
Inductive Trace Properties for Computational
Security

Arnab Roy, Anupam Datta, Ante Derek, John C. Mitchell

Department of Computer Science, Stanford University

Abstract. Protocol authentication properties are generally trace-based,
meaning that authentication holds for the protocol if authentication
holds for individual traces (runs of the protocol and adversary). Com-
putational secrecy conditions, on the other hand, often are not trace
based: the ability to computationally distinguish a system that trans-
mits a secret from one that does not is measured by overall success on
the set of all traces of each system. This presents a challenge for induc-
tive or compositional methods: induction is a natural way of reasoning
about traces of a system, but it does not appear applicable to non-trace
properties. We therefore investigate the semantic connection between
trace properties that could be established by induction and non-trace-
based security requirements. Specifically, we prove that a certain trace
property implies computational secrecy and authentication properties,
assuming the encryption scheme provides chosen ciphertext security and
ciphertext integrity. We also prove a similar theorem for computational
secrecy assuming Decisional Diffie-Hellman and a chosen plaintext secure
encryption scheme.

1 Introduction

In symbolic and computational models of network protocol execution and attack, a
protocol defines a set of possible traces (runs). In the computational model, which we
consider in this paper, the set of traces is indexed by a security parameter, and there
is a probability distribution arising from randomness used in cryptographic actions
in the protocol and randomness used by the protocol adversary. Some properties of
a protocol are trace properties, meaning that the property can be observed to hold
or fail on an individual trace, and the property holds for a set of traces iff it holds
for all but a negligible subset. For example, the authentication property “if Bob ac-
cepts a key for use with Alice, then Alice participated in the same session of the same
key generation protocol” is a trace property. We can see, for any given trace, whether
Bob accepted the key and whether Alice participated in the same session of the same
protocol. However, many natural secrecy conditions, in the computational model us-
ing probabilistic polynomial-time computation, are not trace based. Computational
indistinguishability, for example, requires that no computational observer can feasibly
distinguish a situation in which a secret is transmitted from a situation in which some
non-informative values are transmitted instead. If we look at a single trace, this gives
no real information about how likely an observer is to succeed. Instead, we must look at
the probability distribution on traces, and determine the probability of success over the

entire distribution. This presents a challenge for proving computational secrecy prop-
erties of protocols, since trace-based properties are naturally amenable to induction,
while non-trace-based properties are not. If we assume inductively that a trace-based
property holds, this means it holds for (almost) all traces, and we can consider the ef-
fect of adding one more step to each trace. If the effect preserves the property on each
trace, then we conclude that the property holds for the protocol as a whole. Since this
form of argument only works for trace-based properties, it does not appear applicable
to important computational security properties.

In this paper, we develop foundations for inductive proofs of computational se-
curity properties by proving connections between selected trace properties and useful
non-trace properties. We say that a protocol is secretive if the protocol participants
protect values intended to be kept secret in certain ways. While one cannot immedi-
ately see syntactically whether a protocol is secretive or not, this is a trace property
because it only requires certain individual actions by honest parties to a protocol. We
prove that all secretive protocols have computational secrecy and authentication prop-
erties, assuming the encryption scheme used provides chosen ciphertext security and
ciphertext integrity. In addition, we prove a similar theorem for computational secrecy
assuming Decisional Diffie-Hellman and a chosen plaintext secure encryption scheme.
These results strengthen related results of [7] in that we cover a broader class of protocol
properties, allow “nonces” used as keys, and make weaker cryptographic assumptions.
The computational security guarantees for secretive protocols are established first for
the simple case when secrets are protected by pre-shared “level-0” keys (Theorems
1-3), then generalized (Theorems 4-6) under the condition that each key is protected
by predecessor keys in an acyclic graph. This condition avoids the difficulty of dealing
with key cycles while assuming only IND-CCA security of encryption. However, the
properties we are able to prove do depend on key use, as should be expected in light
of previous results [7, 16, 11, 20]. Specifically, we prove strong key indistinguishability
properties for a class of secretive protocols that do not use the established secret as a
key (Theorems 1, 4), and a weaker key usability property for secretive protocols that
allows the established secret to be used as a key (Theorems 2, 5, 7).

While several methods are possible, we do not present methods for proving that a
protocol is secretive. Many protocols have steps that receive a message encrypted with
one key, and send some of its parts out encrypted with a different key. For such pro-
tocols, one might use an inductive argument about basic receive-send protocol steps,
along the lines of the “rank function method” [21] and related work in the strand space
approach [22], both previously applied to symbolic execution models. In forthcoming
work, we develop a form of secrecy induction general enough to cover Kerberos and
a Diffie-Hellman induction general enough to address properties of ISO-9798-3 and
IKEv2. An important aspect of the setting we develop in this paper is that we do not
need the strong cryptographic assumptions that are needed to show stronger correspon-
dences between symbolic and computational models of protocol execution and attack
(see, e.g., [18, 7, 1]). Intuitively, a correspondence between the set of symbolic execu-
tions of a protocol, under attack by a symbolic adversary, and the set of computational
executions, under attack by a computational adversary, may require cryptographic as-
sumptions that make cryptographic operations as opaque to a computational attacker
as they are to a symbolic attacker. In our approach, however, we work directly with
the computational model, using traces that contain symbolic actions by the protocol
participants (but not by the attacker), and do not require a correspondence between
computational and symbolic models.

