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1 Introduction

The stationary states of glue surrounding a static quark-antiquark pair, separated by some
distance r, contain important clues to the microscopic origin of quark confinement and the
nature of the vacuum in quantum chromodynamics (QCD). Currently, little is known about
the properties of such states since they cannot be described using standard perturbative
techniques. It is generally believed that at sufficiently large r, the chromoelectric and chro-
momagnetic fields become confined to a long tube-like region of space connecting the quark
and the antiquark. A description of the glue in terms of the collective degrees of freedom
associated with the position of the long flux might then be sufficient for reproducing the low-
energy spectrum. The oscillating flux can be treated in terms of an effective string theory.
The effective QCD string can also be studied without fixed end sources by investigating the
stationary states of glue in a box with periodic boundary conditions; such states involve flux
tubes (torelons) which wrap around the torus. In either case, the lowest-lying excitations are
expected to be the Goldstone modes associated with the spontaneously broken transverse
translational symmetry. These modes are a universal feature of any low-energy description
of the effective QCD string and have energy separations above the ground state given by
multiples of π/r. For the gluonic excitations at small r, no robust expectations from theory
presently exist.
The purpose of these notes is to outline the spectrum and nature of the expected string

modes for both the toroidal and fixed end cases. Very general properties will be used to
deduce the expected pattern of degeneracies and level orderings.

2 Fixed end string levels

The first step in determining the energies of the stationary states of gluons in the presence of
a static quark and antiquark, fixed in space some distance r apart, is to classify the levels in
terms of the symmetries of the problem. Such a system has cylindrical symmetry about the
axis r̂ passing through the quark and the antiquark (the molecular axis). The total angular

momentum ~Jg of the gluons is not a conserved quantity, but its projection ~Jg · r̂ onto the
molecular axis is and can be used to label the energy levels of the gluons. Here, we adopt
the standard notation from the physics of diatomic molecules and denote the magnitude of
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Figure 1: Examples of allowed and disallowed string configurations.

the eigenvalue of ~Jg · r̂ by Λ. States with Λ = 0, 1, 2, 3, 4, . . . are typically denoted by the
capital Greek letters Σ,Π,∆,Φ,Γ, . . ., respectively. The energy of the gluons is unaffected
by reflections in a plane containing the molecular axis; since such reflections interchange
states of opposite handedness, given by the sign of the eigenvalue of ~Jg · r̂, such states must
necessarily be degenerate (Λ doubling). However, this doubling does not apply to the Σ
states; Σ states which are even (odd) under a reflection in a plane containing the molecular
axis are denoted by a superscript + (−). Another symmetry is the combined operation
of charge conjugation and spatial inversion about the midpoint between the quark and the
antiquark. Here, we denote the eigenvalue of this transformation by ηCP which can take
values ±1. States which are even (odd) under this parity–charge-conjugation operation are
indicated by the subscripts g (u). Hence, the low-lying gluon levels are labelled Σ+g , Σ

−
g , Σ

+
u ,

Σ−u , Πg, Πu, ∆g, ∆u, and so on.
Next, assume that the fixed ends of the effective QCD string lie along the z-axis. The

location of the string can be specified in terms of displacements ξx(z, t) and ξy(z, t) in the
x and y directions, respectively, from the z-axis at time t. The boundary conditions are
ξj(0, t) = 0 and ξj(L, t) = 0 where L = r. Furthermore, we assume that the displacements
(and their first derivatives with respect to z and t) are continuous and single-valued for each
value of z and t; in other words, string configurations which double-back on themselves or
overhang the ends are disallowed (see Fig. 1).
The effective string action, without interactions, is taken to be

S =
∫

dt
∫ L

0
dz

[

1
2
ρ
(

ξ̇2x + ξ̇2y
)

− 1
2
κ
(

ξ′2x − ξ′2y
)

]

, (1)

where ρ is the linear mass density of the string, κ is the string tension, and

ξ̇j =
∂ξj
∂t

, ξ′j =
∂ξj
∂z

. (2)

The momentum canonically conjugate to ξj is

Πj =
∂L

∂ξ̇j
= ρ ξ̇j, (3)
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so that the Hamiltonian is

H =
∫ L

0
dz

{

1

2ρ

(

Π2x +Π
2
y

)

+
κ

2

(

ξ′2x + ξ′2y
)

}

, (4)

and the equal-time commutation relations are

[ ξi(z, t), Πj(z
′, t) ] = iδijδ(z − z′). (5)

