Static quark potential and its excitations
in 4-dimensional SU(3) gauge theory

Run A


RUN PARAMETERS

Improved anisotropic action
beta 3.0
input anisotropy a_s / a_t 3.0
input u_t 1.0000
input u_s 0.8410
Individual term couplings:
spatial plaquette 3.3318
temporal plaquette 16.9668
spatial 2x1 rectangle -0.2355
2s x 1t rectangle -1.4993
2t x 1s rectangle 0.0000

lattice size (18 x 18 x 24) x 54
scale setting a_s a_t sigma ???
inverse scale 1/(a_s a_t sigma) ???
anisotropy renormalization Z_xi ???

Configuration updating parameters:
number of bins 674
number of measurements per bin 50
number of updates between measurements 5
number of Cabibbo-Marinari sweeps per update 1
number of over-relaxation sweeps (all links) per update 5
number of over-relaxation sweeps (spatial links) per update 0
Link smearing parameters:
alpha (staple weight) 0.2200
number of levels 24
Thermal averaging of temporal links:
number of Cabibbo-Marinari hits 100

Correlator information:
Maximum time separation measured 16
Perpendicular spatial-translation increment 3
Parallel spatial-translation increment 6
Temporal-translation increment 6
Number of optimized operators retained 4
Optimized on time slices 3/ 0
Number of operators before fuzzing:
A1g 17
A1u 9
A2g 8
A2u 9
B1g 14
B1u 11
B2g 10
B2u 7
Eg 18
Eu 24



Remarks concerning effective mass plots:

Results below are obtained by fitting individual, but optimized, correlators to a sum of two exponentials. The fit results are indicated in the effective mass plots by horizontal lines. In the first set of raw results below, the solid circles shown with error bars in the plots are standard effective mass points associated with the optimized correlators. The open symbols correspond to principal effective mass values as defined by Eq. (5.18) in
Luscher and Wolff, Nucl.Phys.B339, 222 (1990)
such that the lowest N effective masses tend to the lowest N physical masses as the temporal separation becomes large. Note that the correlation functions themselves are used in the fitting, not the effective mass points which are included for illustrative purposes and as checks of the fitting results. In the second set of raw gap results below, all points with error bars correspond to principal effective mass points.

Entries below shown in red indicate energies lying higher than one glueball mass above the ground state; entries shown in amber indicate fits with quality factor Q<0.1.

In this run, the glueball mass in inverse temporal lattice spacings is approximately 0.345.



RAW RESULTS
(in terms of temporal lattice spacing)


R A1g A1g' A1g'' A1u A2g A2u B1g B1g'
(1,0,0) 0.147244(17) 0.55505(89) 0.5767(33) 0.6631(18) 0.6004(11) 0.49511(50) 0.59831(81) 0.7239(26)
(2,0,0) 0.224183(39) 0.55310(74) 0.6477(22) 0.6543(15) 0.5975(11) 0.49795(44) 0.58937(91) 0.7422(25)
(3,0,0) 0.268722(38) 0.55737(57) 0.6843(17) 0.6538(14) 0.60030(77) 0.50994(38) 0.58814(58) 0.7447(20)
(4,0,0) 0.303461(58) 0.56423(69) 0.7049(14) 0.6556(11) 0.60940(70) 0.52662(38) 0.59038(64) 0.7534(18)
(5,0,0) 0.334463(88) 0.57549(57) 0.7265(17) 0.6587(14) 0.61962(81) 0.54606(52) 0.59358(66) 0.7521(20)
(6,0,0) 0.36378(11) 0.58908(62) 0.7311(19) 0.6672(13) 0.63377(94) 0.56757(57) 0.60309(68) 0.7553(26)
(7,0,0) 0.39210(15) 0.60206(83) 0.7439(19) 0.6768(17) 0.6486(12) 0.58815(82) 0.61308(81) 0.7597(24)
(8,0,0) 0.41982(17) 0.61839(76) 0.7505(21) 0.6914(14) 0.6655(14) 0.61378(76) 0.62490(93) 0.7739(21)
(9,0,0) 0.44680(23) 0.6363(10) 0.7624(20) 0.7050(17) 0.6854(12) 0.63637(98) 0.64090(85) 0.7797(18)
(10,0,0) 0.47449(30) 0.6555(12) 0.7742(23) 0.7246(18) 0.7072(17) 0.6653(11) 0.65712(97) 0.7925(21)
(11,0,0) 0.50096(32) 0.6741(13) 0.7889(20) 0.7412(18) 0.7292(19) 0.6864(16) 0.6749(11) 0.8012(21)
(12,0,0) 0.52828(38) 0.6970(14) 0.8043(21) 0.7625(20) 0.7520(21) 0.7176(15) 0.6923(14) 0.8150(33)