2

Section 2 describes the protocol programming language, computational execution
model and security properties. A trace-based definition of “secretive protocols” and
associated computational security theorems (Theorems 1–6) are presented in section 3.
A similar trace-based definition of protocols that use the Diffie-Hellman primitive safely
and associated computational secrecy theorem (Theorem 7) is presented in section 4.
Conclusions appear in section 5.

2 Computational Model

2.1 Modeling Protocols

A simple protocol programming language is used to represent a protocol by a set of
programs one for each role, such as “Initiator”, “Responder” or “Server”. A program
is a sequence of protocol actions to be executed by an honest participant (see [12,
8, 9] for the syntax and operational semantics of the language). For the purpose of
this paper, it is sufficient to know that protocol actions include nonce generation,
encryption, decryption, Diffie-Hellman operations and communication steps (sending
and receiving). Symmetric encryption with a nonce as a key signifies encryption with
a key deterministically generated from the nonce. A principal executing an instance of
a role is called a thread. A principal can simultaneously execute multiple threads.

We consider a standard two-phase execution model as in [5]. In the initialization
phase of protocol execution, we assign a set of roles to each principal, identify a subset
which is honest, and provide all entities with encryption keys and random coins. In
the execution phase, the adversary executes the protocol by interacting with honest
principals. We make the standard assumption that the adversary has complete control
over the network, i.e. it sends messages to the parties and intercepts their answers, as
in the accepted cryptographic model of [5]. The length of keys, nonces, etc. as well as
the running time of the protocol parties and the attacker are polynomially bounded in
the security parameter.

Informally, a trace is a record of all actions executed by honest principals and the
attacker during protocol execution. Since honest principals execute symbolic programs,
a trace contains symbolic descriptions of the actions executed by honest parties as well
as the mapping of bitstrings to variables. On the other hand, although the attacker
may produce and send arbitrary bitstrings, the trace only records the send-receive
actions of the attacker (and the corresponding mapping to bitstrings), but not her
internal actions. More formally, a trace is a pair 〈e, λ〉, where e records the symbolic
actions of protocol participants and λ maps symbolic terms in actions to bitstrings
using appropriate functions. For example, if the symbolic action involves some thread
generating a new nonce s, then λ(s) is the bitstring obtained by applying a nonce-
generation algorithm (which uses the random coins available to that thread). Similarly,
symbolic symmetric encryption terms are mapped to bitstrings obtained by applying
an encryption function to the bitstring representation of the corresponding plaintext
term given by λ. The computational interpretation of decryption, and Diffie-Hellman
actions are defined similarly.

2.2 Modeling Security Properties

Authentication and integrity are trace properties. In this paper, we focus on simple
integrity properties of the form that a certain encrypted message was produced by

3

a specific principal. Such a property is satisfied by a protocol if for all probabilistic
polytime attackers and sufficiently large security parameters this property holds in
“almost all” runs of the protocol. Here, the use of the condition “almost all” allows
for the fact that the property may not hold in a negligible fraction of the runs as is
standard in cryptographic studies [5]. The interested reader is referred to [10] for a
formal definition.

Computational secrecy is a more subtle property. It is a property of a set of traces
and not a single trace. We consider two notions of computational secrecy—one based
on the standard cryptographic notion of indistinguishability and the other called key
usability first presented in [11]. We describe some problems with inductive reasoning
about key indistinguishability and discuss the alternative condition that appears more
suitable for our purposes.

Key indistinguishability Key indistinguishability [5, 3] roughly means that an
attacker should not be able to distinguish between the actual key produced by the
protocol and a random key drawn from the same distribution. This idea is formalized
using a standard cryptographic game. The game involves a two-phase adversary A =
(Ae,Ac). In the key exchange phase, the honest parties run sessions of the protocol
following the execution model described in Section 2.1. At the end of the key exchange
phase, the adversary selects a challenge session among all sessions executed by the
honest parties, and outputs some state information representing the information Ae

was able to gather during its execution. Let k be the key locally output by the honest
party executing the session. At this point, the experiment enters its second phase—
the challenge phase where the goal of the adversary Ac is to distinguish the key k
from a random key r drawn from the same distribution using the state information
previously output by Ae. The protocol is said to satisfy key indistinguishability if the
success probability of Ac is bounded above 1/2 by a negligible function of the security
parameter.

Key indistinguishability turns out to be too strong a condition in many practical
scenarios. Specifically, even if a key exchange protocol run in isolation satisfies this con-
dition, key indistinguishability is generally lost as soon as the key is used to encrypt
a message of a known form or with partially known possible content. Moreover, some
situations allow one agent to begin transmitting encrypted data before the other agent
finishes the last step of the key exchange, rendering key indistinguishability false at the
point that the key exchange protocol finishes. This appears to be the case for SSL [13];
see [19] for a discussion of data transfer before the key exchange finished messages are
received. Furthermore, some key exchange protocols even use the generated key during
the protocol, preventing key indistinguishability. Fortunately, many protocols that use
keys do not require key indistinguishability to provide meaningful security guarantees.
In particular, semantic security [15] does not require that the keys used remain indis-
tinguishable from random. To circumvent the technical problems we encountered in
working with key indistinguishability, we developed an alternative notion in [11] that
is parameterized by the security goal of the application in which the resulting key is
used.

