
Distributed Programming with Distributed Authorization ∗

Kumar Avijit
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
kavijit@cs.cmu.edu

Anupam Datta
CyLab

Carnegie Mellon University
Pittsburgh, PA 15213
danupam@cmu.edu

Robert Harper
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
rwh@cs.cmu.edu

Abstract
We propose a programming language, called PCML5, for build-
ing distributed applications with distributed access control. Target
applications include web-based systems in which programs must
compute with stipulated resources at different sites. In such a set-
ting, access control policies are decentralized (each site may im-
pose restrictions on access to its resources without the knowledge
of or cooperation with other sites) and spatially distributed (each
site may store its policies locally). To enforce such policies PCML5

employs a distributed proof-carrying authorization framework in
which sensitive resources are governed by reference monitors that
authenticate principals and demand logical proofs of compliance
with site-specific access control policies. The language provides
primitive operations for authentication, and acquisition of proofs
from local policies. The type system of PCML5 enforces locality
restrictions on resources, ensuring that they can only be accessed
from the site at which they reside, and enforces the authentication
and authorization obligations required to comply with local access
control policies. This ensures that a well-typed PCML5 program
cannot incur a runtime access control violation at a reference mon-
itor for a controlled resource.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure;
D.4.6 [Operating Systems]: Security and Protection—Access Con-
trols, Authentication

General Terms Languages, Design, Theory, Security

Keywords Distributed programming, proof-carrying authoriza-
tion, authorization logic, logical frameworks, phase distinction

1. Introduction
We present a programming language for writing distributed pro-
grams that compute with resources spread across multiple sites on
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a network. Each site on the network is assumed to be administered
by a principal who wishes to control access to all the resources at
that site.

We consider an approach based on distributed proof-carrying
authorization (DPCA), which was first introduced by Appel and
Felten (Appel and Felten 1999), and developed further in subse-
quent work (Bauer et al. 2001, 2005; Garg 2009). There are two key
ingredients to the DPCA approach. First, the policies specifying the
conditions under which a principal may access a resource are for-
mulated as theories in a formal logic. The exact form of the logic
varies from one setting to another, but must be expressive enough
to admit reasoning from the perspective of a principal using judg-
ments of the form “k affirms p”. This expressivity is required
when not all resources are controlled by the same principal. The
second component of DPCA is the use of proof-carrying reference
monitors to control access to resources. With each access request
to a resource, its reference monitor demands a formal proof stating
that the controlling principal at the site affirms that the accessing
principal is permitted to access the resource. The burden of pro-
ducing such a proof from the local policies is thus on the accessing
principal, and not on the reference monitor. The reference monitor
simply verifies the proof before granting access.

The security of the DPCA approach relies on the integrity of
reference monitors and the soundness of the authorization logic.
It is assumed that an attacker cannot access the resource in any
manner other than having to go through the reference monitor. It
is further assumed that the proof-checker of the reference monitor
is sound in the sense that it accepts only those proofs that are
valid under the host’s policies. The effectiveness of the reference
monitor depends, in turn, on the expressiveness of the authorization
logic. In particular, the affirms judgment is essential to stating
distributed authorization policies. For example, if k controls access
to a resource r, then an access control entry for r has to be of
the form “k affirms mayrd(r, k′)”, stating that the principal k′

is permitted by the principal k to access r. The logic should not
allow for deductions of “k affirms p” for propositions p that were
not intended by k. Such properties have been investigated by Garg
and Pfenning in context of a particular authorization logic (Garg
and Pfenning 2006).

To facilitate writing non-malicious code in such a setting, we
propose an extension to ML5 (Murphy 2008; Murphy et al. 2007),
which is a distributed programming language, with support for dis-
tributed proof-carrying authorization. The ML5 type system sup-
ports distributed programming by using a modal interpretation to
distribution of resources. In particular, the ML5 type system en-
sures that resources on a network can only be accessed at the site
where they reside, even though references to these resources may
be distributed freely. This is achieved through the typing judgment
m : A@w stating that the computation m may be executed at the
site w. ML5 itself only supports distribution, but not authorization.
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Figure 1. An example scenario for distributed PCA

The contribution of this paper is an extension of the ML5 type sys-
tem, to statically enforce the proof requirements imposed by proof-
carrying reference monitors that control the resources on the net-
work. There are three main ingredients in this extension:

1. Authentication: PCML5 provides a primitive operation that
allows the executing program to authenticate as a principal,
obtaining credentials that are presented to the reference monitor
in order to identify the accessing principal.

2. Distributed policy acquisition: We assume that access control
policies are distributed on the network, and must be acquired
dynamically to construct the proofs demanded by the reference
monitors at a site. As a simple example, a program must con-
sult the access control list for a resource at a site to determine
whether a specified principal is permitted to access a specified
resource in a particular manner. We enrich PCML5 with a prim-
itive for doing deductions using local authorization policies at
the sites.

3. Specification of proof obligations imposed by reference
monitors: Each resource is governed by an API whose type
specifies all the proof demands imposed by the reference mon-
itor. In particular, the type for a resource r specifies that the
reference monitor must be presented with the following:
• A credential that witnesses authentication of the accessing

principal k.
• A proof in the authorization logic that k is permitted by the

governing authority to access r.
• Any other arguments appropriate to the resource and the

particular mode of access.

The main result of the paper is the authorization theorem which
states that well-typed programs cannot incur authorization failure
at the reference monitor governing the resource. This theorem
holds because the type system ensures that the accessing principal

must provide the proof required by the reference monitor, which
therefore cannot fail at execution time. This imposes the obligation
on the programmer to collect sufficient credentials and derivations
prior to arriving at the API call-site. This process of collecting
credentials might itself fail. For instance, the program may query
the host policy to determine if the principal k is allowed access to
a resource r, i.e., attempt to prove that k′ affirms mayrd(r, k),
where k′ is the controlling authority of r. This query can fail,
if the indicated access is not permitted. However, if the query
succeeds, the program acquires evidence that can be used in further
deductions that are presented to the reference monitor. An analogy
with array bounds check may be helpful here. One may envision a
language in which the ability to perform a subscript operation on
an array demands a proof that the given index is within bounds. It
is incumbent on the program to acquire, through a combination of
run-time checks and logical deductions, a proof that the proposed
access is legitimate. The run-time checks used to assemble the
ingredients of these proofs may fail, but the language can ensure
that the proof presented at the access site will always be valid, and
hence proof-checking at reference monitor cannot fail.

Figure 1 illustrates the use of PCML5 for authorized, distributed
computation. There are three sites on the network, viz., browser,
acmserver and univserver, and acmserver hosts a database
conf. Access to conf at acmserver is governed by the principal
acm. The site univserver is administered by univ. The local pol-
icy of each site w is specified as a logical theory Φw, which is a set
of propositions of the form 〈k〉P , where k is the governing author-
ity at w. We use the modal proposition 〈k〉P as the internalization
of the judgment k affirms P . The database conf is protected by
a reference monitor that demands an authentication credential, and
a proof of the proposition 〈acm〉mayrd(conf, k) with k being the
principal authenticated.