R B1u B2g B2g' B2u Eg Eg' Eg'' Eu
(1,0,0) 0.6727(19) 0.5970(12) 0.7280(25) 0.6764(17) 0.56968(68) 0.59984(76) 0.7286(23) 0.48906(39)
(2,0,0) 0.6718(17) 0.5891(11) 0.7446(22) 0.6703(17) 0.57428(63) 0.59395(72) 0.7442(20) 0.48166(34)
(3,0,0) 0.6773(15) 0.58869(75) 0.7455(22) 0.6786(15) 0.58576(47) 0.59608(50) 0.7488(15) 0.48091(25)
(4,0,0) 0.6778(12) 0.59153(65) 0.7501(17) 0.6786(16) 0.59327(54) 0.60755(59) 0.7543(13) 0.48582(23)
(5,0,0) 0.6810(16) 0.59782(76) 0.7561(19) 0.6831(17) 0.59918(54) 0.62512(64) 0.7615(16) 0.49434(21)
(6,0,0) 0.6895(13) 0.60534(85) 0.7590(22) 0.6924(15) 0.60670(61) 0.64472(67) 0.7682(13) 0.50613(26)
(7,0,0) 0.6970(16) 0.6167(11) 0.7655(23) 0.6991(17) 0.61567(63) 0.66538(94) 0.7800(19) 0.52000(27)
(8,0,0) 0.7092(17) 0.63088(95) 0.7758(20) 0.7128(18) 0.62719(58) 0.6876(10) 0.7842(18) 0.53627(29)
(9,0,0) 0.7218(14) 0.6486(11) 0.7854(24) 0.7241(18) 0.63985(73) 0.7144(11) 0.8073(23) 0.55364(35)
(10,0,0) 0.7353(19) 0.6636(14) 0.7979(26) 0.7415(17) 0.65497(62) 0.7401(12) 0.8042(25) 0.57343(38)
(11,0,0) 0.7469(20) 0.6819(17) 0.8031(33) 0.7561(21) 0.67183(70) 0.7652(17) 0.8375(26) 0.59407(47)
(12,0,0) 0.7695(21) 0.7000(19) 0.8213(31) 0.7689(30) 0.68742(77) 0.7928(19) 0.8284(29) 0.61511(58)



R Eu' Eu'' Eu'''
(1,0,0) 0.6475(14) 0.6596(14) 0.6841(14)
(2,0,0) 0.6392(13) 0.6596(11) 0.6775(15)
(3,0,0) 0.64525(94) 0.6591(11) 0.6806(12)
(4,0,0) 0.65216(82) 0.66730(90) 0.6832(11)
(5,0,0) 0.66483(84) 0.67653(96) 0.6914(13)
(6,0,0) 0.67543(93) 0.6870(12) 0.6938(13)
(7,0,0) 0.6929(12) 0.6961(12) 0.7096(12)
(8,0,0) 0.7034(14) 0.7094(13) 0.7165(13)
(9,0,0) 0.7180(12) 0.7261(13) 0.7365(17)
(10,0,0) 0.7317(12) 0.7405(16) 0.7469(18)
(11,0,0) 0.7466(13) 0.7599(18) 0.7673(24)
(12,0,0) 0.7594(15) 0.7818(20) 0.7858(26)



RAW RESULTS PLOTS

Energies plotted against R
Energy gaps above A1g plotted against R
Energy gaps above A1g plotted against 1/R
Energy gaps above A1g compared to N Pi/R



TEXTUAL DATA FILES

Energies
Energy gaps above A1g