Key usability While there are many desirable properties a “good” key exchange
protocol might satisfy, such as key freshness, high key entropy, and agreement, one
essential property is that the key should be suitable for use. Specifically, an adversary

4

who interacts with the the key exchange protocol should not be able to extract in-
formation that can compromise the application protocol which uses the resulting key.
This is the main idea underlying the security definition summarized below (see [11] for
a complete definition).

We define usability of keys obtained through a key exchange protocol Σ with respect
to a class of applications S via a two-phase experiment. The experiment involves a
two-phase adversary A = (Ae,Ac). In the key exchange phase, the honest parties run
sessions of the protocol following the standard execution model. At the end of the key
exchange phase, the adversary selects a challenge session among all sessions executed
by the honest parties, and outputs some state information representing the information
Ae was able to gather during its execution. Let k be the key locally output by the honest
party executing the session. At this point, the experiment enters its second phase—the
challenge phase where the goal of the adversary is to demonstrate an attack against a
scheme Π ∈ S which uses the key k. After Ae receives as input St, it starts interacting
with Π according to the game used for defining security of the application protocols
in S. For example, if S is a set of encryption schemes, then the relevant game may
be IND-CPA, IND-CCA1, or IND-CCA2 [14]. We formalize the case when the game
defines IND-CPA security. Ac has access to a left-right encryption oracle under k, and
in addition, it receives as input the state information from Ae. The advantage of the
adversary is defined as for the standard IND-CPA game with the difference that the
probability is taken over the random coins of the honest parties (used in the execution
of the protocol), the coins of the two adversaries, and the coins used for encryption
in the challenge phase. The keys obtained by running the key exchange protocol are
usable for the schemes in S if this advantage is bounded above by a negligible function
of the security parameter, for all encryption schemes in S. The universal quantification
over schemes is used to capture the fact that the security property is guaranteed for
all encryption schemes which satisfy the IND-CPA condition. The definition can be
easily modified to define a similar usability property of keys for other primitives, for
example, message authentication codes, by appropriately changing the security game
that is played in the second phase.

The above definition of usability is consistent with accepted definitions of symmetric
key-based primitives based on security against adversaries that are allowed arbitrary
uses of the primitive in a priori unknown settings. In addition, our model considers the
possibility that key generation is accomplished using a key exchange protocol instead
of a non-interactive algorithm. The adversary is provided with auxiliary information
obtained by interacting with this protocol.

3 Secretive Protocols

In this section, we define a trace property of protocols and show that this property
implies computational secrecy and integrity. The computational secrecy properties in-
clude key indistinguishability and key usability for IND-CCA secure encryption. These
results are established first for the simple case when secrets are protected by pre-shared
“level-0” keys (Theorems 1-3), then generalized (Theorems 4-6) under the condition
that each key is protected by predecessor keys in an acyclic graph. The proofs use
standard cryptographic reductions.

Let s and K be the symbolic representations of a nonce and a set of keys associated
with a specific thread in a trace 〈e, λ〉. Define Λ(K) = {λ(k)|k ∈ K}.

5

Definition 1 (Secretive Trace). A trace 〈e, λ〉 is a secretive trace with respect to s
and K if the following properties hold for every thread belonging to honest principals:

– a thread which generates a new nonce r in e, with λ(r) = λ(s), ensures that r is
encrypted with a key k with bitstring representation λ(k) ∈ Λ(K) in any message
sent out.

– whenever a thread decrypts a message with a key k with λ(k) ∈ Λ(K) and parses
the decryption, it ensures that the results are encrypted with some key k′ with
λ(k′) ∈ Λ(K) in any message sent out.

Definition 2 (Secretive Protocol). A protocol Q is a secretive protocol with re-
spect to s and K if for all probabilistic poly-time adversaries A and for all sufficiently
large security parameters η, the probability that a trace t(A,Q, η), generated by the in-
teraction of A with principals following roles of Q, is a secretive trace with respect to s
and K is overwhelmingly close to 1, the probability being taken over all adversary and
protocol randomness. Formally,

∀ PPT adversary A. ∃ negligible function ν. ∃η0. ∀η ≥ η0.

P r[t(A,Q, η) is secretive wrt s and K] ≥ 1− ν(η)

A level-0 key for a protocol execution is an encryption key which is only used as
a key but never as a payload. We use multi-party security definitions due to Bellare,
Boldyreva and Micali [2] applied to symmetric encryption schemes in the following
theorems. In [2], IND-CCA2 and the multi-party IND-CCA game are shown to be
asymptotically equivalent.

In all the proofs to do with secretive protocols, we implicitly look at the subset of
all traces that are secretive among all possible traces. Since the set of non-secretive
traces is a negligible subset of all traces, adversary advantages retain the same asymp-
totic behaviour - negligible advantages remain negligible and non-negligible advantages
remain non-negligible.