We wish to write a distributed program that starts execution at
browser, travels to the site acmserver, and accesses the database
conf with appropriate authentication and authorization proofs. The



first step is to authenticate the program as running on behalf of a
principal using PCML5’s authentication primitive. This generates
a credential that will be used to prove the identity of accessing
principal at the reference monitor. The rest of the program can
be written as if executing on behalf of this principal, say k. The
next step is assembling a proof for 〈acm〉mayrd(conf, k). The
program does this by first proving that k is a student of univ,
i.e., by obtaining a proof for 〈univ〉is student(k, univ), and
then using this proof to deduce that acm permits k to read conf.
First of all, the program moves to univ to do a local proof search
for 〈univ〉is student(k, univ). For the particular authorization
theories in the example, this proof search fails unless k is alice.
In case of failure, the program simply aborts. However if the query
is successful, the program moves to acmserver to deduce

〈univ〉is student(k, univ) ⊃ 〈acm〉mayrd(conf, k)

from the local policy. This proof check succeeds under the theory
Φa. The two locally deduced proofs are moved to acmserver
where they are combined using an ⊃-elimination to deduce

〈acm〉mayrd(conf, k)

This proof, along with the authentication credential for k is passed
to the API for reading conf. Provided that the previous local de-
ductions at univserver and acmserver succeed, it is guaranteed
that the proof is accepted by the reference monitor.

2. Authorization logic
The presentation of PCML5 in this paper uses the GP authoriza-
tion logic (Garg and Pfenning 2006), which we summarize in this
section. However, we emphasize that we pick a specific logic for
illustration only. Since the logic is integrated into the type system
using higher-order abstract syntax (as described in Section 5), the
PCML5 language can be easily coupled with other authorization
logics that can be encoded in the framework.

Sorts s ::= prin | db
First-order terms a ::= α | a

Predicate symbols p
Propositions P ::= P1 ⊃ P2 | P1 ∧ P2

| ∀α:s.P | 〈a〉P | p(a1, . . . , an)
Basic judgments J ::= a:s | P true | a affirms P

Proposition context Φ ::= · | Φ, P true
Term context ∆ ::= · |∆, α:s

Signature Σ ::= · |Σ,a:s |Σ, p:(s1, . . . , sn)

The logic is parameterized by a signature Σ that fixes the arity
of the predicates; p:(s1, . . . , sn) denotes that p is a predicate of ar-
ity nwith si being the sort of its ith argument. There are atleast two
sorts, viz., prin and db, representing principals and databases re-
spectively. The signature also fixes principal and database constants
a.

Apart from the standard propositional connectives, the logic
features a family of modalities indexed by principals, to express
propositions affirmed by principals. The modal proposition 〈a〉P
(read as “a says P ”) expresses that proposition P is endorsed by
principal a. There are three forms of basic judgments: the sorting
judgment a:s, which means that the first-order term a is of the
sort s; the truth judgment P true; and the affirmation judgment
a affirms P , which means that a (a term of the sort prin)
endorses P .

We use ∆; Φ `LΣ J to mean the hypothetical judgment J from
assumptions ∆ and Φ, under the signature Σ. The superscript L
differentiates entailment in the logic from that in hypothetical judg-
ments of PCML5 which we shall introduce later. We collect hy-
potheses about sorting judgments α:s under the context ∆; hy-

∆; Φ `LΣ P true ∆; Φ `LΣ a : prin

∆; Φ `LΣ a affirms P
(truaff)

∆; Φ `LΣ a affirms P

∆; Φ `LΣ 〈a〉P true
(〈〉-I)

∆; Φ `LΣ 〈a〉P1 true ∆; Φ, P1 true `LΣ a affirms P2

∆; Φ `LΣ a affirms P2

(〈〉-E)

Figure 2. Selected rules from natural deduction for the authoriza-
tion logic. (Reproduced from (Garg and Pfenning 2006)).

potheses of truth judgments P true are written as Φ. We do not
need to form hypotheses about affirmation judgments in this logic.

In order to illustrate the says modality, we present selected rules
from a natural deduction for the logic in Figure 2. Rule (truaff)
says that true propositions are affirmed by all principals. Rule (〈〉-I)
internalizes the judgment a affirms P as the proposition 〈a〉P .
Rule(〈〉-E) eliminates the modality in 〈a〉P1 by using a proof of
〈a〉P1 to cut a hypothesis P1 true in a derivation of affirmation
a affirms P2 by the same principal a.

3. Distributed policies and proof-checking
In our setup, each site is governed by an administrative principal
who decides the authorization policy at that site. We shall use the
notation w̄ to denote the governing principal at site w. We model
the local policy as a context of propositions declared to be true by
the governing principal. From a global perspective, a proposition P
declared by the principal w̄ has the force of the proposition 〈w̄〉P .
Thus the local policy at w, called Φw, is a context of the form:

Φw ::= 〈w̄〉P1 true, . . . , 〈w̄〉Pn true

A proof presented to a reference monitor may contain facts from
local policies at various sites. Logically, such a proof is valid under
the union of local policies at all sites. We refer to this union as the
amalgamated authorization policy and denote it by

Φ =
[

w∈Wld

Φw

where Wld is the set of all sites. We use the same notation for
amalgamated policy as a proposition context from Section 2 in
order to highlight that a policy is just a context in the logic. In
implementations, evidence for the local policy at a site is provided
by digitally signed certificates, which can be verified by reference
monitors at any site. A certificate for proposition P signed by a
principal a is unforgeable and establishes the judgment 〈a〉P true
irrefutably. Verification of a proof constructed from such evidences
requires checking the validity of these certificates. We view these
evidences as implementing the amalgamated authorization policy.
Therefore, our formalism directly uses the full policy Φ for the
purpose of proof-checking at reference monitors.

In practical distributed authorization systems for trust manage-
ment (Blaze et al. 1996) and other applications (Bauer et al. 2005)
policy statements made by an administrator at its site w are of-
ten cached at another site w′ in order to aid distributed proof
construction. For example, consider the authorization policy at
univserver from Figure 1. The evidence for
〈univ〉is student(alice, univ) may be cached at Alice’s ma-
chine browser. In this paper, we do not consider caching of proofs



at sites. The policy available at a site is restricted to only consist of
declarations made by the principal governing that site.

4. Overview of PCML5

We shall now informally discuss the key ideas behind PCML5.
There are three main aspects of PCML5:

1. PCML5 is a language for writing distributed programs that
interact with resources which are distributed across different
administrative domains. The type system tracks the site where
a computation is executed. This allows the language to enforce
the requirement that a resource can be accessed only from the
site where it is situated.

2. PCML5 uses an authorization logic as a part of its type system.
The logic is used to express within the language authorization
proof obligations that are imposed by reference monitors.

3. PCML5 allows construction of proofs by combining the results
of a distributed proof search with proof constructors from au-
thorization logic. The type system statically ensures that proofs
passed to a reference monitor satisfy its proof specifications.
This ensures that a call made to a reference monitor from a
well-typed PCML5 program never incurs a runtime error due to
failure of verification of proof.

We now elaborate on each of these aspects.