The system is solved by expressing the displacements in terms of their normal modes.
For fixed ends, the normal modes are standing waves sin(mπz/L) having energy mω for
positive integer m. Using such modes, we can introduce ladder operators:

ξj(z, t) =
∞
∑

m=1

1√
mωρL

sin
(

mπz

L

)

(

ajm e−imωt + a†jm eimωt
)

, ω =
π

L

√

κ

ρ
, (6)

for j = 1, 2 = x, y. For fixed ends, these are standing waves having energy mω. Note that
the displacement operators are Hermitian, as they should be. The ladder operators satisfy
the commutation relations

[ajm, aj′m′ ] = 0, [ajm, a
†
j′m′ ] = δjj′δmm′ . (7)

In order to show that the above commutation relations are consistent with the commutators
of Eq. 5, we need the Fourier series of the periodic Dirac δ-function. Recall the definition of
the Fourier series for a periodic function with period T :

f(z) =
a0
2
+

∞
∑

m=1

[

am cos
(

2πmz

T

)

+ bm sin
(

2πmz

T

)]

, (8)

am =
2

T

∫ c+T

c
dz f(z) cos

(

2πmz

T

)

, (9)

bm =
2

T

∫ c+T

c
dz f(z) sin

(

2πmz

T

)

. (10)

Here, the modes are sin(mπz/L) so we need T = 2L and can choose c = −L, even though
we are only interested in the range 0 ≤ z ≤ L. Each of the modes is odd in z, so any linear
combinations of the normal modes will be odd, so we can use a Fourier sine series:

f(z) =
∞
∑

m=1

bm sin
(

πmz

L

)

, (11)

bm =
2

L

∫ L

0
dz f(z) sin

(

πmz

L

)

. (12)

If f(z) = sgn(z)δ(|z| − z ′), which is odd in z, then bm = (2/L) sin(mπz
′/L) if 0 < z′ ≤ L.

Hence,

δ(z − z′) =
2

L

∞
∑

m=1

sin
(

πmz

L

)

sin

(

πmz′

L

)

, for 0 < z ≤ L. (13)

The Hamiltonian is then given by, discarding an irrelevant (but infinitely large) constant,

H =
∞
∑

m=1

mω
(

a†xmaxm + a†ymaym
)

, ω =
π

L

√

κ

ρ
. (14)
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Under rotations Rz(φ) of angle φ about the z-axis, the normal mode operators transform
according to

Rz(φ) a
†
xm R†z(φ) = cosφ a†xm + sinφ a†ym, (15)

Rz(φ) a
†
ym R†z(φ) = − sinφ a†xm + cosφ a†ym. (16)

Given the rotational symmetry about the z-axis, it is better to work with left and right
circularly polarized modes. Define the circularly polarized modes as

a†m± =
1√
2

(

a†xm ± ia†ym
)

. (17)

Under a rotation about the z-axis, these operators transform as

Rz(φ) a
†
m± R†z(φ) = e∓iφ a†m±, (18)

and the Hamiltonian is

H =
∞
∑

m=1

mω
(

a†m+am+ + a†m−am−
)

, ω =
π

L

√

κ

ρ
. (19)

The right-handed “phonons” are indicated by the + sign, whereas the left-handed modes are
indicated by the − sign.
Let |0〉 denote the ground state of the string, then the string eigenmodes are

∞
∏

m=1

(a†m+)
nm+

√
nm+!

(a†m−)
nm−

√
nm−!

|0〉, (20)

where nm+ and nm− are the occupation numbers which take values 0, 1, 2, . . .. We now wish
to determine the symmetry properties of these states. Let PL/2 denote spatial inversion
about the point (0, 0, L/2) and C denote charge conjugation. The flux in the effective QCD
string has a direction associated with it, so that charge conjugation simply effects a reversal
of this direction. This direction is also reversed under PL/2 so that CPL/2 is a symmetry of
the system. Also, let σx and σy denote reflections in the xz and yz planes, respectively. The
ground state satisfies

Rz(φ) |0〉 = |0〉, (21)

CPL/2 |0〉 = |0〉, (22)

σx |0〉 = |0〉, (23)

σy |0〉 = |0〉. (24)

To determine the behavior of the operators a†m± under these symmetry operations, one uses
Eq. 6 and the following transformation properties of the string displacement:

CPL/2 ξj(z, t) P†L/2C† = −ξj(L− z, t), (25)