Theorem 1 (CCA security - No keying - level 1). Assume that a probabilistic
poly-time adversary interacts with a secretive protocol with respect to nonce s and a
set of level-0 keys K. Also assume that s is never used as a key by the honest princi-
pals. The adversary has negligible advantage at distinguishing s from random, after the
interaction if the encryption scheme is IND-CCA secure. In other words, the protocol
satisfies key indistinguishability for s.

Proof. Assume that a probabilistic poly-time adversary A interacts with a secretive
protocol with respect to nonce s and a set of level-0 keys K. We will show that if A has
non-negligible advantage at distinguishing s from random, after the interaction, then
we can construct a |K|-IND-CCA adversary A1 with non-negligible advantage against
the encryption scheme.

Adversary A1 has access to multi-party Left-or-Right encryption oracles Eki(LoR
(·, ·, b)) parameterized by a bit b and decryption oracles Dki(·) for all ki ∈ K (Following
[2], LoR(m0, m1, b) is a function which returns mb). A1 will provide a simulation of
the secretive protocol to A by using these oracles. A1 randomly chooses two nonces
x0, x1 at the outset as alternate bit-string representations of s. Suppose u(s, · · ·) is a
term explicitly constructed from s. As A1 is simulating a secretive protocol, this term
is to be encrypted with a key k in K to construct a message to be sent out to A. In
this case A1 asks the encryption oracle (u(x0, · · ·), u(x1, · · ·)) to be encrypted by k. If

6

a message construction involves decryption with a key in K, A1 first checks whether
the term to be decrypted was produced by an encryption oracle - if not then the
decryption oracle is invoked; if yes then A1 uses the corresponding encryption query as
the decryption. In the second case the encryption query might have been of the form
(v(x0, · · ·), v(x1, · · ·)). Following the definition of secretive protocol, terms constructed
from this decryption will be re-encrypted with a key in K before sending out. Thus we
note here that all such replies will be consistent to A with respect to any choice of b.

In the second phase, A1 chooses a bit d′ and sends xd′ to A. If A replies that this
is the actual nonce used, then A1 finishes by outputting d = d′, otherwise it outputs
d = d̄′ and finishes. The advantage of A1 against the |K|-IND-CCA challenger is:

Adv|K|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1] (1)

Since A has a non-negligible advantage at distinguishing s from random, the quantity
on the RHS must be non-negligible. Therefore the advantage in the LHS must be non-
negligible and hence we are done. ut

Theorem 2 (CCA security - Keying - level 1). Assume that a probabilistic poly-
time adversary interacts with a secretive protocol with respect to nonce s and a set
of level-0 keys K. Honest principals are allowed to use s as a key. The adversary has
negligible advantage at winning an IND-CCA game against a symmetric encryption
challenger, using the key s, after the interaction if the encryption scheme is IND-CCA
secure. In other words, the protocol satisfies IND-CCA key usability for s.

Proof. Assume that a probabilistic poly-time adversary A interacts with a secretive
protocol with respect to nonce s and a set of level-0 keys K. We will show that if
A has non-negligible advantage at winning an IND-CCA game against a symmetric
encryption challenger, using the key s, after the interaction then we can construct
either a |K|-IND-CCA adversary A1 or an IND-CCA adversary A2 with non-negligible
advantages against the encryption scheme.

We proceed as in the proof of theorem 1 to construct the adversary A1. The situ-
ation becomes different when encryption or decryption of a term is required with s as
the key. In this case A1 encrypts or decrypts with x0.

In the second phase, A1 uniformly randomly chooses a bit b′ and provides oracles
Ex0(LoR(·, ·, b′)) and Dx0(·) to A for an IND-CCA game. A finishes by outputting a
bit d′. If b′ = d′, A1 outputs d = 0 else outputs d = 1. The advantage of A1 against
the |K|-IND-CCA challenger is:

Adv|K|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1] (2)

Observe that if b = 0 then s was consistently represented by x0 in messages sent
to A. Hence, the first probability is precisely the probability of A winning an IND-
CCA challenge with s as the key after interacting with a secretive protocol w.r.t. s
and K. We will now bound the second probability. We start by constructing a second
adversary A2 which has all the keys in K, randomly generates a nonce x1 and has
access to an encryption oracle Ex0(LoR(·, ·, b1)) and a decryption oracle Dx0(·). It has
a similar behaviour towards A as A1 had except that when constructing terms with s,
it uses x1 but when required to encrypt or decrypt using s, it queries Ex0(LoR(·, ·, b1))
or Dx0(·). In the second phase, A1 uses the oracles Ex0(LoR(·, ·, b1)) and Dx0(·) to
provide the IND-CCA challenger to A. A finishes by outputting a bit d1. A2 outputs

7

d1. We observe here that if b = 1 for the earlier LoR oracle, it makes no difference to
the algorithm A whether it is interacting with A1 or A2. Thus we have:

(1/2)AdvIND−CCA,A2(η) = Pr[d1 = b1]− 1/2 = Pr[d = 0|b = 1]− 1/2 (3)

By the equations 2 and 3 we have:

Pr[d = 0|b = 0]− 1/2 = Adv|K|−IND−CCA,A1(η) + (1/2)AdvIND−CCA,A2(η)

As the probablity in the LHS is non-negligible, at least one of the advantages in the
RHS must be non-negligible and hence we are done. ut

If a protocol is a secretive protocol with respect to nonce k and set of level-0 keys
K then we will call k a level-1 key for the protocol, protected by K. Now we state a
theorem establishing the integrity of encryptions done with level-1 keys. The security
definition INT-CTXT for ciphertext integrity is due to [4] and also referred to as
existential unforgeability of ciphertexts in [17].