4.1 Distribution of computation
PCML5 is based on ML5 (Murphy 2008; Murphy et al. 2004),
which is a distributed programming language based on propositions-
as-types interpretation of the modal logic Intuitionistic S5 where
modal worlds are interpreted as sites in a distributed system.
The central idea that PCML5 inherits from ML5 is that terms
are classified using types relative to sites. The typing judgment
Γ ` m : A@w means that under the hypotheses about variables
in Γ, the term m is typed as A for the site w where it is to be
evaluated.

The idea of typing relative to worlds is central to writing dis-
tributed programs since it allows the type system to track where
different pieces of code are meant to execute. A term m for the site
w′ can be remotely executed from a world w by doing a get[w′]m
at w. This causes computation to move to w′ to execute m, and the
result is brought back to w, provided type of the result is mobile.
We discuss mobility later in Section 5.3 after having introduced the
formalism.

4.2 Authorization logic
PCML5 incorporates an authorization logic as static constructors
using higher-order abstract syntax. Constructors are classified by
kinds. Propositions belong to the kind Prop and proofs of a propo-
sition P are kinded as Prf(A) where A is the representation of the
proposition P . Proof of an affirmation judgment a affirms P is
represented as a constructor of kind Affirms(A1, A2), where A1

represents the principal a, and A2 is the representation of P . As
we shall see later, this translation provides a compositional bijec-
tion between propositions, proofs, and affirmations, on one hand,
and constructors of kind families Prop, Prf, and Affirms, on the
other.

The main requirement from this translation is to be able to
reflect the consequence relation of logic in an adequate manner
using PCML5 as is done in LF (Harper et al. 1993). Thus if there
is a proof of P2 hypothetical in a proof of P1 in the logic, one
can write a constructor of kind Prf(A2) with a free variable of
kind Prf(A1) in the language, and vice versa, where Ai’s are the
representations of propositions Pi’s. We shall make this relation
precise once we introduce the formalism.

In order to ensure that adequacy is without doubt, we follow a
phase distinction (Harper et al. 1990) between static and dynamic
phases of PCML5. The constructor level is constrained to be pure
in the sense that constructors do not depend on runtime terms. This
way terms can be arbitrarily effectful, but they do not affect the
types in any way.

4.3 Representation of principals and resources
Principals and resources appear in propositions and proofs, and also
occur as runtime values. In order to maintain a phase distinction, we
differentiate between the runtime and the compile-time representa-
tions of principals and resources, yielding a dual representation for
them:

1. They appear as static constructors of kinds Prin and Db resp.
These constructors appear in types and propositions, such as
mayrd(d, p).

2. They are also represented as runtime values that mediate access
to them. The type system tracks the identities of these runtime
values by linking them to their static counterparts using their
types. The type db(A) is a singleton type that represents run-
time database values indexed by A, which has the kind Db. We
refer to the static representations, like A, as indices.

The two representations are created together. For databases, this is
done using a primitive operation db.open: ∃α::Db.db(α).

In the case of principals, we need runtime representations of
only those principals that are authenticated. The type Iam(A) rep-
resents the type of authentication tokens for A::Prin.

4.4 Runtime acquisition of proofs
PCML5 provides a primitive operation acquire[A]{α.m1 | m2}
to enable querying for proofs using local security policies. When
executed at a site w, the primitive does a local proof search for
a proof of A using only Φw, the policy at w. The language itself
does not specify or depend on any particular proof search strategy.
It is however reasonable to assume that any strategy used in an
implementation should at least succeed in finding a proof when one
is present as an atomic fact in the policy.

The key idea behind acquire is that it enables acquiring facts
from security policies and incorporating them in the program at
runtime. The results of the runtime query, if successful, discharge
the hypothesis α bound in the branch m1. In case the query suc-
ceeds, the result is substituted for α in m1 and execution proceeds
with m1. In case the query fails, m2 is executed.

5. Syntax and static semantics
Figure 3 presents the syntax of PCML5. We divide the syntax into
three levels: runtime terms, constructors, and kinds. Runtime terms
are classified by types, which are a subset of constructors, and
constructors are classified by kinds. The language is parameterized
by two forms of signatures:

1. Σc: is the signature that introduces constructor constants,
a⇒K. Besides constant principals and databases, this signa-
ture introduces the encoding of authorization logic.

2. Σt: is the term signature and it gives types to externally imple-
mented API constants c:∀〈α1⇒K1, . . . , αn⇒Kn〉.A @ w.

In order to avoid normalization at the constructor level, we
present only the normal (canonical) forms in the style of Canonical
LF (Harper and Licata 2007). The idea is to exclude β and η re-
dexes altogether by rearranging the constructors as neutral (N ) and
normal (A) forms so that all occurrences of eliminations appear be-
fore any introduction. Since we admit only canonical constructors,



Kinds K ::= Type | Wld | Prop | Prin | Prf(A)

| Affirms(A1, A2) | Db | Πα::K1.K2

Constructors
(Neutral forms) N ::= α | a | A1 → A2 | A1 ×A2 | A1 +A2 | unit

| ∃α::K.A | Iam(A) | (N A)

(Normal forms) A,w, k ::= N | λα::K.A

Polytypes τ ::= ∀〈α1:K1, . . . , αn:Kn〉A
Terms m ::= x | λx:A.m | (m1 m2) | 〈m1,m2〉 | π1m | π2m | inlm | inrm

| casem of x.(m1 |m2) | 〈〉
| let x = m1 inm2

| get[w]m

| acquire[A] | authenticate
| c[A1, . . . , An](m)

| {α = A;m : A′}
| open {α, x} = m1 inm2

| iam[a]

Constructor signature Σc ::= · | Σc,a:K
Term signature Σt ::= · | Σt, c:τ@w

Constructor context ∆ ::= · |∆, α⇒K
Term context Γ ::= · | Γ, x:A@w

Figure 3. PCML5 syntax: Shaded parts are PCML5’s additions to ML5

we use hereditary substitution (Watkins et al. 2002) to keep con-
structors canonical upon substitution, details of which are omitted
here.

5.1 Judgment forms
The basic judgment forms used in static semantics are:

K kind K is a well-formed kind
A⇐ K A is checked for the kind K
N ⇒ K K is synthesized as the kind of N
m : A@w m is of type A at the world w

We maintain a phase-distinction between static and dynamic
phases in PCML5. This means that runtime terms do not appear in
constructors. Accordingly, we divide the context into a static part,
∆, which gives kinds to constructor variables α, and a dynamic part
Γ which types term variables x. Because of the phase-distinction,
the dynamic context is needed only for term typing judgments.
Selected rules defining well-formed kinds are shown here:

∆ `Σc A⇐ Prop

∆ `Σc Prf(A) kind
(Proof)

∆ `Σc A1 ⇐ Prin ∆ `Σc A2 ⇐ Prop

∆ `Σc Affirms(A1, A2) kind
(Affirms)

The kind Prf(A) classifies proofs of proposition A, and the
kind Affirms(A1, A2) classifies evidences for the judgment
A1 affirms A2 from Section 2.

All types except one in PCML5 are inherited from ML5.
PCML5 adds an abstract type Iam(A) of authentication creden-
tials of the principal A. We shall return to this type in Section 5.4
when we discuss authentication.