σx ξx(z, t) σ
†
x = ξx(z, t), (26)

σy ξx(z, t) σ
†
y = −ξx(z, t), (27)

σx ξy(z, t) σ
†
x = −ξy(z, t), (28)

σy ξy(z, t) σ
†
y = ξy(z, t). (29)
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Using Eq. 6 and Eq. 17 and the above transformation properties, one easily determines

CPL/2 a†m± P†L/2C† = (−1)ma†m±, (30)

σx a
†
m± σ†x = a†m∓, (31)

σy a
†
m± σ†y = −a†m∓. (32)

Hence, if E0 denotes the energy of the ground state (with the above Hamiltonian, it has
been defined to be zero), then the eigenvalues E (energy), Λ, and ηCP associated with the
string eigenstates are given by

E = E0 +
Nπ

r

√

κ

ρ
, (33)

N =
∞
∑

m=1

m (nm++nm−), (34)

Λ =

∣

∣

∣

∣

∣

∞
∑

m=1

(nm+−nm−)
∣

∣

∣

∣

∣

, (35)

ηCP = (−1)N . (36)

For the Σ states, the evenness or oddness under exchange (−) ↔ (+) of the circular po-
larizations yields a superscript + or −, respectively. Using these properties, the orderings
and degeneracies of the Goldstone string energy levels and their symmetries are as shown in
Table 1. Hence, for κ = ρ, the Nπ/r behavior and a well-defined pattern of degeneracies and
level orderings among the different channels form a very distinctive signature of the onset of
the Goldstone modes for the effective QCD string.

3 Toroidal string levels

A string without fixed ends which winds around a box with periodic (toroidal) boundary
conditions has different symmetry properties. Here we shall assume that the string loop
winds around the torus in the z-direction, and let L be the circumference of the torus in
this direction. Let the position of the string in the x and y directions be specified by qx(z, t)
and qy(z, t), respectively. Once again, assume that the string is stiff enough that qx(z, t) and
qy(z, t) are single valued (no configurations which double back on themselves). Of course,
this assumption could be relaxed by labeling the position along the string by some parameter
other than z, but this is an unnecessary complication for our purposes.
The effective string action is taken to be

ST =
∫

dt
∫ L

0
dz

[

1
2
ρ
(

q̇2x + q̇2y
)

− 1
2
κ
(

q′2x − q′2y
)

]

, (37)

where ρ is the linear mass density of the string and κ is the string tension. The momentum
canonically conjugate to qj is

Πj =
∂L

∂q̇j
= ρ q̇j, (38)
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Table 1: Low-lying string levels for fixed ends. The N = 1 level is two-fold degenerate,
and the N = 2, 3, 4 levels are 5,10,15-fold degenerate, respectively. The +(−) signs refer
to right (left) circular polarizations, and positive integers indicate phonon modes. The Σ,
Π, ∆, Φ, and Γ levels have Λ = 0, 1, 2, 3, and 4, respectively, where Λ is the magnitude of
the z-projection of angular momentum. Subscripts g(u) indicate evenness (oddness) under
CPL/2. The Σ+ (Σ−) states are even (odd) under reflections in any plane containing the
z-axis.

N = 0: Σ+g |0〉
N = 1: Πu a†1+|0〉 a†1−|0〉
N = 2: Σ+′g a†1+a

†
1−|0〉

Πg a†2+|0〉 a†2−|0〉
∆g (a†1+)

2|0〉 (a†1−)
2|0〉

N = 3: Σ+u (a†1+a
†
2− + a†1−a

†
2+)|0〉

Σ−u (a†1+a
†
2− − a†1−a

†
2+)|0〉

Π′u a†3+|0〉 a†3−|0〉
Π′u (a†1+)

2a†1−|0〉 a†1+(a
†
1−)

2|0〉
∆u a†1+a

†
2+|0〉 a†1−a

†
2−|0〉

Φu (a†1+)
3|0〉 (a†1−)

3|0〉
N = 4: Σ+′′g a†2+a

†
2−|0〉

Σ+′′g (a†1+)
2(a†1−)

2|0〉
Σ+′′g (a†1+a

†
3− + a†1−a

†
3+)|0〉

Σ−g (a†1+a
†
3− − a†1−a

†
3+)|0〉

Π′g a†4+|0〉 a†4−|0〉
Π′g (a†1+)

