Gluonic excitationsin lattice QCD:
A brief survey
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Abstract. Our current knowledge about glueballs and hybrid mesons from lattice QCD simulations
is briefly reviewed.

INTRODUCTION

Hadronic states bound together by an excited gluon field, such as glueballs, hybrid
mesons, and hybrid baryons, are a potentially rich source of information concerning
the confining properties of QCD. Interest in such states has been recently sparked by
observations of resonances with exotic 1+ quantum numbers[1] at Brookhaven. Infact,
the proposed Hall D at Jefferson Lab will be dedicated to the search for hybrid mesons
and one of the goals of CLEO-c will be to identify glueballs and exotics. Although
our understanding of these states remains deplorable, recent lattice simulations have
shed some light on their nature. In thistalk, | summarize our current knowledge about
glueballs and heavy- and light-quark hybrid mesons from lattice QCD simulations.

GLUEBALLS

The glueball spectrum in the absence of virtual quark-antiquark pairs is now well
known[2] and is shown in Fig. 1. The use of spatially coarse, temporaly fine lattices
with improved actions and the application of variational techniques to moderately-large
matrices of correlations functions were crucial in obtaining this spectrum. Continuum
limit results for the lowest-lying scalar and tensor states are in good agreement with
recent previous calculationg] 3, 4] when expressed in terms of the hadronic scale rg, the
square root of the string tension /c, or in terms of each other as aratio of masses. Dis-
agreementsin specifying the masses of these statesin GeV arise solely from ambiguities
in setting the value of rg within the quenched approximation. The glueball spectrum can
be qualitatively understood in terms of the interpolating operators of minimal dimension
which can create glueball states[5] and can be reasonably well explained[6] in terms of
asimple constituent gluon (bag) model which approximates the gluon field using spher-
ical cavity Hartree modes with residual perturbative interactiong7, 8]. The challenge
now is to deduce precisely what the spectrum in Fig. 1 is telling us about the long-
wavelength properties of QCD. This spectrum provides an important testing ground for
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FIGURE 1. The mass spectrum of glueballsin the pure SU(3) gauge theory from Ref. [2]. The masses
are given in terms of the hadronic scaler g along the left vertical axis and in terms of GeV aong the right
vertical axis (assuming ry 1 = 410(20) MeV). The mass uncertainties indicated by the vertical extents of
the boxes do not include the uncertainty in setting r o. The locations of states whose interpretation requires
further study are indicated by the dashed hollow boxes.

models of confined gluons, such as center and Abelian dominance, instantons, soliton
knots, instantaneous Coul omb-gauge mechanisms, and so on.

Recently, the two lowest-lying scalar glueballs and the tensor glueball have been
studied[9] in U (N) for N = 2,3,4, and 5. Their masses have been shown to depend
linearly on 1/N?, and these masses in the limit N — < do not differ substantially from
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FIGURE 2. Continuum scalar, tensor, and excited scalar SJ (N) glueball masses expressed in units of
the string tension ¢ and plotted against 1/N2. Linear extrapolationsto N = - are shown in each case (see

Ref. [9]).
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FIGURE 3. Lattice spacing dependence and continuum limit of the glueball-quarkonium mixing energy
E(us) at the strange quark mass in the quenched approximation in terms of A% = 234.9(6.2) MeV set
using the (quenched) mass of the p meson. The continuum limit value of E(ps) is43(31) MeV. Thecircles

indicate results using lattices with spatial extent approximately 1.6 fm; the x indicates aresult in alarger
volume with spatial extent near 2.3 fm. (see Ref. [13]).

their valuesfor small N (see Fig. 2).

Glueball wavefunctions and sizes have been studied in the past, but much of the early
work contains uncontrolled systematic errors, most notably from discretization effects.
The scalar glueball is particularly susceptible to such errors for the Wilson gauge action
dueto the presence of acritical end point of aline of phasetransitions (not corresponding
to any physical transition found in QCD) in the fundamental-adjoint coupling plane.
As this critical point (which defines the continuum limit of a ¢* scalar field theory) is
neared, the coherence length in the scalar channel becomes large, which means that the
mass gap in this channel becomes small; glueballs in other channels seem to be affected
very little. Results in which the scalar glueball was found to be significantly smaller
than the tensor were most likely due to contamination of the scalar glueball from the
non-QCD critical point. In Ref. [10], an improved gauge action designed to avoid the
spurious critical point found that the scalar and tensor glueballs were comparablein size
and of typical hadronic dimensions. Operator overlaps obtained from the variational
optimizations carried out in Ref. [2], which aso used an improved gauge action, concur
with such a conclusion.