∆ `Σc A⇐ Prin

∆ `Σc Iam(A)⇒ Type
(auth)

5.2 Representing authorization logic
The kind level of PCML5 is sufficiently rich to encode the au-
thorization logic from Section 2 using higher-order abstract syn-
tax. For instance, the proposition P1⊃P2 can be encoded as the
constructor imp A1 A2, where imp ⇒ Prop→Prop→Prop is a
constructor constant. Propositions in the logic become construc-
tors of kind Prop in PCML5. Proofs, i.e., derivations of the judg-
ment ∆; Φ `LΣ P true get translated into open constructors of
kind Prf(A), where A is translation of P , under the context ∆
that represents ∆,Φ. Affirmations, i.e., derivations of judgment
∆; Φ `LΣ a affirms P are translated into open constructors of
kind Affirms(A1, A2) where A1 and A2 are representations of a
and P respectively.

The central principle behind the translation of logic is that hy-
pothetical reasoning in PCML5 represents the consequence relation
of the logic. This enables constructing proofs in a program that are
hypothetical in proofs of certain propositions (such as those where
a runtime policy query is involved), and later discharging those hy-
potheses using facts from authorization policies. In order to state
an adequacy theorem, we first need some terminology: We use the
notation Σ+

c to denote the signature consisting of constants in Σc

and the constants defining the embedding of authorization logic in
PCML5. The following judgments show representation of an entity
from the logic into a construct in the language (rules are omitted
here but can be found in our full report (Avijit et al. 2009)):

∆ `LΣ P prop � ∆ `
Σ+

c
A⇐ Prop Propositions

∆; Φ `LΣ P true � ∆ `
Σ+

c
A1 ⇐ Prf(A2) Proofs

∆; Φ `LΣ a affirms P �
∆ `

Σ+
c
A⇐ Affirms(A1, A2) Affirmations

We lift the translation to contexts and signatures in the straight-
forward manner, representing a hypothesis P true as α⇒Prf(A)
where A is the representation of P , and α is a fresh variable. In the



following theorem, we shall assume that Σc is a representation of
Σ and ∆1,∆2 represent the contexts ∆ and Φ resp..

Theorem 5.1 (Adequacy). Let ∆ `LΣ P1 prop � ∆1 `Σ+
c

A1 ⇐ Prop, and ∆ `LΣ P2 prop � ∆1 `Σ+
c
A2 ⇐ Prop.

Then ∆; Φ, P1 true `LΣ P2 true iff there exists A3 such that
∆1,∆2, α⇒Prf(A1) `

Σ+
c
A3 ⇐ Prf(A2).

In the rest of the paper, we freely use logical notation instead
of its translation for readability. For instance, we use A1 ⊃ A2 to
mean imp A1 A2. The notation Φ̂ denotes the representation of the
authorization policy Φ in the language.

5.3 Situated typing and distributed computation
PCML5 inherits the notion of typing relative to worlds from ML5.
Here we briefly recap the central ideas from ML5: distribution of
computation and mobility of data.

The main motivation behind situated typing in ML5 is to express
locality of resources, and use it to restrain where a piece of code
can run, with the idea being that a resource can only be accessed
by code running at the same location. Distribution of execution is
achieved by moving result of a computation from one location to
another using a get. This is expressed in the following typing rule:

∆; Γ `Σc;Σt m : A@w′ ∆ `Σc A mobile

∆; Γ `Σc;Σt get[w′]m : A@w
(get)

If m is well-typed for w′, then it may be executed using a remote
call from another world w. ML5 however restricts the remote invo-
cation to terms of mobile types only. The first requirement for a type
to be mobile is that all values of that type should be typable at all
worlds. This ensures that when the result ofm is brought back from
w′ to w, the value makes sense at w. Base types such as string
are mobile as their values can be typed at any site. Types represent-
ing local resources such as reference cells are not mobile. Function
types are also not mobile in ML5 because, by design, computations
are never shipped across sites. Instead code meant to be run at a
site is compiled and stored at that site. Only the locus of execution
shifts from one site to another, as in a remote procedure call.

PCML5 adds a new type Iam(A) for typing authentication
credentials to the types inherited from ML5. The type Iam(A)
is mobile because authentication credentials are typable at all
worlds. An existential type ∃α::K.A is mobile if the type A of
the packed value is mobile, regardless of α. Thus, for instance, the
type ∃α::Prin.Iam(α) is mobile. All constructors are considered
mobile in the sense that their kinding is independent of their loca-
tion. In particular, principal and resource indices, and proofs are
typable at all sites.

5.4 Authentication
For each constant principal a declared in the constructor signature
Σc, we use a constant iam[a] as its authentication token which is
typed as Iam(a).

a⇒Prin ∈ Σc

∆; Γ `Σc;Σt iam[a] : Iam(a)@w
(Iam-I)

PCML5 provides an abstract operation authenticate to au-
thenticate the program on behalf of a principal. In an implementa-
tion, this could be achieved through well-established protocols for
authentication, e.g. Kerberos (Neuman and Ts’o 1994). The oper-
ation returns a principal together with an authentication token that
serves as a proof of the principal having been authenticated.

The operation authenticate is typed as:

∆; Γ `Σc;Σt authenticate : (∃α::Prin.Iam(α)) option@w

The primitive is typed using an option type because it may fail to
return any meaningful value. Let us consider the case when the
primitive is successful. The result is typed as ∃α::Prin.Iam(α)
in this case. Notice that the authentication credential is typed as
Iam(α) linking it to the abstract component α of the abstraction.
The runtime term of type Iam(α) and the static proxy α can be
viewed as dual representations of an authenticated principal. Be-
cause of the abstraction, the static component uniquely represents a
particular instance of opening up the package, since it is assumed to
be different from everything else. Thus a credential of type Iam(α)
represents a particular instance of doing authentication in the pro-
gram.

5.5 Authorization
An authorization proof is constructed by doing proof search using
local security policies at various sites. This is done using a primitive
operation acquire[A]. The type system tracks the kinds of proofs
starting with acquire[A] to API calls where the proofs are used.

5.5.1 Distributed proof acquisition
acquire[A] optionally returns a proof of A. We use an existential
type to model this.

∆ `Σc A⇐ Prop

∆; Γ `Σc;Σt acquire[A] : (∃α::Prf(A).unit) option@w

The success case is typed as ∃α::Prf(A).unit. When this ex-
istential type is eliminated as open {α, x} = m1 in m2, an
assumption α⇒Prf(A) is introduced in the scope of m2 during
type-checking. We have mentioned before that all kinds are mobile
meaning that constructors are typable at all sites. Thus the variable
α stands for a globally-valid proof of proposition A in m2 even
though it is discharged using a proof obtained locally at a site.

5.5.2 Proof checking at API call sites
API constants, c, are introduced using the term signature Σt. In
order to call an API, its polymorphic arguments have to be fully
instantiated. The typing rule statically reflects the proof-verification
that happens at the reference monitor during such a call. All the
constructor arguments are typed statically according to the type of
the API constant.