2a†2−|0〉 (a†1−)
2a†2+|0〉

Π′g a†1+a
†
1−a

†
2+|0〉 a†1+a

†
1−a

†
2−|0〉

∆′g a†1+a
†
3+|0〉 a†1−a

†
3−|0〉

∆′g (a†2+)
2|0〉 (a†2−)

2|0〉
∆′g (a†1+)

3a†1−|0〉 a†1+(a
†
1−)

3|0〉
Φg (a†1+)

2a†2+|0〉 (a†1−)
2a†2−|0〉

Γg (a†1+)
4|0〉 (a†1−)

4|0〉
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so that the Hamiltonian is

H =
∫ L

0
dz

{

1

2ρ

(

Π2x +Π
2
y

)

+
κ

2

(

q′2x + q′2y
)

}

, (39)

and the equal-time commutation relations are

[ qi(z, t), Πj(z
′, t) ] = iδijδ(z − z′). (40)

Now define the “center of mass” and the total transverse momentum by

Qj(t) =
1

L

∫ L

0
dz qj(z, t), (41)

Pj(t) =
∫ L

0
dz Πj(z, t), (42)

which satisfy the equal-time commutation relations

[ Qj(t), Pk(t) ] = iδjk. (43)

The Hamiltonian can be diagonalized by expressing the string location and momentum in
terms of the normal modes, introducing ladder operators:

qj(z, t) = Qj +
t

ρL
Pj +

∑

m6=0

1√
2ρLΩm

(

ajm e−iΩmt+ikmz + a†jm eiΩmt−ikmz

)

, (44)

for j = 1, 2 = x, y and where Qj = Qj(0), Pj = Pj(0) = Pj(t), and

km =
2π

L
m, Ωm =

2π

L

√

κ

ρ
|m|. (45)

These operators satisfy the commutation relations

[ajm, aj′m′ ] = 0, [ajm, a
†
j′m′ ] = δjj′δmm′ , (46)

[ajm, Pk] = 0, [ajm, Qk] = 0, [Qj, Pk] = iδjk. (47)

In order to show that the above commutation relations are consistent with the commutators
of Eq. 40, set c = 0 and T = L in Eqs. 8-10 to show that

δ(z − z′) =
1

L
+
2

L

∞
∑

m=1

cos
(

2πm

L
(z − z′)

)

. (48)

Note that qj(z, t) are Hermitian operators and satisfy the boundary conditions qj(0, t) =
qj(L, t) and q

′
j(0, t) = q′j(L, t). Satisfying both of these equations results in the 2ω energy

quantization, instead of ω = (π/L)
√

κ/ρ as with fixed ends. With periodic boundary condi-
tions, the normal modes are traveling plane waves having energy Ωm. Also note that Eq. 44
is consistent with Eq. 41 given that

Qj(t) = Qj +
t

ρL
Pj, (49)
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since
∫ L
0 dz exp(2πimz/L) = 0 for non-zero integer m.

In terms of the ladder operators, the Hamiltonian is given by, discarding an irrelevant
constant,

H =
1

2ρL

(

P 2x + P 2y
)

+
∑

m6=0

Ωm
(

a†xmaxm + a†ymaym
)

, Ωm =
2π

L

√

κ

ρ
|m|. (50)

As in the case of the string with fixed ends, it is convenient to transform to right and
left-circularly polarized waves,

a†mR =
1√
2

(

a†xm + ia†ym
)

, (51)

a†mL =
1√
2

(

a†xm − ia†ym
)

, (52)

so that the final form of the Hamiltonian is

H =
1

2ρL

(

P 2x + P 2y
)

+
∑

m6=0

Ωm
(

a†mRamR + a†mLamL
)

, Ωm =
2π

L

√

κ

ρ
|m|. (53)

The ground state satisfies
Px|0〉 = Py|0〉 = 0. (54)

Since we are not interested in the simple transverse-translational modes, we work in the zero
transverse momentum sector and consider only the eigenstates

∏

m6=0

(a†mR)
nmR

√
nmR!

