Recent highlights with baryons from lattice QCD

Colin Morningstar
Carnegie Mellon University
12th Int. Workshop on the Physics of Excited Nucleons Bonn, Campus Poppelsdorf

June 12, 2019

Overview

- recent highlights involving baryons in lattice QCD
- proton mass decomposition
- nucleon spin decomposition
- percent level determination of nucleon axial coupling
- proton and neutron electromagnetic form factors
- parton distribution function
- scattering amplitudes
- baryon-baryon interactions with HAL QCD method
- H-dibaryon warm up
- key progress
- achieving much better precision with disconnected diagrams
- ability to include multi-hadron operators
- more and more studies being done at physical point

Temporal correlations from path integrals

- stationary-state energies from $N \times N$ Hermitian correlation matrix

$$
C_{i j}(t)=\langle 0| O_{i}\left(t+t_{0}\right) \bar{O}_{j}\left(t_{0}\right)|0\rangle
$$

- judiciously designed operators \bar{O}_{j} create states of interest

$$
O_{j}(t)=O_{j}[\bar{\psi}(t), \psi(t), U(t)]
$$

- correlators from path integrals over quark $\psi, \bar{\psi}$ and gluon U fields

$$
C_{i j}(t)=\frac{\int \mathcal{D}(\bar{\psi}, \psi, U) O_{i}\left(t+t_{0}\right) \bar{O}_{j}\left(t_{0}\right) \exp (-S[\bar{\psi}, \psi, U])}{\int \mathcal{D}(\bar{\psi}, \psi, U) \exp (-S[\bar{\psi}, \psi, U])}
$$

- involves the action in imaginary time

$$
S[\bar{\psi}, \psi, U]=\bar{\psi} K[U] \psi+S_{G}[U]
$$

- $K[U]$ is fermion Dirac matrix
- $S_{G}[U]$ is gluon action

Integrating the quark fields

- integrals over Grassmann-valued quark fields done exactly
- meson-to-meson example:

$$
\begin{aligned}
& \int \mathcal{D}(\bar{\psi}, \psi) \psi_{a} \psi_{b} \bar{\psi}_{c} \bar{\psi}_{d} \exp (-\bar{\psi} K \psi) \\
= & \left(K_{a d}^{-1} K_{b c}^{-1}-K_{a c}^{-1} K_{b d}^{-1}\right) \operatorname{det} K .
\end{aligned}
$$

- baryon-to-baryon example:

$$
\begin{aligned}
& \int \mathcal{D}(\bar{\psi}, \psi) \psi_{a_{1}} \psi_{a_{2}} \psi_{a_{3}} \bar{\psi}_{b_{1}} \bar{\psi}_{b_{2}} \bar{\psi}_{b_{3}} \exp (-\bar{\psi} K \psi) \\
= & \left(-K_{a_{1} b_{1}}^{-1} K_{a_{2} b_{2}}^{-1} K_{a_{3} b_{3}}^{-1}+K_{a_{1} b_{1}}^{-1} K_{a_{2} b_{3}}^{-1} K_{a_{3} b_{2}}^{-1}+K_{a_{1} b_{2}}^{-1} K_{a_{2} b_{1}}^{-1} K_{a_{3} b_{3}}^{-1}\right. \\
- & \left.K_{a_{1} b_{2}}^{-1} K_{a_{2} b_{3}}^{-1} K_{a_{3} b_{1}}^{-1}-K_{a_{1} b_{3}}^{-1} K_{a_{2} b_{1}}^{-1} K_{a_{3} b_{2}}^{-1}+K_{a_{1} b_{3}}^{-1} K_{a_{2} b_{2}}^{-1} K_{a_{3} b_{1}}^{-1}\right) \operatorname{det} K
\end{aligned}
$$

Monte Carlo integration

- correlators have form

$$
C_{i j}(t)=\frac{\int \mathcal{D} U \operatorname{det} K[U] K^{-1}[U] \cdots K^{-1}[U] \exp \left(-S_{G}[U]\right)}{\int \mathcal{D} U \operatorname{det} K[U] \exp \left(-S_{G}[U]\right)}
$$

- resort to Monte Carlo method to integrate over gluon fields
- use Markov chain to generate sequence of gauge-field configurations

$$
U_{1}, U_{2}, \ldots, U_{N}
$$

- most computationally demanding parts:
- including $\operatorname{det} K$ in updating
- evaluating K^{-1} in numerator