Σt(c) = ∀〈α1:K1, . . . , αn:Kn〉(A→ A′)
∆ `Σc Ak ⇐ [A1/α1] . . . [Ak−1/αk−1]Kk (k = 1..n)

∆; Γ `Σc;Σt m : [A1/α1] . . . [An/αn]A@w

∆; Γ `Σc;Σt c[A1, . . . , An](m) : [A1/α1] . . . [An/αn]A′@w

Notice that for an API call to be well-typed, the constructor ar-
guments should be of the proper kind under the context ∆ as per the
type specification of the API. At runtime, the hypotheses are dis-
charged using closed constructors. The hypothetical judgment en-
sures that typing of arguments is preserved upon discharging these
hypotheses. This in turn ensures success of runtime verification of
these proofs at reference monitors. We elaborate on proof verifica-
tion at reference monitors when we give the dynamics of API calls
in Section 6.6.

An important technical detail here is the dependency among the
constructor arguments. Consider the type of an API constant:

∀〈α1:K1, . . . , αn:Kn〉(A→ A′)

The kind of an argument potentially depends on all previous argu-
ments. This is manifest in the second premiss of the typing rule:
∆ `Σc Ak ⇐ [A1/α1] . . . [Ak−1/αk−1]Kk that substitutes argu-
ments A1 through Ak−1 in Kk while checking the kind of Aj .



6. Runtime semantics
Term evaluation in PCML5 has the following aspects, in addition
to distribution:

1. Principals, databases and APIs: The transition system is pa-
rameterized by a constructor signature Σc, and an API signa-
ture Σt. The signatures remain fixed throughout the evaluation
of the program. We assume a fixed set of principal and database
indices, introduced through the constructor signature Σc. In ad-
dition to principals and databases, Σc also introduces represen-
tation of an authorization logic.

2. Execution under a security policy: Each location has a fixed
authorization policy associated with it. The policy at site w
consists of assertions made by the principal w̄ who governs that
site. We formulate the local policy at site w as:

Φ̂w ::= α1⇒Prf(〈w̄〉A1), . . . , αn⇒Prf(〈w̄〉An)

where α1, . . . , αn are chosen fresh.
We assume that all local policies are well-formed with respect
to the signature Σc that defines the authorization logic. As
mentioned before, the amalgamated authorization policy Φ̂ is
the union of all local policies.

3. Authorization checks at reference monitors: An API call
c[A1, . . . , An](m) results in the reference monitor verifying
A1 through An (as shown by Rule (api-reduce) later). Some
of these Ai’s may be proofs constructed by a distributed acqui-
sition of local policy assertions from various sites. As discussed
in Section 3, local assertions make sense globally and are im-
plemented in an unforgeable and irrefutable manner by signing
the asserted proposition with the principal’s signing key. In the
formalism, we directly use the global security policy Φ̂ to serve
as the context for type-checking the proofs at API call-sites at
runtime.

4. Authentication and active principals: As evaluation pro-
gresses, principals may be authenticated using the primitive
authenticate. Principals who have been authenticated during
a program run are called active principals. We keep a record of
all active principals as a set of principals A ⊆ {a | a⇒Prin ∈
Σc}. The program starts execution with A = {}, i.e. no prin-
cipal is assumed to be authenticated at the beginning of the
program.

6.1 Judgment forms
We describe the dynamic semantics using a transition relation be-
tween terms. We use the following judgment forms:

1. m;A 7→Σc;Σt;Φ̂
w m′;A′: Under the signatures Σc; Σt and

the amalgamated authorization policy Φ̂, the term m, executed
at world w, steps to the term m′ in a single transition; the set
of active principals changes from A to A′. Since Σc,Σt and
Φ̂ remain fixed during evaluation, we often omit them while
presenting the transition system.

2. m valA: means that the term m is a value under the runtime
record A, and is not evaluated further.

6.2 The value judgment
The value judgmentm valA defines values with respect to the run-
time state A. The rules for determining values of the types such as
function, product, sum and existential types are straightforward; we
adopt eager evaluation for products, sums and existential packages.

The crucial part of this definition is the case for values of type
Iam(A). An authentication token iam[a] is a value only if a is an
authenticated principal, i.e. if a is part of the active setA. The need

for the requirement that a be inA is explained in Section 6.6, where
the value iam[a] is used at an API call-site.

a ∈ A
iam[a] valA

(Iam-V)

6.3 Distribution
A remote call get[w′]m is evaluated at a world w as follows:

m;A 7→w′ m
′;A′

get[w′]m;A 7→w get[w′]m′;A′
(get-eval)

m valA

get[w′]m;A 7→w m;A
(get-reduce)

Rule (get-eval) expresses the remote execution of m at the
world w′. In case m is a value, it is brought to w from w′ (Rule
(get-reduce)). This transfer is safe, i.e., m is well-typed at w
because the type system guarantees that m has a mobile type.

6.4 Local policy acquisition
The acquire[A] primitive does a proof search for the proposi-
tion A using the local policy Φ̂w at the site where it is executed.
This proof search may fail. We do not stipulate the procedure used
for local theorem-proving. For this reason, we model this prim-
itive using a non-deterministic step: the Rule (acq-succ) non-
deterministically chooses a proof A′ such that A′ has the kind
Prf(A) under the assumptions Φ̂w.

Φ̂w `Σc A
′ ⇐ Prf(A)

acquire[A];A 7→w SOME {α = A′; 〈〉 : unit};A
(acq-succ)

The failure case is modeled by a transition to the value NONE:

acquire[A];A 7→w NONE;A (acq-fail)

6.5 Authentication
Authentication, if successful, results in the production of a token for
the authenticated principal. We use a non-deterministic rule which
may result in a token for any principal that has been declared in the
signature Σc.

a::Prin ∈ Σc

authenticate;A 7→w

SOME {α = a; iam[a] : Iam(α)};A ∪ {a}
(auth-succ)

The record A is augmented with a to note this authentication.
In case of failure, authenticate returns NONE, and A is left

unchanged:

authenticate;A 7→w NONE;A
(auth-fail)

An important technical detail to note here is that we require
Σc to contain all possible principals. This is manifest in the Rule
(auth-succ) where authenticate does not generate a new prin-
cipal identity but simply picks one up from Σc.

6.6 API calls to reference monitors
API constants represent externally implemented functions. We
model their behavior using a non-deterministic transition to an
arbitrary term of the appropriate type.

m;A 7→w m′;A′

c[A1, . . . , An](m);A 7→w c[A1, . . . , An](m′);A′
(api-eval)

Σt(c) = ∀〈α1::K1, . . . , αn::Kn〉A→ A′@w

∀i ∈ [0..n− 1] Φ̂ `Σc Ai+1 ⇐ [A1/α1] . . . [Ai/αi]Ki+1

m1 valA

c[A1, . . . , An](m1);A 7→Σc;Σt;Φ
w m2;A

(api-reduce)



The Rule (api-reduce) illustrates the central actions that take
place during a call to a reference monitor:

1. Authorization checks The central point of PCA is that refer-
ence monitors for APIs check proofs. Proofs are passed as con-
structor arguments to the API. In order to verify them, the ref-
erence monitor needs the amalgamated policy Φ̂.
Consider the Rule (api-reduce). Before evaluating the API
call, the reference monitor type-checks all the constructor ar-
gumentsA1 . . . An under Φ̂. For well-typed programs, the type
system (cf. Section 5.5.2) guarantees that all type checks suc-
ceed.

