continuous.

We then have |xi − x∗i | <
√
(4cε/d).

Proof. We are given ki and k∗i . By assumption, xi (x∗i ) is
the maximizer of f(x, ki) (f(x, k∗i )). Therefore f(xi, ki) >
f(x∗i , ki) and similarly f(xi, k∗i ) < f(x∗i , k

∗
i ).

Remember that |ki − k∗i | < ε. Due to the Lipschitz conti-
nuity of f(x0, k):

∀x0. |f(x0, ki)− f(x0, k∗i )| < cε

For any positive v, consider xi + v. Recall that: ∀k0 :
f ′′(x, k0) < −d. The Taylor expansion of f(xi + v, ki) (in
remainder form) is given by

f(xi, ki) + vf ′(xi, ki) +
v2f ′′(x̂, ki)

2
.

where x̂ lies between xi + v and xi. Since f ′(xi, ki) is zero
and f ′′(x̂, ki) < −d we get

f(xi + v, ki) +
dv2

2
< f(xi, ki).

We can use a similar derivation to get

f(xi − v, ki) +
dv2

2
< f(xi, ki).

Next, for contradiction, we suppose that |xi − x∗i | ≥√
(4cε/d). Take v = |xi − x∗i |. Then, the above two in-

equalities allow us to conclude that

f(x∗i , ki) +
dv2

2
< f(xi, ki) next, using v ≥

√
(4cε/d)

f(x∗i , ki) + 2cε < f(xi, ki) which can be rearranged as
f(x∗i , ki) + cε < f(xi, ki)− cε.

Using Lipschitz continuity for the LHS and RHS we get
f(x∗i , ki) + cε > f(x∗i , k

∗
i )

f(xi, ki)− cε < f(xi, k
∗
i ).

Using the above two we get
f(x∗i , k

∗
i ) < f(xi, k

∗
i ).

By the definition of x∗i , this is a contradiction. Therefore,
|xi − x∗i | <

√
(4cε/d).



If we assume both grading and doing homeworks have di-
minishing returns, it is very reasonable to say that (for a given
ki > 0) Hi(x) and (1− kiMi(x)) are both strictly monoton-
ically increasing concave nonnegative functions. For short-
hand, let g(x) = (1− kiMi(x).

Therefore, H ′i(x) > 0 and H ′′i (x) < 0. Similarly, g′(x) >
0 and g′′(x) < 0. The first derivative of Hi(1 − x)g(x) is
Hi(1 − x)g′(x) − H ′i(1 − x)g(x). The second derivative is
equal toH ′′i (1−x)g(x)−2H ′i(1−x)g′(x)+Hi(1−x)g′′(x).
We can see that it will always be negative.

We also assume the second derivative is below a certain
value−d. If both of our functions are strictly increasing by at
least a certain value d this assumption would always be true
(because −2H ′i(1 − x)g′(x) < −2d2). The intuition behind
this assumption is that for a fixed amount of work, the student
will always reap a minimum amount of benefit.

Using this result, we characterize when the instructor’s util-
ity is close to optimal.

Theorem 4.6. If for all i Hi andMi are Lipschitz continuous
with constant e and |xi − x∗i | <

√
(4cε/d), we have the

following bound

|U INST (x1, . . . xn)−U INST (x∗1, . . . x
∗
n)|

<

n∑
i=1

(αi + βi)e
√
(4cε/d)

Proof. Recall that our instructor’s utility is given by:

U INST (x1, . . . xn) =

n∑
i=1

(αiHi(xi)− βiMi(1− xi)).

Note that if both Hi and Mi are Lipschitz continuous, then

|xi − x∗i | <
√

(4cε/d)

implies that for some constant value e:

|H(xi)−Hi(x
∗
i )| < e

√
(4cε/d)

|M(xi)−Mi(x
∗
i )| < e

√
(4cε/d)

Therefore, we bound the instructor utility from each student

|(αiHi(xi)− βiMi(xi))−(αiHi(x
∗
i )− βiMi(x

∗
i ))|

< (αi + βi)e
√
(4cε/d)

Thus, the overall utility is bounded as

|U INST (x1, . . . xn)−U INST (x∗1, . . . x
∗
n)|

<

n∑
i=1

(αi + βi)e
√
(4cε/d)

The above guarantee is of the order n
√
ε. Given any

constant ε′ we can choose b such that 2−b = ε is of or-
der (ε′)2/n2, giving approximation ε′ and running in time
poly(n5, (ε′)−4).

5 Discussion
The largest barrier to implementing our model in real world
scenarios is discovering the utilities of the students. Each stu-
dent only provides a small number of observations to this
function, since students are only in MOOCs for a limited
amount of time, ruling out some learning techniques recently
proposed [Blum et al., 2014]. Each observation will likely
be noisy, as there are many hidden variables that can af-
fect how a student performs week to week. Each observa-
tion will likely be biased, as each week their homework and
gradees change. Putting these observations together into a
coherent utility function is a challenge. Previous work on
MOOCs [Piech et al., 2013] was able to get an approximate
idea of how good each student was as a grader and how well
each student performed, but there still was noise. Any sys-
tem that attempts to learn the utilities would bound to have
noise as well (such as [Nguyen et al., 2014]), which we do
not consider here.

Another barrier is communicating changes in audit level in
a way that would be relevant to the students. Realistically,
students are not going to differentiate between a .051 and a
.052 chance of being audited. They might react if they are
told that they are being ”highly” vs ”lowly” audited, or if their
chance of being audited has increased. If we were dealing
with automated systems, these small changes may matter.

In this model, we assume that students can only improve
their grading at the cost of working on homework and can
only improve their homework score at the cost of working on
grading. There is no way the instructor can motivate a student
to allocate more time in total. Expansions on our model might
want to add a parameter that represents total time spent on the
class instead of capping the total at a normalized value of 1.

Our work could be expanded to scenarios beyond peer
grading. We could potentially consider any model where tar-
gets have to divide their time between a selfish action and a
non-selfish action. For example, this could be extended to
a factory dividing their time between making a product and
cleaning up their industrial waste. All of our results would
carry over, with possibly an easier way of determining utility
functions.

6 Conclusion
We introduced a novel way of modelling how audits can in-
centivize desired student behavior in MOOCs. We argued
that our model is realistic, and showed that computing an ap-
proximate equilibrium is computationally feasible.

Our work represents a new paradigm for strategic peer-
grading. MOOCs require trustworthy grading and helpful
feedback. By considering the strategic decisions each student
has to make, course designers can better understand how their
actions influence students’ behavior and choose mechanisms
to improve the experience of students within the limited TA
resources.
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