Vacuum-to-glueball transition amplitudes for operators such as (G|TrE?|0) and
(G|TrB?|0) in the 0** sector, (G|TrE - B|0) in the 0~ sector, and (G| TrE;E;|0) in the
27+ sector, have also been studied in the past[11]. Efforts to revisit these calculations
using improved actions and operators with reduced discretization errors is ongoing.

A valiant effort to study the decay of the scalar glueball into two pseudoscalar mesons
was made in Ref. [12]. A dlight mass dependence of the coupling was found, and a total
width of 108(29) MeV for decays to two pseudoscalars was obtained in the quenched
approximation. However, these results were obtained with the Wilson gauge action at
B = 5.7, an unfortunate choice since pollution of the scalar glueball from the non-
QCD critical point issignificant (for example, the mass differs from its continuum limit
value by at least 20% and the mixing energy of the glueball with quarkonium differs
dramatically from its continuum limit value as discussed below). These large systematic
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FIGURE 4. Thescalar glueball mass with two flavors of virtual quark-antiquark pairs included against
the lattice spacing a in terms of the hadronic scale rg, courtesy of Ref. [18]. Results are shown for three
different discretizations of the Dirac action: staggered (HEMCGC, from Ref. [14]), Wilson (SESAM from
Ref. [15]), and clover (UKQCD from Refs. [16, 17]). The quarks are all heavier than athird of the strange
quark mass. Quenched results are shown for comparison.

uncertainties and the use of the quenched approximation should be kept in mind when
considering the value of the width given above.

Mixing of the scalar glueball with quarkonium has been studied in the quenched
approximation in Ref. [13]. Several lattice spacings were used to facilitate control of
discretization errors. Good control of systematic errors was demonstrated, although
extrapolations in the quark mass to Y, (the u and d quark mass scale) might benefit
from the use of chiral perturbation theory. The results for the mixing energy are shown
in Fig. 3. Note that the continuum limit is essentially consistent with zero mixing.
Again, remember that the inclusion of quark loops is incomplete when assessing this
conclusion. The large variation of this mixing energy with the lattice spacing is most
likely dueto the use of the simple Wilson gauge action. The rightmost point corresponds
to B = 5.7 which illustrates the very large lattice artifacts at this spacing. This mixing
calculation could benefit enormously from the use of an improved action and anisotropic
lattices.

Incorporation of virtual quark-antiquark pairsin calculating the glueball/quarkonium
spectrum is a daunting task. The fermion determinant must be included in the Monte
Carlo updating, dramatically increasing the computational costs. Mixings with two me-
son states require all-to-all propagators, further adding to the cost and the stochastic
uncertainties. Instabilities of the higher lying states must be properly taken into account
(such aswith finite volumetechniques). Extrapolationsto realistically light quark masses
must be done carefully, taking decay thresholdsinto account and possibly requiring sim-
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FIGUREDS. (@) Static potentialsand radial probability densities against quark-antiquark separation r for
o 1 — 450 MeV. (b) Spin-averaged bb spectrum in the LBO approximation (light quarks neglected). Solid
lines indicate experimental measurements. Short dashed lines indicate the S and P state masses obtained
using the Zg potential with My, = 4.58 GeV. Dashed-dotted lines indicate the hybrid quarkonium states
obtained fromthe I, (L =1,2,3) and Z; (L = 0,1,2) potentials. These results are from Ref. [22].

ulations to be carried out at quark masses lighter than currently feasible. Nevertheless,
a few groups[14, 15, 16, 17] have begun glueball/meson simulations with two flavors
of sea quarks, and the results for the scalar glueball mass are shown in Fig. 4. The sta-
tus of such calculations has recently been reviewed in Ref. [18]. The quarks are till
heavier than mg/3, where mg is the mass of the strange quark. The glueball mass tends
to decrease as the light quark mass is reduced, but it increases as the lattice spacing is
reduced, making it completely unclear what the end result will be in the continuum limit
for realistically light quark masses.

HEAVY-QUARK HYBRID MESONS

One expects that a heavy-quark meson can be treated similar to a diatomic molecule:
the slow valence heavy quarks correspond to the nuclei and the fast gluon and light
sea quark fields correspond to the electrons]19]. First, the quark Q and antiquark Q are
treated as static color sources and the energy levels of the fast degrees of freedom are
determined as a function of the QQ separation r, each such energy level defining an
adiabatic surface or potential. The motion of the slow heavy quarksisthen described in
the leading Born-Oppenheimer (L BO) approximation by the Schrédinger equation using
each of these potentials. Conventional quarkoniaare based on the lowest-lying potential;
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FIGURE 6. Simulation results from Ref. [22] for the heavy quarkonium level splittings (intermsof r g
and with respect to the 1S state) against the lattice spacing as. Results from Ref. [25] using an NRQCD
action with higher-order corrections are shown as open boxes and A. The horizontal lines show the LBO
predictions. Agreement of these splittings within 10% validates the Born-Oppenheimer approximation.

hybrid quarkonium states emerge from the excited potentials.