Lattice QCD

- Monte Carlo method using computers requires formulating integral on space-time lattice (usually hypercubic)
- quarks reside on sites, gluons reside on links between sites
- integrate over gluon fields on each link
- Metropolis method with global updating proposal
- RHMC: solve Hamilton equations with Gaussian momenta
- $\operatorname{det} K$ estimates with integral over pseudo-fermion fields
- systematic errors
- discretization

- finite volume
- unphysical quark masses

Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_{j}(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

$$
\widetilde{\psi}_{a \alpha}(x)=\mathcal{S}_{a b}(x, y) \psi_{b \alpha}(y), \quad \mathcal{S}=\Theta\left(\sigma_{s}^{2}+\widetilde{\Delta}\right)
$$

- 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$
q_{a \alpha j}^{A}=D^{(j)} \widetilde{\psi}_{a \alpha}^{(A)}, \quad \bar{q}_{a \alpha j}^{A}=\widetilde{\bar{\psi}}_{a \alpha}^{(A)} \gamma_{4} D^{(j) \dagger}
$$

- displacement $D^{(j)}$ is product of smeared links:

$$
D^{(j)}\left(x, x^{\prime}\right)=\widetilde{U}_{j_{1}}(x) \widetilde{U}_{j_{2}}\left(x+d_{2}\right) \widetilde{U}_{j_{3}}\left(x+d_{3}\right) \ldots \widetilde{U}_{j_{p}}\left(x+d_{p}\right) \delta_{x^{\prime}, x+d_{p+1}}
$$

- to good approximation, LapH smearing operator is

$$
\mathcal{S}=V_{s} V_{s}^{\dagger}
$$

- columns of matrix V_{s} are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

- quark displacements build up orbital, radial structure

Meson configurations

Baryon configurations

- group-theory projections onto irreps of lattice symmetry group

$$
\bar{M}_{l}(t)=c_{\alpha \beta}^{(l) *} \bar{\Phi}_{\alpha \beta}^{A B}(t) \quad \bar{B}_{l}(t)=c_{\alpha \beta \gamma}^{(l) *} \bar{\Phi}_{\alpha \beta \gamma}^{A B C}(t)
$$

- definite momentum p, irreps of little group of p

Stable hadron mass success

- low-lying mass spectrum successfully determined
- level of precision: isospin breaking now relevant

[A. Kronfeld, Ann. Rev. N.P. Sci 62, 265 (2012)]
- challenge: scattering amplitudes and resonances

Matrix elements from lattice QCD

- standard method for matrix element calculations requires 3-point functions

- excited-state contamination removed by taking $t_{\text {sep }}, t_{\text {ins }}$, and $t_{\text {sep }}-t_{\text {ins }}$ large
- in practice, difficult to achieve due to signal-to-noise
- current requires renormalization for comparison to MS
- nonperturbative/perturbative methods

Proton mass decomposition

- recent determination of mass decomposition of proton
[Y.Yang, J.Liang, Y.Bi, Y.Chen, T.Draper, K.F.Liu, Z.Liu, PRL121, 212001 (2018)]
- rest mass M of proton given by [Ji PRL74, 1071 (1995)]

$$
M=-\left\langle T_{44}\right\rangle=\left\langle H_{m}\right\rangle+\left\langle H_{E}\right\rangle(\mu)+\left\langle H_{g}\right\rangle(\mu)+\frac{1}{4}\left\langle H_{a}\right\rangle,
$$

- $\left\langle T_{\mu \nu}\right\rangle$ expectation value of energy momentum tensor in hadron
- quark condensate $H_{m}=\sum_{u, d, s \ldots} \int d^{3} x m \bar{\psi} \psi$
- quark energy $H_{E}=\sum_{u, d, s \ldots} \int d^{3} x \bar{\psi}(\vec{D} \cdot \vec{\gamma}) \psi$
- glue field energy $H_{g}=\int d^{3} x \frac{1}{2}\left(B^{2}-E^{2}\right)$
- anomaly term $H_{a}=\sum_{u, d, s \ldots} \int d^{3} x \gamma_{m} m \bar{\psi} \psi-\int d^{3} x \frac{\beta(g)}{g}\left(E^{2}+B^{2}\right)$
- $\left\langle H_{m}\right\rangle,\left\langle H_{a}\right\rangle,\left\langle H_{E}+H_{g}\right\rangle$ scale and scheme independent
- obtain from renormalized quark and gluon momentum fractions $\left\langle H_{g}\right\rangle=\frac{3}{4} M\langle x\rangle_{g} \quad$ and $\quad\left\langle H_{E}\right\rangle=\frac{3}{4} M\langle x\rangle_{q}-\frac{3}{4}\left\langle H_{m}\right\rangle$
- anomaly term from $\left\langle H_{a}\right\rangle=M-\left\langle H_{m}\right\rangle$