Theorem 3 (CTXT integrity - level 1). Assume that a probabilistic poly-time
adversary interacts with a secretive protocol with respect to nonce s and a set of level-
0 keys K. During the protocol run, if an honest principal decrypts a ciphertext with
key s successfully, then with overwhelming probability the ciphertext was produced by
an honest principal by encryption with s if the encryption scheme is IND-CCA and
INT-CTXT secure.

The proof is outlined in Appendix A. We now extend theorems 1–3 to directed
key hierarchies. This extension is motivated by the fact that many key distribution
protocols (e.g. Kerberos) have key hierarchies with keys protected by lower level keys
in the hierarchy.

Definition 3 (Key Graph). Let K be the symbolic representations of nonces and
keys associated with a specific thread in a trace 〈e, λ〉 The key graph of K in a protocol
is a directed graph with keys in K as vertices. There is an edge from key k1 to k2 if the
protocol is secretive with respect to k2 and a key set which includes k1.

Definition 4 (Key Level). Consider a directed acyclic key graph. Keys at the root
are level 0 keys. The level of any other key is one more than the maximum level among
its immediate predecessors.

Definition 5 (Key Closure). For a set of keys K from a directed acyclic key graph,
we define its closure C(K) to be the union of sets of keys at the root which are prede-
cessors of each key in K.

Theorem 4 (CCA security - No Keying). Assume that a probabilistic poly-time
adversary interacts with a secretive protocol with respect to nonce s and a set of keys K
in a DAG of finite and statically bounded level. Also assume that s is never used as a
key by the honest principals. The adversary has negligible advantage at distinguishing
s from random, after the interaction, if the encryption scheme is IND-CCA secure. In
other words, the protocol satisfies key indistinguishability for s.

Proof. We will prove this by induction over the maximum level of the DAG of K.
If K consists only of level 0 keys then the result follows from theorem 1. Suppose the
maximum level in the DAG of K is (n + 1) and assume that the theorem holds for
maximum level n. Let K′ be the closure C(K) of the set of keys K.

8

Assume that a probabilistic poly-time adversary A interacts with a secretive pro-
tocol with respect to nonce s and the set of keys K. We will show that if A has
non-negligible advantage at s from a random bitstring of the same length, after the in-
teraction, then we can construct either a |K′|-IND-CCA adversary A1 to the encryption
scheme or contradict the induction hypothesis.

We will construct an adversaryA1 which has access to a multi-party LoR encryption
oracles Eki(LoR(·, ·, b)) and decryption oracles Dki(·) for all ki ∈ K′ parameterized by
a bit b chosen uniformly randomly. For keys si of level ≥ 0, A1 chooses random values
xi

0, x
i
1 and for s, A1 chooses random values x0, x1. A1 constructs messages to be sent

to A as follows:

– to encrypt the term f(s, s1, s2, ...) with ki ∈ K′, use response to oracle query
Eki(f(x0, x

1
0, x

2
0, ...), f(x1, x

1
1, x

2
1, ...), b).

– to encrypt f(s, s1, s2, ...) with si, use Exi
0
(f(x0, x

1
0, x

2
0, ...)).

Decryption operations are served analogously.

In the second phase, A1 chooses a bit d′ and sends xd′ to A. If A replies that this
is the actual nonce used, then A1 finishes by outputting d = d′, otherwise it outputs
d = d̄′ and finishes. The advantage of A1 against the |K|-IND-CCA challenger is:

Adv|K′|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1]

= (Pr[d = 0|b = 0]− 1/2) + (Pr[d = 1|b = 1]− 1/2) (4)

The first probability in the RHS is precisely the probability of A breaking the
indistinguishability of x0 or equivalently of s. In the case when b = 1, the terms were
constructed in the following manner:

– encrypt f(s, s1, s2, ...) with ki ∈ K′: Eki(f(x1, x
1
1, x

2
1, ...)).

– encrypt f(s, s1, s2, ...) with si: Exi
0
(f(x0, x

1
0, x

2
0, ...)).

We observe here that A1 simulated the execution of another secretive protocol G′
with keys of level ≤ n - x1

0, x
2
0, ... protecting x0. This is because the root level keys no

longer protect the other keys in the DAG - we obtain a transformed DAG with the
roots of the earlier DAG removed, and hence of maximum level one less. Therefore, we
have:

Pr[d = 1|b = 1]− 1/2 = (1/2)AdvG′,A(η) (5)

By the equations 4 and 5 we have:

Pr[d = 0|b = 0]− 1/2 = Adv|K′|−IND−CCA,A1(η)− (1/2)AdvG′,A(η)

As the probablity in the LHS is non-negligible, at least one of the advantages in the
RHS must be non-negligible and hence we are done. ut

Theorem 5 (CCA security - Keying). Assume that a probabilistic poly-time ad-
versary interacts with a secretive protocol with respect to nonce s and a set of keys K in
a DAG of finite and statically bounded level. Honest principals are allowed to use s as
a key. The adversary has negligible advantage at winning an IND-CCA game against
a symmetric encryption challenger, using the key s, after the interaction if the encryp-
tion scheme is IND-CCA secure. In other words, the protocol satisfies IND-CCA key
usability for s.