The spectrum of the fast gluon field in the presence of a static quark-antiquark pair
has been determined in lattice studies[ 20, 21]. The three lowest-lying levelsare shownin
Fig. 5. Due to computational limitations, sea quark effects have been neglected in these
calculations; their expected impact on the hybrid meson spectrum will be discussed
below. The levels in Fig. 5 are labeled by the magnitude A of the projection of the
total angular momentum Jg of the gluon field onto the molecular axis, and by n = £1,
the symmetry under the charge conjugation combined with spatial inversion about the
midpoint between the Q and Q. States with A = 0,1,2,... are denoted by X, IT,A, ...,
respectively. States which are even (odd) under the above-mentioned CP operation are
denoted by the subscripts g (u). An additional + superscript for the X states refers to
even or odd symmetry under a reflection in a plane containing the molecular axis. The
potentials are cal culated in terms of the hadronic scale parameter ro; inFig. 5,1y 1— 450
MeV has been assumed.

The LBO spectrum[22] of conventional bb and hybrid bgb states are shown in
Fig. 5. Below the BB threshold, the LBO results are in very good agreement with the
spin-averaged experimental measurements of bottomonium states. Above the threshold,
agreement with experiment islost, suggesting significant corrections either from mixing
and other higher-order effects or (more likely) from light sea quark effects. Note from
theradial probability densities shownin Fig. 5 that the size of the hybrid stateislargein
comparison with the conventional 1Sand 1P states.

The validity of such asimple physical picture relies on the smallness of higher-order
spin, relativistic, and retardation effects and mixings between states based on different
adiabatic surfaces. The importance of retardation and leading-order mixings between



states based on different adiabatic potentials can be tested by comparing the LBO level
splittings with those determined from meson simulations using a leading-order non-
relativistic (NRQCD) heavy-quark action. Such atest was carried out in Ref. [22]. The
NRQCD action included only a covariant temporal derivative and the leading kinetic
energy operator (with two other operators to remove lattice spacing errors). The only
difference between the leading Born-Oppenheimer Hamiltonian and the lowest-order
NRQCD Hamiltonian was the p-A coupling between the quark color charge in motion
and the gluon field. The level splittings (in terms of rg and with respect to the 1S state)
of the conventional 2Sand 1P states and four hybrid states were compared (see Fig. 6)
and found to agree within 10%, strongly supporting the validity of the leading Born-
Oppenheimer picture.

The question of whether or not quark spin interactions spoil the validity of the Born-
Oppenheimer picture for heavy-quark hybrids has been addressed in Ref. [23]. Simula-
tions of several hybrid mesons using an NRQCD action including the spin interaction
cg6-B/2My, and neglecting light sea quark effects were carried out; the introduction of
the heavy-quark spin was shown to lead to significant level shifts (of order 100 MeV
or so) but the authors of Ref. [23] argue that these splittings do not signal a breakdown
of the Born-Oppenheimer picture. First, they claim that no significant mixing of their
non-exotic 0~ ", 17—, and 2~ hybrid meson operators with conventional states was
observed; unfortunately, this claim is not convincing since a correlation matrix analysis
was not used. Secondly, the authors argue that cal culations using the bag model support
their suggestion. These facts are not conclusive evidence that heavy-quark spin effects
do not spoil the Born-Oppenheimer picture, but they are highly suggestive. Further evi-
dence to support the Born-Oppenheimer picture has recently emerged in Ref. [24]. The
NRQCD simulations carried out in thiswork examined the mixing of the Y with ahybrid
and found a very small probability admixture of hybrid in the Y given by 0.0035(1)c3
where ¢ ~ 1.5 3 is expected.

The dense spectrum of hybrid states shown in Fig. 5 neglects the effects of light sea
quark-antiquark pairs. In order to include these effectsin the LBO, the adiabatic poten-
tials must be determined fully incorporating the light quark loops. Such computations
using lattice simulations are very challenging, but good progress is being made. For
separations below 1 fm, the Zg+ and I, potentials change very little[ 15] upon inclusion
of the sea quarks (see Fig. 7), suggesting that a few of the lowest-lying hybrid states
may exist as well-defined resonances. However, for QQ separations greater than 1 fm,
the adiabatic surfaces change dramatically, as shown in Fig. 8 from Ref. [26]. Instead
of increasing indefinitely, the static potential abruptly levels off at a separation of 1 fm
when the static quark-antiquark pair, joined by flux tube, undergoes fission into two sep-
arate Qq color singlets, where g is alight quark. Clearly, such potentials cannot support
the plethora of conventional and hybrid states shown in Fig. 5; the formation of bound
states and resonances substantially extending over 1 fm seems unlikely. Whether or not
the light sea quark-antiquark pairs spoil the Born-Oppenheimer picture is currently un-
known. Future unquenched simulations should help to answer this question, but it is
not unreasonable to speculate that the simple physical picture provided by the Born-
Oppenheimer expansion for both the low-lying conventional and hybrid heavy-quark
mesonswill survive the introduction of the light sea quark effects. Note that the discrep-
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FIGURE 7. Ground Zg and first-excited I1, static quark potentials without sea quarks (sguares,
guenched) and with two flavors of sea quarks, slightly lighter than the strange quark (circles, k = 0.1575).