(a†mL)
nmL

√
nmL!

|0〉. (55)

Under a rotation about the z-axis, the ladder operators transform as

Rz(φ) a
†
mR R†z(φ) = e−iφ a†mR, (56)

Rz(φ) a
†
mL R†z(φ) = eiφ a†mL. (57)

Next, consider how these operators transform under translations along the longitudinal z-
direction. Let Tz(b) denote the translation in the z-direction by length b. We require that

Tz(b) qj(z, t) T
†
z (b) = qj(z + b, t). (58)

From Eq. 44, we see that this means

Tz(b) a
†
mR T †z (b) = e−ibkm a†mR, (59)

Tz(b) a
†
mL T †z (b) = e−ibkm a†mL. (60)

Let Pz denote the generator of such longitudinal translations Tz(b) = exp(−ibPz), then

Pz a
†
mR P †z = km a†mR, (61)

Pz a
†
mL P †z = km a†mL, (62)
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which shows that each phonon mode has longitudinal momentum km. Let PL/2 denote
spatial inversion about the point (0, 0, L/2) and C denote charge conjugation. The flux in
the effective QCD string has a direction associated with it, so that charge conjugation simply
effects a reversal of this direction. This direction is also reversed under PL/2 so that CPL/2
is a possible symmetry of the system. Also, let σx and σy denote reflections in the xz and
yz planes, respectively. The ground state satisfies

Rz(φ) |0〉 = |0〉, (63)

Pz |0〉 = 0, (64)

CPL/2 |0〉 = |0〉, (65)

σx |0〉 = |0〉, (66)

σy |0〉 = |0〉. (67)

To determine the behavior of the operators a†mR and a
†
mR under these symmetry operations,

one uses Eq. 44 and the following transformation properties of the string coordinates:

CPL/2 qj(z, t) P†L/2C† = −qj(L− z, t), (68)

σx qx(z, t) σ
†
x = qx(z, t), (69)

σy qx(z, t) σ
†
y = −qx(z, t), (70)

σx qy(z, t) σ
†
x = −qy(z, t), (71)

σy qy(z, t) σ
†
y = qy(z, t). (72)

Furthermore, we know that

CPL/2 Qj P†L/2C† = −Qj, (73)

CPL/2 Pj P†L/2C† = −Pj, (74)

CPL/2 Pz P†L/2C† = −Pz. (75)

Using Eq. 44 and Eq. 17 with the above transformation properties, one easily determines

CPL/2 a†mR P†L/2C† = −a†−mR, (76)

CPL/2 a†mL P†L/2C† = −a†−mL, (77)

σx a
†
mR σ†x = a†mL, (78)

σx a
†
mL σ†x = a†mR, (79)

σy a
†
mR σ†y = −a†mL, (80)

σy a
†
mL σ†y = −a†mR. (81)

The symmetries of the system are, thus, as follows. For states with zero total longitudinal
momentum, the symmetries are exactly the same as for the fixed end case. We denote these
levels using Σ+g (0), Σ

−
g (0), Σ

+
u (0), Σ

−
u (0), Πg(0), Πu(0), ∆g(0), ∆u(0), and so on, where the

zero in parentheses indicates that these levels correspond to states having zero longitudinal
momentum. For non-zero longitudinal momentum, CPL/2 is no longer a symmetry since
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it reverses the longitudinal momentum. Hence, these levels may be labeled Σ+(p), Σ−(p),
Π(p), ∆(p), and so on. Here, p = ±1,±2,±3, . . . and corresponds to longitudinal momentum
2πp/L. Note that the energy is independent of the sign (direction) of the longitudinal
momentum. Also, the σx and σy symmetries produce Λ-doubling again, except for the Λ = 0
states, which still require the ± superscript.
Hence, if E0 denotes the energy of the ground state (with the above Hamiltonian, it has

been defined to be zero), then the eigenvalues E (energy), longitudinal momentum kz, Λ,
and ηCP (for the kz=0 states) associated with the string eigenmodes are given by

E = E0 +
2Nπ

L

√

κ

ρ
, (82)

kz =
2Mπ

L
, (83)

N =
∑

m6=0

|m| (nmR+nmL), (84)

M =
∑

m6=0

m (nmR+nmL), (85)

Λ =

∣

∣

∣

∣

∣

∣

∑

m6=0

(nmR−nmL)
∣

∣

∣

∣

∣

∣

. (86)

For zero-momentum states, we make even and odd CPL/2 states using symmetric and an-
tisymmetric superpositions, respectively, under a†mR → −a†−mR and a†mL → −a†−mL. For
Σ states, we make Σ+ and Σ− states using symmetric and antisymmetric superpositions,
respectively, under interchange of right and left-handed modes.
Using these properties, the orderings and degeneracies of the Goldstone string energy

levels and their symmetries are as shown in Tables 2–6. Hence, for κ = ρ, the 2Nπ/L
behavior and a well-defined pattern of degeneracies and level orderings among the different
channels form a very distinctive signature of the onset of the Goldstone modes for the effective
QCD string.