9

Proof. We will again prove this by induction over the maximum level of the DAG
of K. If K consists only of level 0 keys then the result follows from theorem 2. Suppose
the maximum level in the DAG of K is (n + 1) and assume that the theorem holds for
maximum level n. Let K′ be the closure C(K) of the set of keys K.

Assume that a probabilistic poly-time adversary A interacts with a secretive pro-
tocol with respect to nonce s and the set of keys K. We will show that if A has
non-negligible advantage at winning an IND-CCA game against a symmetric encryp-
tion challenger, using the key s, after the interaction then we can construct either a
|K′|-IND-CCA adversary A1 or contradict the induction hypothesis.

We proceed as in the proof of theorem 4 to construct the adversary A1. The only
additional operation is that to encrypt or decrypt the term m with s, we use x0 as the
key.

In the second phase, A1 randomly chooses a bit b′ ← {0, 1}. A sends pairs of
messages m0, m1 to A1. A1 replies with Ex0(mb′). Decryption requests are also served
by decrypting with key x0 ciphertexts not obtained by a query in this phase. A finishes
by outputting a bit d′. If b′ = d′, A1 outputs d = 0 else outputs d = 1.

The advantage of A1 against the |K′|-IND-CCA challenger is:

Adv|K′|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1] (6)

The first probability is precisely the probability of A breaking the ‘good-key’-ness
of x0 or equivalently of s. In the case when b = 1, the terms were constructed in the
following manner:

– encrypt f(s, s1, s2, ...) with ki ∈ K′: Eki(f(x1, x
1
1, x

2
1, ...)).

– encrypt f(s, s1, s2, ...) with si: Exi
0
(f(x0, x

1
0, x

2
0, ...)).

– encrypt term m with s: Ex0(m).

We observe here that A1 simulated the execution of another secretive protocol G′
with keys of level ≤ n - x1

0, x
2
0, ... protecting x0. This is because the root level keys no

longer protect the other keys in the DAG - we obtain a transformed DAG with the
roots of the earlier DAG removed, and hence of maximum level one less. Therefore, we
have:

Pr[d = 0|b = 1]− 1/2 = (1/2)AdvG′,A(η) (7)

By the equations 6 and 7 we have:

Pr[d = 0|b = 0]− 1/2 = Adv|K′|−IND−CCA,A1(η) + (1/2)AdvG′,A(η)

As the probablity in the LHS is non-negligible, at least one of the advantages in the
RHS must be non-negligible and hence we are done. ut

Theorem 6 (CTXT integrity). Assume that a probabilistic poly-time adversary in-
teracts with a secretive protocol with respect to nonce s and a set of keys K in a DAG of
finite, statically bounded levels. During the protocol run, if an honest principal decrypts
a ciphertext with key s successfully, then with overwhelming probability the ciphertext
was produced by an honest principal by encryption with s if the encryption scheme is
IND-CCA and INT-CTXT secure.

The proof is outlined in Appendix A.

10

4 Diffie-Hellman

In this section, we formulate a trace property for protocols that use the Diffie-Hellman
primitive and prove that, under the Decisional Diffie-Hellman assumption, any protocol
that satisfies this condition produces keys that are suitable for keying chosen plaintext
(IND-CPA) secure encryption schemes. The motivating application for this result is
the fact that many Diffie-Hellman-based key exchange protocols (e.g., IKEv2 [6]) set
up keys for use in secure sessions protocols. Such protocols typically provide the de-
sired security with IND-CPA encryption schemes and do not require IND-CCA secure
encryption.

Definition 6 (DHSafe Trace). Let x and y be the symbolic representations of two
nonces associated with a specific thread in a trace 〈e, λ〉. We say that 〈e, λ〉 is a DHSafe
trace with respect to x and y if the following properties hold for every thread belonging
to honest principals:

– a thread which generates a new nonce u in e, with λ(u) = λ(x), ensures that it
appears only exponentiated as gu in any message sent out. Similarly for y.

– the thread generating u, with λ(u) = λ(x) is allowed, at most once, to generate a
key by exponentiating any term m of the appropriate type to the power u and using
an appropriate key generation algorithm. However, this key is only used as a key.
Similar restriction applies to y.

– the results of decryptions with the above key are not used to construct any message
sent out.

Definition 7 (DHSafe Protocol). Let x and y be the symbolic representations of
two nonces associated with a specific thread in a trace 〈e, λ〉. A protocol Q is a DHSafe
protocol with respect to x and y if for all probabilistic poly-time adversaries A and
for all sufficiently large security parameters η, the probability that a trace t(A,Q, η),
generated by the interaction of A with principals following roles of Q, is a DHSafe trace
with respect to s and K is overwhelmingly close to 1, the probability being taken over
all adversary and protocol randomness. Formally,

∀ PPT adversary A. ∃ negligible function ν. ∃η0. ∀η ≥ η0.