2. Authentication checks In addition to verifying proofs, the ref-
erence monitor checks authentication credentials. APIs for such
monitors are polymorphic in the authenticated principal α, and
require an extra parameter of type Iam(α). In order to verify
an authentication credential iam[a], the reference monitor sim-
ply checks whether a ∈ A, where A is the active set at the
time of API call. In the formalism, authentication checks are
reflected implicitly in the value judgment. An authentication to-
ken iam[a] is considered a value under an active set A only if
a ∈ A (Rule Iam-V). This way, we reduce authentication check-
ing to checking that the argument to the API call (m1 in Rule
(api-reduce)) is a value.

6.7 PCA runtime errors
A term may incur a runtime fault at a reference monitor in the
following two ways:

1. Either the proofs passed to the monitor API do not type-check,

2. An authentication credential is not valid, in the sense that the
purported principal does not appear in the authentication record
A.

We formalize these errors explicitly using the judgment m ↑A.
This judgment formalizes the intuition that m is not a value, and
m;A 67→w.

a 6∈ A
iam[a] ↑A

(iam↑)

Φ̂ 0Σc Ai ⇐ [A1/α1] . . . [Ai−1/αi−1]Ki

c[A1, . . . , An](m) ↑A
(c↑)

In addition, we have rules to propagate errors through evaluation
of other terms, of which we present only a sample here:

m1 ↑A
〈m1,m2〉 ↑A

(pair↑1)
m1 valA m2 ↑A
〈m1,m2〉 ↑A

(pair↑2)

The rules for the error judgment follow the evaluation order. A
pair 〈m1,m2〉 can incur an error at two instances: either when m1

which is evaluated first incurs an error (as in Rule (pair↑1)), or
when m1 has been evaluated to a value and m2 incurs an error (as
shown in Rule (pair↑2)).

7. Metatheory
We now prove the central result of this paper: a class of well-typed
PCML5 programs do not incur runtime faults at reference monitors.
We have already summarized a notion of error states (Section 6.7)
that formalizes exactly the runtime failures we are trying to avoid.

We start by proving progress and preservation for PCML5. This
means that well-typed terms do not get stuck. However, static
typing alone does not rule out authentication errors, i.e. failures that
happen when the reference monitor gets a token iam[a] and a is not

an active principal. This happens because the type system does not
track runtime authentication events, i.e. calls to authenticate.

Throughout this section we shall assume that Σc; Σt are well-
formed signatures and Φ̂ is an amalgamated security policy which
is well-formed under Σc.

7.1 Type safety
Theorem 7.1 (Progress). Let A be a set of active principals from
Σc. If ∆; · `Σc;Σt m : A@w, then

1. either m valA,
2. or ∃m′,A′.m;A 7→Σc;Σt;Φ̂

w m′;A′,
3. or m ↑A without using the Rule (c↑).

Theorem 7.2 (Preservation of typing). Assume that all API con-
stants declared in Σt preserve the typing. Ifm;A 7→Σc;Σt;Φ̂

w m′;A′
and ∆; · `Σc;Σt m : A@w,
then ∆, Φ̂; · `Σc;Σt m

′ : A@w.

In order to guarantee that terms do not incur authentication er-
rors in addition to not getting stuck, we define a notion of authen-
tication safety for terms with respect to a set of active principals. A
well-typed term is regarded as authentication safe if it never eval-
uates to an unauthenticated token. We prove that an authentication
safe term does not evaluate to an error state. In addition, we prove
that authentication safety is preserved by evaluation; these two the-
orems together ensure that authentication safe terms do not incur
runtime access violations at reference monitors. Finally we show
how authentication safety for the case where the set of active prin-
cipals is empty can be enforced using the type system.

7.2 Authentication history
The runtime semantic ensures that authenticate is the only way
in which a new authentication token can be generated. We further
wish to enforce that a token iam[a] appears in a term only when
the associated history A mentions a as one of the authenticated
principals. We use a judgment of the form ∆; Γ `AΣc;Σt

m :
A@w to denote that, in addition to the term being well-typed,
all authentication tokens in m have the corresponding principal
recorded inA. This judgment resembles the static typing judgment
∆; Γ `Σc;Σt m : A@w except for the case of iam[a], where we
demand that the principal a be present in A. We present a sample
of rules here:

a::Prin ∈ Σc a ∈ A
∆; Γ `AΣc;Σt

iam[a] : Iam(a)@w

∆; Γ, x:A@w `AΣc;Σt
m : A′@w

∆; Γ `AΣc;Σt
λx:A.m : A→ A′@w

∆; Γ `AΣc;Σt
m1 : A1 → A2@w ∆; Γ `AΣc;Σt

m2 : A1@w

∆; Γ `AΣc;Σt
(m1 m2) : A2@w

Theorem 7.3. If ∆; Γ `AΣc;Σt
m : A@w then ∆; Γ `Σc;Σt m :

A@w.

We assume that API calls do not directly introduce spurious
authentication tokens in their results. The following assumption
about API calls summarizes this:

Definition 7.4 (Authentication safety for APIs). Let
Σt(c) = ∀〈α1::K1, . . . , αn::Kn〉A1 → A2@w. Let P be the set
of constants a s.t. a::Prin ∈ Σc. The API c is authentication safe
if the following holds:

For all constructors B1, . . . , Bn such that
· `Σc Bi+1 ⇐ [B1/α1] . . . [Bi/αi]Ki+1. Let v be well-typed,



and be safe for A as ∆; · `AΣc;Σt
v : [B1/α1] . . . [Bn/αn]A1@w.

If c[B1, . . . , Bn](v);A 7→w m;A, then m is safe for A, i.e.
∆; · `AΣc;Σt

m : [B1/α1] . . . [Bn/αn]A2@w.

This restriction forces the resulting term to be safe w.r.t. all the
possibleA’s for which the argument v is safe, thus ensuring that all
authentication tokens in the result of the call are inherited from the
argument v, i.e. no new iam[a] are introduced in the result.

If all APIs are authentication safe, then authentication safety is
preserved by evaluation:

Theorem 7.5 (Preservation of authentication safety). Let all API
constants declared in Σt be safe in the sense of Def. 7.4.
If m;A 7→Σc;Σt;Φ̂

w m′;A′ and ∆; · `AΣc;Σt
m : A@w,

then ∆, Φ̂; · `A
′

Σc;Σt
m′ : A@w.

Furthermore, authentication safety ensures that reference mon-
itors cannot reject calls from well-typed and authentication-safe
programs.

Theorem 7.6 (Progress under authentication safety). Let A be a
set of active principals from Σc. If ∆; · `AΣc;Σt

m : A@w, then
either m valA, or ∃m′,A′.m;A 7→Σc;Σt;Φ̂

w m′;A′.
Notice that in contrast to Theorem 7.1 which has a failure clause

(m ↑A), Theorem 7.6 excludes the possibility of an authentication-
safe term getting stuck and ensures that it is either a value, or that it
takes a step to another term. The progress theorem (Theorem 7.6),
together with preservation (Theorem 7.5) ensures that an authenti-
cation safe, well-typed term never incurs a runtime fault at refer-
ence monitors.