10



Table 2: Low-lying torelon string levels. Note that R and L refer to right and left circular
polarizations, respectively, and the signed integers refer to the phonon mode. A positive
integer indicates a mode with longitudinal momentum in the positive z-direction, whereas a
negative integer indicates a mode with oppositely directed longitudinal momentum. The Σ,
Π, ∆, Φ, and Γ levels have Λ = 0, 1, 2, 3, and 4, respectively, where Λ is the magnitude of
the z-projection of angular momentum. The total longitudinal momentum of each level, in
terms of the fundamental quantum 2π/L, is indicated in parentheses. For the states having
zero longitudinal momentum, the levels which are even and odd under CPL/2 are indicated
by subscripts g and u, respectively. The Σ+ and Σ− states are even and odd, respectively,
under reflections in any plane containing the z-axis. Note that the N = 1 level is 4-fold
degenerate and the N = 2 level is 14-fold degenerate.

N = 0: Σ+g (0) |0〉
N = 1: Π(1) a†+1R|0〉 a†+1L|0〉

Π(−1) a†−1R|0〉 a†−1L|0〉
N = 2: Σ+g (0)

′ (a†+1Ra
†
−1L + a†−1Ra

†
+1L)|0〉

Σ−u (0) (a†+1Ra
†
−1L − a†−1Ra

†
+1L)|0〉

∆g(0) a†+1Ra
†
−1R|0〉 a†+1La

†
−1L|0〉

Σ+(2) a†+1Ra
†
+1L|0〉

Σ+(−2) a†−1Ra
†
−1L|0〉

Π(2) a†+2R|0〉 a†+2L|0〉
Π(−2) a†−2R|0〉 a†−2L|0〉
∆(2) (a†+1R)

2|0〉 (a†+1L)
2|0〉

∆(−2) (a†−1R)
2|0〉 (a†−1L)

2|0〉
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Table 3: The N = 3 torelon string levels. See Table 2 for a description of the notation used.
The N = 3 level is 40-fold degenerate.

N = 3: Σ+(1) (a†−1La
†
+2R + a†−1Ra

†
+2L)|0〉

Σ+(−1) (a†+1Ra
†
−2L + a†+1La

†
−2R)|0〉

Σ−(1) (a†−1La
†
+2R − a†−1Ra

†
+2L)|0〉

Σ−(−1) (a†+1Ra
†
−2L − a†+1La

†
−2R)|0〉

Π(1)′ (a†+1R)
2a†−1L|0〉 a†−1R(a

†
+1L)

2|0〉
Π(1)′ a†+1Ra

†
−1Ra

†
+1L|0〉 a†+1Ra

†
+1La

†
−1L|0〉

Π(−1)′ (a†−1R)
2a†+1L|0〉 a†+1R(a

†
−1L)

2|0〉
Π(−1)′ a†+1Ra

†
−1Ra

†
−1L|0〉 a†−1Ra

†
+1La

†
−1L|0〉

∆(1) a†−1Ra
†
+2R|0〉 a†−1La

†
+2L|0〉

∆(−1) a†+1Ra
†
−2R|0〉 a†+1La

†
−2L|0〉

Φ(1) (a†+1R)
2a†−1R|0〉 (a†+1L)

2a†−1L|0〉
Φ(−1) a†+1R(a

†
−1R)

2|0〉 a†+1L(a
†
−1L)

2|0〉
Σ+(3) (a†+1Ra

†
+2L + a†+1La

†
+2R)|0〉

Σ+(−3) (a†−1La
†
−2R + a†−1Ra

†
−2L)|0〉

Σ−(3) (a†+1Ra
†
+2L − a†+1La

†
+2R)|0〉

Σ−(−3) (a†−1La
†
−2R − a†−1Ra

†
−2L)|0〉

Π(3) a†+3R|0〉 a†+3L|0〉
Π(3) (a†+1R)

2a†+1L|0〉 a†+1R(a
†
+1L)

2|0〉
Π(−3) (a†−1R)

2a†−1L|0〉 a†−1R(a
†
−1L)

2|0〉
Π(−3) a†−3R|0〉 a†−3L|0〉
∆(3) a†+1Ra

†
+2R|0〉 a†+1La

†
+2L|0〉

∆(−3) a†−1Ra
†
−2R|0〉 a†−1La

†
−2L|0〉

Φ(3) (a†+1R)
3|0〉 (a†+1L)

3|0〉
Φ(−3) (a†−1R)

3|0〉 (a†−1L)
3|0〉
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Table 4: The N = 4 torelon string levels which have zero longitudinal momentum. See
Table 2 for a description of the notation used. The N = 4 level is 105-fold degenerate.