P r[t(A,Q, η) is DHSafe wrt x and y] ≥ 1− ν(η)

As in the case of secretive protocols, here also we implicitly look at the subset of
all traces that are DHSafe among all possible traces with similar justification.

Theorem 7 (DH-CPA security). Assume that a probabilistic poly-time adversary
interacts with a DHSafe protocol with respect to nonces x and y. The adversary has neg-
ligible advantage at winning an IND-CPA game against a symmetric encryption chal-
lenger, using the key k = keygen(gxy), after the interaction if the encryption scheme is
IND-CPA secure and the DDH assumption holds for the group containing g. In other
words, a DHSafe protocol satisfies IND-CPA key usability for k.

Proof. Assume that a probabilistic poly-time adversary A interacts with a DHSafe
protocol with respect to nonces x and y. We will show that if A has non-negligible
advantage at winning an IND-CPA game against a symmetric encryption challenger,
using the key k, after the interaction then we can construct either a DDH adversary A1

with non-negligible advantage against DDH in the group containing g or an IND-CPA
adversary A2 with non-negligible advantage against the encryption scheme.

11

Adversary A1 is provided, at the outset, with a triple (ga, gb, gc) and has to deter-
mine if c = ab. It proceeds by simulating the execution of the protocol to adversary
A. Following the definition of DHSafe protocols, if an honest principal sends out a
message containing x or y, then it has to be constructed from gx or gy. A1 uses ga and
gb as the bitstring representations of gx and gy respectively. When an honest principal
exponentiates a term to the power x or y and generates a key, A1 uses k = keygen(gc)
as the bitstring representation of the key.

In the second phase, A1 uniformly randomly chooses a bit b′ and provides oracle
Ek(LoR(·, ·, b′)) to A for an IND-CPA game. A finishes by outputting a bit d′. If b′ = d′,
A1 outputs yes else outputs no. The advantage of A1 against the DDH challenger is:

AdvDDH,A1(η) = Pr[yes|c = ab]− Pr[yes|c 6= ab] (8)

Observe that if c = ab then k is the bitstring representation of keygen(gxy). Hence,
the first probability is precisely the probability of A winning an IND-CPA challenge
with k as the key after interacting with a DHSafe protocol w.r.t. x and y. We will now
bound the second probability.

We start by constructing a second adversary A2 which has access to an encryption
oracle Ek(LoR(·, ·, b1)) with k unknown. It has a similar behaviour towards A as A1 had
except when required to encrypt using the generated key, it queries Ek(LoR(·, ·, b1)).
Decryption queries are not required as results of decryptions are not used to construct
any message sent. In the second phase, A1 uses the Ek(LoR(·, ·, b1)) to provide the
IND-CPA challenger to A. A finishes by outputting a bit d1 which is what A2 also
outputs. We observe here that if c 6= ab for the earlier LoR oracle, it makes no difference
to the algorithm A whether it is interacting with A1 or A2. Thus we have:

(1/2)AdvIND−CPA,A2(η) = Pr[d1 = b1]− 1/2 = Pr[yes|c 6= ab]− 1/2 (9)

By the equations 8 and 9 we have:

Pr[yes|c = ab]− 1/2 = AdvDDH,A1(η) + (1/2)AdvIND−CPA,A2(η)

As the probablity in the LHS is non-negligible, at least one of the advantages in the
RHS must be non-negligible and hence we are done. ut

5 Conclusion

We develop foundations for inductive proofs of computational security properties by
proving connections between selected trace properties and useful non-trace properties.
We prove that all secretive protocols have computational secrecy and authentication
properties, assuming the encryption scheme used provides chosen ciphertext security
and ciphertext integrity. In addition, we prove a similar theorem for computational
secrecy assuming Decisional Diffie-Hellman and a chosen plaintext secure encryption
scheme.

While several methods are possible, we do not present methods for proving that
a protocol is secretive. In forthcoming work, we develop a form of secrecy induction
general enough to cover Kerberos and a DH induction general enough to address prop-
erties of IKEv2. Protocol proofs based on the connection between trace properties and
computational secrecy developed in this paper use direct reasoning about the compu-
tational model, and do not require the stronger cryptographic assumptions that are
inherent in methods based on equivalence between symbolic and computational mod-
els.

12

References

1. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable crypto-
graphic library. Cryptology ePrint Archive, Report 2003/015, 2003.

2. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Advances in Cryptology - EURO-
CRYPT 2000, Proceedings, pages 259–274, 2000.

3. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and
analysis of authenticationand key exchange protocols. In Proc. of the 30th Annual
Symposium on the Theory of Computing, pages 419–428. ACM, 1998.

4. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In ASIACRYPT, pages
531–545, 2000.

5. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Pro-
ceedings of the 13th Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO ’93), pages 232–249. Springer-Verlag, 1994.