Results are given in terms of the scale ro ~ 0.5 fm, and the lattice spacing is a ~ 0.08 fm. Note that mg
and mpg are the masses of a scalar and pseudoscalar meson, respectively, consisting of alight quark and a
static antiquark. These results are from Ref. [15].
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FIGURE 8. Evidencefor “string breaking” at quark-antiquark separations R~ 1 fm. E ss is the energy
of two Swave static-light mesons (the light quark bound in an S'waveto the fixed static antiquark), E s is
the energy of an S'wave and a P-wave static-light meson, and E ¢ isthe energy of a static quark-antiquark
pair connected by a gluonic flux tube. The distance of separation R refers to the distance between the
static quark-antiquark pair. All quantities are measured in terms of the lattice spacing a ~ 0.16 fm. Two
flavors of light sea quarks are present with masses such that m;/m, ~ 0.36. The dashed and solid lines
give the asymptotic values 2ams and a(mp + mg), where ms and mp are the masses of individual S'wave
and P-wave static-light mesons, respectively. Mixing between the flux tube and meson-meson channels
was found to be very weak. Results are from Ref. [26].



TABLE 1. Recent results for the light quark and charmonium 1~ hybrid meson masses.
Method abbreviations: W = Wilson fermion action; SW = improved clover fermion action; NR
= nonrelativistic heavy quark action. N; is the number of dynamical light quark flavors used.

Light quark 1-* Charmonium 1~ — 1S
Ref. & Method Ni M (GeV) Ref. & Method AM (GeV)
UKQCD97[27] SW 0 1.87(20) MILC 97[28] W 1.34(8)(20)
MILCO7[28] W 0  1.97(9)(30) MILC 99[29] SW  1.22(15)
MILC 99[29] SW 0 211(10) CP-PACS99[31] NR  1.323(13)
Lasch99[30] W 2  1.9(2) JKM 99[27] LBO 1.19

ancies of the spin-averaged LBO predictions with experiment above the BB threshold
seen in Fig. 5 most likely arise from the neglect of light sea quark-antiquark pairs.

LIGHT-QUARK HYBRID MESONS

A summary of recent light-quark and charmonium 1~* hybrid mass calculations is
presented in Table 1. With the exception of Ref. [30], all results neglect light sea quark
loops. The introduction of two flavors of dynamical quarks in Ref. [30] yielded little
change to the hybrid mass, but this finding should not be considered definitive due
to uncontrolled systematics (unphysically large quark masses, inadequate treatment of
resonance propertiesin finite volume, etc.). All estimates of the light quark hybrid mass
are near 2.0 GeV, well above the experimental candidates found in the range 1.4-1.6
GeV. Perhaps sea quark effects will resolve this discrepancy, or perhaps the observed
states are not hybrids. Some authors have suggested that they may be four quark qqqq
states. Clearly, thereis still much to be learned about these exotic QCD resonances.

CONCLUSION AND OUTLOOK

Our current understanding of hadronic states containing excited glue is poor, but recent
lattice simulations have shed some light on their properties. The glueball spectrum in
the pure gauge theory is now well known, and pioneering studies of the mixings of
the scalar glueball with scalar quarkonia suggests that these mixings may actually be
small. The validity of a Born-Oppenheimer treatment for heavy-quark mesons, both
conventional and hybrid, has been verified at leading order in the absence of light sea
quark effects, and quark spin interactions do not seem to spoil this. Progressinincluding
thelight sea quarksisalso being made, and it seemslikely that a handful of heavy-quark
hybrid states might survive their inclusion. Of course, much more work is needed. The
inner structure of glueballs and flux tubes will be probed. Future lattice simulations
should provide insight into hybrid meson production and decay mechanisms and the
spectrum and nature of hybrid baryons; virtually nothing is known about either of these
topics. Glueballs, hybrid mesons, and hybrid baryons, remain a potentially rich source
of information (and perhaps surprises) about the confining properties of QCD.
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