N = 4: Σ+g (0)
′′ (a†−2Ra

†
+2L + a†+2Ra

†
−2L)|0〉

Σ+g (0)
′′ (a†+1Ra

†
−1Ra

†
+1La

†
−1L)|0〉

Σ+g (0)
′′ ((a†+1R)

2(a†−1L)
2 + (a†−1R)

2(a†+1L)
2)|0〉

Σ−u (0)
′ (a†−2Ra

†
+2L − a†+2Ra

†
−2L)|0〉

Σ−u (0)
′ ((a†+1R)

2(a†−1L)
2 − (a†−1R)2(a†+1L)2)|0〉

Πg(0) ((a†+1R)
2a†−2L − (a†−1R)2a†+2L)|0〉

Πg(0) ((a†−1L)
2a†+2R − (a†+1L)2a†−2R)|0〉

Πg(0) (a†+1Ra
†
+1La

†
−2L − a†−1Ra

†
−1La

†
+2L)|0〉

Πg(0) (a†+1Ra
†
+1La

†
−2R − a†−1Ra

†
−1La

†
+2R)|0〉

Πu(0) ((a†+1R)
2a†−2L + (a

†
−1R)

2a†+2L)|0〉
Πu(0) ((a†−1L)

2a†+2R + (a
†
+1L)

2a†−2R)|0〉
Πu(0) (a†+1Ra

†
+1La

†
−2L + a†−1Ra

†
−1La

†
+2L)|0〉

Πu(0) (a†+1Ra
†
+1La

†
−2R + a†−1Ra

†
−1La

†
+2R)|0〉

∆g(0)
′ (a†−1R(a

†
+1L)

2a†−1L + a†+1Ra
†
+1L(a

†
−1L)

2)|0〉
∆g(0)

′ a†+2Ra
†
−2R|0〉 a†+2La

†
−2L|0〉

∆g(0)
′ ((a†+1R)

2a†−1Ra
†
−1L + a†+1R(a

†
−1R)

2a†+1L)|0〉
∆u(0) ((a†+1R)

2a†−1Ra
†
−1L − a†+1R(a

†
−1R)

2a†+1L)|0〉
∆u(0) (a†−1R(a

†
+1L)

2a†−1L − a†+1Ra
†
+1L(a

†
−1L)

2)|0〉
Φg(0) ((a†−1L)

2a†+2L − (a†+1L)2a†−2L)|0〉
Φg(0) ((a†+1R)

2a†−2R − (a†−1R)2a†+2R)|0〉
Φu(0) ((a†−1L)

2a†+2L + (a
†
+1L)

2a†−2L)|0〉
Φu(0) ((a†+1R)

2a†−2R + (a
†
−1R)

2a†+2R)|0〉
Γg(0) (a†+1R)

2(a†−1R)
2|0〉 (a†+1L)

2(a†−1L)
2|0〉

13



Table 5: The N = 4 torelon string levels which have two quanta of longitudinal momentum.
See Table 2 for a description of the notation used. The N = 4 level is 105-fold degenerate.

N = 4: Σ+(2)′ (a†−1La
†
+3R + a†−1Ra

†
+3L)|0〉

Σ+(2)′ ((a†+1R)
2a†+1La

†
−1L + a†+1Ra

†
−1R(a

†
+1L)

2)|0〉
Σ+(−2)′ (a†+1Ra

†
−3L + a†+1La

†
−3R)|0〉

Σ+(−2)′ ((a†−1R)
2a†+1La

†
−1L + a†+1Ra

†
−1R(a

†
−1L)

2)|0〉
Σ−(2) (a†−1La

†
+3R − a†−1Ra

†
+3L)|0〉

Σ−(2) ((a†+1R)
2a†+1La

†
−1L − a†+1Ra

†
−1R(a

†
+1L)

2)|0〉
Σ−(−2) (a†+1Ra

†
−3L − a†+1La

†
−3R)|0〉

Σ−(−2) ((a†−1R)
2a†+1La

†
−1L − a†+1Ra

†
−1R(a

†
−1L)