7.3 Initializing evaluation
A closed well-typed program m begins evaluation under an empty
set of authenticated principals. By virtue of the progress and preser-
vation theorems for authentication safety, in order to ensure that
evaluation never incurs a runtime error, it is sufficient to ensure that
·; · `{}Σc;Σt

m : A@w. This can be enforced easily using the typ-
ing rules by simply disallowing all constants iam[c] as well-typed
terms. This is possible because while checking for authentication
safety of a term under A, all the sub-terms are checked under the
same A.

8. Example
We revisit the example scenario from Figure 1. The program
shown in Figure 4 illustrates how a distributed program running
at browser can access the database conf at acmserver using a
proof constructed using distributed proof-search at univserver
and acmserver.

8.1 External API and other declarations
The program in Figure 4 first declares principal, database and world
constants as extern declarations. The extern principal dec-
laration runs an initialization code to acquire the runtime repre-
sentation of the principal (using the name supplied) and binds it
to the variable in the declaration. The classifiers bytecode and
javascript in world declarations determine the language of the
generated code for the respective worlds. Lines 10-12 declare the
addresses for the three sites.

Lines 14-16 declare predicates using the extern prop decla-
ration. A declaration extern prop (s1, ..., sn) p declares
p to be a predicate with s1 through sn being the sorts of its argu-
ments.

Next we declare types for the database API at acmserver. The
constructor dbhandle has the kind Db→ Type. The API db.open
takes a database name of type string and returns the runtime

identity of the database packaged with its static proxy, as discussed
in Section 4.3. We use the syntax {a:K,A} for the existential type
∃a::K.A. For simplicity, databases in this paper are simply (key,
value) pairs, where both the key and the value are strings. Line 21
introduces the proof-carrying API for reading databases: db.read
is typed polymorphically in the accessing principal p, the database
d, and the proof f of acm affirming that p is allowed to read d.
The argument to db.read is a triple consisting of (1) a value of
type Iam(p) which forms an evidence of p’s authentication, (2) the
runtime structures associated with the database d, and (3) the key
to be read. Both the database operations db.open, and db.read are
local to acmserver.

8.2 Distributed proof construction
We now discuss the steps involved in reading conf at acmserver.
This is done in Lines 28-57 by the function readpaper which is
typed at acmserver.

The first operation (Lines 29-31) is to authenticate the principal.
In case authentication fails, the program raises the Abort exception
and halts. In case of a successful authentication, authenticate
returns a value of type ∃α::Prin.Iam(α), which is bound to
authpkg.

Let us consider the case when authentication succeeds. In this
case authpkg gets bound to a package {α = k; iam[k] : Iam(α)},
where k is the authenticated principal. The side-effect of this suc-
cessful authentication is that k gets added to the set of active prin-
cipals.

Assume that the amalgamated policy is given as the following
context Φ̂, with the variables α1, α2, α3 chosen fresh. The whole
program is run under this context. In an implementation, these
variables would be bound to digital certificates.

Φ̂ =

8>>>>>><>>>>>>:

α1 ⇒ 〈univ〉is student(alice, univ),
α2 ⇒ 〈acm〉is member(univ, acm),
α3 ⇒ 〈acm〉∀x:prin.∀y:prin.

is member(x, acm) ∧ 〈x〉is student(y, x)
⊃ mayrd(conf, y)

...

9>>>>>>=>>>>>>;
The task now is to construct a proof of

〈acm〉mayrd(conf, k).

This task depends on the identity of the authenticated principal.
The static index of the authenticated principal is obtained by open-
ing the package authpkg (Line 33), binding me to k, and cookie
to iam[k]. The rest of the code in the function executes in the scope
of this open.

We begin by first acquiring the certificate for studentship for
k. This is done by moving evaluation to the site univserver and
searching for a proof of 〈univ〉is student(k, univ) there. The
query acquire on Line 36 succeeds if k is alice because in this
case there is a direct proof, α1, in the policy. In the absence of
any other proofs in univserver’s local policy, this query fails
for other principals k. A successful acquire on Line 36 binds
studentcert to the optional package SOME {α = α1; 〈〉 : unit},
and the result is brought back to acmserver by the get. Notice that
the result of an acquire is of a mobile type and therefore can be
brought over from univserver to acmserver. The program raises
the exception abort and terminates in case this acquire fails.

Next we need to acquire a proof that k is allowed access to the
database conf. This proof search depends on the static identity of
the database conf. This identity is obtained using db.open at Line
40, which, if successful binds the proxy to d, and the runtime handle
to h upon opening the package returned by db.open. At this point,
we have already acquired a proof of studentship for me. We now
use this fact to guide our proof search. We proceed (Line 44) with
a query for the following proposition at acmserver:



1 unit
2 import "std.mlh"
3
4 extern principal acm = "acm"
5 extern principal univ = "univ"
6 extern bytecode world acmserver
7 extern bytecode world univserver
8 extern javascript world browser
9

10 extern val acmaddr ~ acmserver addr
11 extern val univaddr ~ univserver addr
12 extern val browseraddr ~ browser addr
13
14 extern prop (prin, prin) is_member
15 extern prop (db, prin) mayrd
16 extern prop (prin, prin) is_student
17
18 extern type (d:db) dbhandle
19 extern val db.open :
20 string -> {d:db, dbhandle(d)} option @ acmserver
21 extern val (p: prin, d: db, f: acm says mayrd(d, p))
22 db.read :
23 Iam(p) * dbhandle(d) * string -> string
24 @ acmserver
25
26 exception Abort of string
27
28 fun readpaper () =
29 let val authpkg = case authenticate of
30 NONE => raise Abort "authentication failed"
31 | SOME p => p
32 in
33 open authpkg as {me: prin, cookie} in
34 let val studcert =
35 case from univaddr
36 get acquire [univ says is_student(me, univ)] of
37 NONE => raise Abort "studentship search failed"
38 | SOME c => c
39 in
40 case db.open "conf" of
41 NONE => raise Abort "db.open failed"
42 | SOME dbase =>
43 open dbase as {d:db, h} in
44 case acquire [univ says is_student(me, univ)
45 implies
46 acm says mayrd(d, me)] of
47 NONE => raise Abort "mayrd search failed"
48 | SOME prf => open studcert as {studpf, _} in
49 open prf as {pf, _} in
50 db.read[me, d, impE pf studpf]
51 (cookie, h, "paper.pdf")
52 end
53 end
54 end
55 end
56 end
57 end
58
59 do from acmaddr get readpaper ()
60
61 end

Figure 4. PCML5 code for accessing a PCA-enabled resource under a distributed authorization policy. The code corresponds to the setup
introduced in Figure 1.



univ says is_student(me, univ)
implies
acm says mayrd(d, me)

This particular proof search illustrated the idea of combining
proofs from various sites. The proof search is done at acmserver
even though the antecedents of the implication represent non-local
facts. The hypothesis is discharged (Line 50) using proofs α1

acquired separately at univserver. This discharge of assumptions
using non-local facts to obtain a globally valid proof is possible
because constructors are typeable at all locations.