6. E. C. Kaufman. Internet Key Exchange (IKEv2) Protocol, 2005. RFC.
7. V. Cortier and B. Warinschi. Computationally sound, automated proofs for se-

curity protocols. In Proceedings of 14th European Symposium on Programming
(ESOP’05), Lecture Notes in Computer Science, pages 157–171. Springer-Verlag,
2005.

8. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for secu-
rity protocols and its logical formalization. In Proceedings of 16th IEEE Computer
Security Foundations Workshop, pages 109–125. IEEE, 2003.

9. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and
compositional logic for security protocols. Journal of Computer Security, 13:423–
482, 2005.

10. A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Proba-
bilistic polynomial-time semantics for a protocol security logic. In Proceedings
of the 32nd International Colloquium on Automata, Languages and Programming
(ICALP ’05), Lecture Notes in Computer Science. Springer-Verlag, 2005.

11. A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Computationally sound com-
positional logic for key exchange protocols. In Proceedings of 19th IEEE Computer
Security Foundations Workshop, pages 321–334. IEEE, 2006.

12. N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositional logic for proving
security properties of protocols. Journal of Computer Security, 11:677–721, 2003.

13. A. Freier, P. Karlton, and P. Kocher. The SSL protocol version 3.0. IETF Internet
draft, November 18 1996.

14. O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, 2004.

15. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Science, 28:270–299, 1984.

16. P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of
key exchange protocols. In Proceedings of ACM Workshop on Formal Methods in
Security Engineering, 2005. to appear.

17. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In FSE, pages 284–299, 2000.

18. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Theory of Cryptography Conference - Proceedings of TCC
2004, volume 2951 of Lecture Notes in Computer Science, pages 133–151. Springer-
Verlag, 2004.

13

19. J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL 3.0. In
Proceedings of Seventh USENIX Security Symposium, pages 201–216, 1998.

20. D. Phan and D. Pointcheval. Une comparaison entre deux methodes de preuve de
securite. In Proc. of RIVF, pages 105–110, 2003.

21. S. Schneider. Verifying authentication protocols with csp. IEEE Transactions on
Software Engineering, pages 741–58, 1998.

22. F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7(1), 1999.

14

A Additional Proofs

Proof of theorem 3. Assume that a probabilistic poly-time adversary A interacts
with a secretive protocol with respect to nonce s and a set of level-0 keys K. Suppose
during the protocol run, an honest party decrypts a ciphertext with key s successfully
which was not produced by an honest party by encryption with s. We build a |K|-
IND-CCA adversary A1 against set of keys K in the lines of the proof of theorem 2.
However, this new A1 computes d in a different way. Recall that A1 uses x0 when
it intends to encrypt or decrypt using s. In the course of interaction with A, if A1

succeeds in decrypting a ciphertext with key x0 which was not produced at a previous
stage by A1 by encryption with x0, A1 outputs d = 0. Otherwise, it outputs d = 1.
The advantage of A1 against the |K|-IND-CCA challenger is:

Adv|K|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1] (10)

Now, Pr[d = 0|b = 0] is the probability of A1 succeeding in decrypting a ciphertext
with key s which was not obtained through encryption by A1. Pr[d = 0|b = 1] is the
probability of A1 succeeding in decrypting a ciphertext with level-0 key x0 (as in this
case x0 was only used as a key). Therefore, using a similar idea as proof of theorem 2
we can build an INT-CTXT adversary A2 against x0. Therefore,

Pr[d = 0|b = 0] = Adv|K|−IND−CCA,A1(η) + AdvINT−CTXT,A2(η)

As the encryption scheme is both IND-CCA and INT-CTXT secure, both the
probabilities on the RHS must be negligible and hence the theorem.

ut
Proof of theorem 6. We will prove this by induction over the maximum level of the
DAG of K. If K consists only of level 0 keys then the result follows from theorem 3.
Suppose the maximum level in the DAG of K is (n + 1) and assume that the theorem
holds for maximum level n. Let K′ be the closure C(K) of the set of keys K. Suppose
during the protocol run, an honest party decrypts a ciphertext with key s successfully
which was not produced by an honest party by encryption with s.

We build a |K′|-IND-CCA adversary A1 against set of keys K′ along the lines of the
proof of theorem 5. In the course of interaction with A, if A1 succeeds in decrypting a
ciphertext with key x0 which was not produced at a previous stage by A1 by encryption
with x0, A1 outputs d = 0. Otherwise, it outputs d = 1. The advantage of A1 against
the |K′|-IND-CCA challenger is:

Adv|K′|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1] (11)

Now, Pr[d = 0|b = 0] is the probability of A1 succeeding in producing a ciphertext
with key s which was not obtained through encryption by A1. Pr[d = 0|b = 1] is the
probability of A1 succeeding in decrypting a ciphertext with level-(n−1) key x0 (Same
argument as in proof of theorem 5 - the DAG reduces by one level) which was not
produced by encryption with x0. Therefore,

Pr[d = 0|b = 0] = Adv|K′|−IND−CCA,A1(η) + Pr[d = 0|b = 1]

As the encryption scheme is IND-CCA secure, the first probability on the RHS must
be negligible. The second probability is negligible due to the induction hypothesis as
the encryption scheme is both IND-CCA and INT-CTXT secure. Hence the theorem.

ut

15