2)|0〉
Π(2)′ a†+1Ra

†
−1Ra

†
+2L|0〉 a†+1La

†
−1La

†
+2R|0〉

Π(2)′ a†+1Ra
†
−1La

†
+2R|0〉 a†−1Ra

†
+1La

†
+2L|0〉

Π(2)′ a†−1Ra
†
+1La

†
+2R|0〉 a†+1Ra

†
−1La

†
+2L|0〉

Π(−2)′ a†+1Ra
†
−1Ra

†
−2L|0〉 a†+1La

†
−1La

†
−2R|0〉

Π(−2)′ a†+1Ra
†
−1La

†
−2R|0〉 a†−1Ra

†
+1La

†
−2L|0〉

Π(−2)′ a†−1Ra
†
+1La

†
−2R|0〉 a†+1Ra

†
−1La

†
−2L|0〉

∆(2)′ (a†+1R)
2a†−1Ra

†
+1L|0〉 a†+1R(a

†
+1L)

2a†−1L|0〉
∆(2)′ a†−1Ra

†
+3R|0〉 a†−1La

†
+3L|0〉

∆(2)′ (a†+1R)
3a†−1L|0〉 a†−1R(a

†
+1L)

3|0〉
∆(−2)′ a†+1R(a

†
−1R)

2a†−1L|0〉 a†−1Ra
†
+1L(a

†
−1L)

2|0〉
∆(−2)′ a†+1Ra

†
−3R|0〉 a†+1La

†
−3L|0〉

∆(−2)′ (a†−1R)
3a†+1L|0〉 a†+1R(a

†
−1L)

3|0〉
Φ(2) a†+1Ra

†
−1Ra

†
+2R|0〉 a†+1La

†
−1La

†
+2L|0〉

Φ(−2) a†+1Ra
†
−1Ra

†
−2R|0〉 a†+1La

†
−1La

†
−2L|0〉

Γ(2) (a†+1R)
3a†−1R|0〉 (a†+1L)

3a†−1L|0〉
Γ(−2) a†+1R(a

†
−1R)

3|0〉 a†+1L(a
†
−1L)

3|0〉
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Table 6: The N = 4 torelon string levels which have four quanta of longitudinal momentum.
See Table 2 for a description of the notation used. The N = 4 level is 105-fold degenerate.

N = 4: Σ+(4) a†+2Ra
†
+2L|0〉

Σ+(4) (a†+1Ra
†
+3L + a†+1La

†
+3R)|0〉

Σ+(4) (a†+1R)
2(a†+1L)

2|0〉
Σ+(−4) (a†−1R)

2(a†−1L)
2|0〉

Σ+(−4) (a†−1La
†
−3R + a†−1Ra

†
−3L)|0〉

Σ+(−4) a†−2Ra
†
−2L|0〉

Σ−(4) (a†+1Ra
†
+3L − a†+1La

†
+3R)|0〉

Σ−(−4) (a†−1La
†
−3R − a†−1Ra

†
−3L)|0〉

Π(4) (a†+1R)
2a†+2L|0〉 (a†+1L)

2a†+2R|0〉
Π(4) a†+4R|0〉 a†+4L|0〉
Π(4) a†+1Ra

†
+1La

†
+2R|0〉 a†+1Ra

†
+1La

†
+2L|0〉

Π(−4) a†−4R|0〉 a†−4L|0〉
Π(−4) (a†−1R)

2a†−2L|0〉 (a†−1L)
2a†−2R|0〉

Π(−4) a†−1Ra
†
−1La

†
−2R|0〉 a†−1Ra

†
−1La

†
−2L|0〉

∆(4) (a†+2R)
2|0〉 (a†+2L)

2|0〉
∆(4) (a†+1R)

3a†+1L|0〉 a†+1R(a
†
+1L)

3|0〉
∆(4) a†+1Ra

†
+3R|0〉 a†+1La

†
+3L|0〉

∆(−4) (a†−2R)
2|0〉 (a†−2L)

2|0〉
∆(−4) a†−1Ra

†
−3R|0〉 a†−1La

†
−3L|0〉

∆(−4) (a†−1R)
3a†−1L|0〉 a†−1R(a

†
−1L)

3|0〉
Φ(4) (a†+1R)

2a†+2R|0〉 (a†+1L)
2a†+2L|0〉

Φ(−4) (a†−1R)
2a†−2R|0〉 (a†−1L)

2a†−2L|0〉
Γ(4) (a†+1R)

4|0〉 (a†+1L)
4|0〉

Γ(−4) (a†−1R)
4|0〉 (a†−1L)

4|0〉
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