Notice that in order to construct the accessibility proof, it is
critical to assemble univ’s policy from univserver. The policy
of acm alone does not suffice for the required proof. That is, one
cannot hope for the direct query

acquire[acm says mayrd (d, me)]

to be successful at acmserver. The proof query in Lines 44-46 can
be viewed as temporarily extending the policy at acmserver to in-
clude the non-local fact 〈univ〉is student(k, univ), whereupon
the accessibility proof becomes derivable at acmserver.

8.3 Database access using required proofs
Lines 48-53 show the code that makes an API call to read conf us-
ing the proof constructed above. First the proof packages returned
by acquire’s are opened binding the proof constructors to studpf
and pf. The accessibility proof is constructed as impE pf studpf.
impE is a constructor from the embedding of the authorization logic
representing ⊃-elimination; it has the kind

Πα::Prop.Πβ::Prop.Prf(α ⊃ β)→ Prf(α)→ Prf(β)

The constructor pf is a proof of

〈univ〉is student(k, univ) ⊃ 〈acm〉mayrd(conf, k)

under Φ̂acmserver, and the constructor studpf is a proof of

〈univ〉is student(k, univ)

under Φ̂univserver. Both proofs are therefore well-typed under Φ̂.
Thus the proof impE pf studpf proves 〈acm〉mayrd(conf, k) un-
der the amalgamated policy Φ̂.

Apart from the authorization check, the monitor checks if the
credential cookie represents an authenticated principal by consult-
ing the set of active principals. This check also succeeds because
authenticate done at Line 29 augments the active set with k.
Since both checks succeed, the API call is successful. The result,
which is of the mobile type string, is returned back to browser
on Line 59.

9. Related work
The problem of specifying and enforcing policies in a scenario with
decentralized and spatially distributed policies was first studied in
the context of authentication in the Taos operating system (Wob-
ber et al. 1994), and later in the context of trust management sys-
tems (Blaze et al. 1996; Clarke et al. 2001; Li et al. 2002). Such
policies call for logics that are expressive enough to distinguish
assertions made by different principals. A number of logics, be-
ginning with the seminal work by Lampson et al. (Lampson et al.
1992), provide support for such assertions.

Recently, a number of languages for writing programs compli-
ant with authorization policies have been developed. We review
those that we consider to be the closest to PCML5, in terms of
objectives and/or techniques.

Aura (Jia et al. 2008; Vaughan et al. 2008) is a language for
enforcing authorization policies. It is based on DCC (Abadi et al.
1999). Our language differs from Aura in terms of the domain of

use because ours is a distributed programming language for dis-
tributed authorization policies. Aura is neither a distributed pro-
gramming language, nor does it handle distributed policies.

As a matter of technique, PCML5 differs from Aura in the
way they incorporate the authorization logic. While PCML5 uses a
higher-order encoding of an authorization logic as static construc-
tors, with a phase distinction between static and dynamic phases,
the proof level in Aura is a Curry-Howard interpretation of an au-
thorization logic, and is based on DCC (Abadi 2006).

Also, Aura does not have a notion of authentication of the prin-
cipal executing the program. A special principal identifier called
self is used to refer to the executing principal. In contrast, PCML5

uses authentication tokens as indicators of the fact that a certain
principal had been authenticated. This also allows for a program to
acquire multiple authenticities during its evaluation.

RCF (Bengtson et al. 2008; Fournet et al. 2007) uses refine-
ment types together with dependent types to express pre- and post-
conditions. The proof obligations are represented as preconditions
in the API. Thus a function for reading databases may be typed as

read : file:string{mayrd(file)} → string

where file:string{mayrd(file)} is the refinement type of
strings f for which mayrd(f) holds. Refinement types are in-
troduced using a term of the form assume C, which is typed as
:unit{C}. The typing context can be thought of as defining a

theory which is the set of all the formulae appearing in it. The most
important difference between PCML5 and RCF is in the respective
problems being addressed by the two languages. While PCML5

is a language for programming with PCA-enabled resources that
demand proofs of accessibility along with each access request, the
motivation of RCF is how to verify that a program conforms to a se-
curity policy. As a matter of technique, PCML5 uses explicit proof
terms unlike RCF. In absence of proof terms, the type-checking al-
gorithm of RCF uses an SMT solver to verify if the typing context
proves a particular logic formula. Another difference is that RCF
does not have a phase distinction since runtime values can appear
inside types, because formulas need to mention runtime entities.

PCAL (Chaudhuri and Garg 2009) is another language that re-
lies on external SMT solvers during compile-time to construct PCA
proofs. Users annotate program points with propositions that they
expect to hold there. The compiler first checks that the annotation
at a point is sufficient to guarantee access to the command exe-
cuted at that point. Then it attempts to construct a proof statically
as per the annotation. In case it cannot construct a proof statically,
the compiler produces code to dynamically construct the required
proof. Using a combination of both methods, the compiler ensures
compliance with the PCA interface.

Fable(Swamy et al. 2008) is another language that provides stat-
ically enforced compliance with security policies. The idea is to
have an abstract type of tagged program values that can only be
manipulated using trusted policy functions. A program is divided
into two fragments: the policy fragment that provides the abstrac-
tion, and the application fragment that functions as a client for the
abstraction, treating tagged values abstractly. Different kinds of se-
curity properties can be expressed by having different interpreta-
tions for the tags. Thus instead of designing a language around a
particular form of policies, such as is PCML5, Fable attempts to
provide a general framework in which different kinds of policies
can be expressed. This however comes at a cost: the language it-
self does not guarantee any security property itself (other than type
safety); the relevant properties need to be proved separately for ev-
ery policy fragment.

The idea of statically checking the permission for accessibility
has been used in a completely different setting as compared to ours
by Krishnaswami et al. (Krishnaswami and Aldrich 2005). They



use the notion of domains with inter-domain accessibility permis-
sions to statically enforce that code from a domain may access an
element of another domain only if there is a chain of access per-
missions from the former to the latter domain. Analogous to the
proof-carrying APIs in PCML5, their proposal allows specification
of access permissions associated with a domain. They use domains
to encapsulate stateful parts of modules for which it is desirable
to restrict access from outside domains. The type system enforces
compliance of the module and its interface to a high-level policy of
accessibility, i.e., protected parts of the module are not leaked out
by the interface.

10. Conclusion and future work
We have presented a language-based approach for enforcing dis-
tributed authorization policies. We are currently working on a pro-
totype implementation of PCML5, building upon the implemen-
tation of ML5 (Murphy 2008). We plan to implement distributed
applications using PCML5. Currently the programmer constructs
all the proofs by himself. In future, we would like to provide sup-
port for automated proof construction. We also plan to mechanize
the metatheory of PCML5. In this paper, we have assumed a very
simple model of spatial distribution of policies: the local policy at a
site w contains only assertions made by the principal who governs
w. In practice, however, assertions made by one principal may be
cached at other sites, as is done in trust management systems (Blaze
et al. 1996). In future work, we plan to support such richer forms of
distribution of authorization policies and distributed proof search
algorithms.
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