Proton mass decomposition (con't)

- determined mass M from two-point correlator
- used previous determination of $\left\langle H_{m}\right\rangle$ (2016)
- momentum fractions from

$$
\begin{aligned}
\langle x\rangle_{q, g} & \equiv-\frac{\langle N| \frac{4}{3} \bar{T}_{44}^{q, g}|N\rangle}{M\langle N \mid N\rangle} \\
\bar{T}_{44}^{q} & =\int d^{3} x \bar{\psi}(x) \frac{1}{2}\left(\gamma_{4} \overleftrightarrow{D}_{4}-\frac{1}{4} \sum_{i=0,1,2,3} \gamma_{i} \overleftrightarrow{D}_{i}\right) \psi(x) \\
\bar{T}_{44}^{g} & =\int d^{3} x \frac{1}{2}\left(E(x)^{2}-B(x)^{2}\right)
\end{aligned}
$$

- renormalization

$$
\begin{aligned}
\langle x\rangle_{u, d, s}^{R} & =Z_{Q Q}^{\overline{\mathrm{MS}}}(\mu)\langle x\rangle_{u, d, s}+\delta Z_{Q Q}^{\overline{\mathrm{MS}}}(\mu) \sum_{q=u, d, s}\langle x\rangle_{q}+Z_{Q G}^{\overline{\mathrm{MS}}}(\mu)\langle x\rangle_{g} \\
\langle x\rangle_{g}^{R} & =Z_{G Q}^{\overline{\mathrm{MS}}}(\mu) \sum_{q=u, d, s}\langle x\rangle_{q}+Z_{G G}^{\overline{\mathrm{MS}}}\langle x\rangle_{g},
\end{aligned}
$$

Proton mass decomposition (con't)

- obtained results on 4 ensembles ($N_{f}=2+1$ DWF action, overlap valence)
- disconnected insertions: cluster-decomposition error reduction, all time slices looped over
- extrapolate with global fit including finite volume, spacing corrections, chiral behavior

- quark energy 32(4)(4)\%
- glue energy $36(5)(4) \%$
- quark condensate $9(2)(1) \%$
- trace anomaly 23(1)(1)\%
- with $N_{f}=2+1$

Nucleon spin decomposition

- spin decomposition of nucleon
[C.Alexandrou, M.Constantinou, K.Hadjiyiannakou, K.Jansen, C.Kallidonis, G.Koutsou, A.V.Avilés-Casco, C.Wiese, PRL 119, 142002 (2017)]
- from Ji sum rule [Ji, PRL78, 610 (1997)]

$$
J_{N}=\sum_{q=u, d, s, c \cdots}\left(\frac{1}{2} \Delta \Sigma_{q}+L_{q}\right)+J_{g}
$$

- obtain from nucleon matrix elements $\left(Q=p^{\prime}-p, \quad P=\frac{1}{2}\left(p^{\prime}+p\right)\right)$

$$
\begin{aligned}
\left\langle N\left(p, s^{\prime}\right)\right| \bar{q} \gamma_{\mu} \gamma_{5} q|N(p, s)\rangle & =\bar{u}_{N}\left(p, s^{\prime}\right)\left[g_{A}^{q} \gamma^{\mu} \gamma_{5}\right] u_{N}(p, s) \\
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \bar{q} \gamma^{\{\mu \overleftrightarrow{D}}{ }^{\nu\}} q|N(p, s)\rangle & =\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right) \Lambda_{\mu \nu}^{q}\left(Q^{2}\right) u_{N}(p, s) \\
\Lambda_{q(g)}^{\mu \nu}\left(Q^{2}\right)=A_{20}^{q(g)}\left(Q^{2}\right) \gamma^{\{\mu} P^{\nu\}} & +B_{20}^{q(g)}\left(Q^{2}\right) \frac{\sigma^{\{\mu \alpha} q_{\alpha} P^{\nu\}}}{2 m} \\
& +C_{20}^{q(g)}\left(Q^{2}\right) \frac{1}{m} Q^{\{\mu} Q^{\nu\}}
\end{aligned}
$$

Nucleon spin decomposition (con't)

- quark(gluon) total angular momentum and quark momentum fraction and spin from

$$
\begin{aligned}
J_{q(g)} & =\frac{1}{2}\left[A_{20}^{q(g)}(0)+B_{20}^{q(g)}(0)\right] \\
\langle x\rangle_{q} & =A_{20}^{q}(0), \quad \Delta \Sigma_{q}=g_{A}^{q}
\end{aligned}
$$

- gluon momentum fraction from $\mathcal{O}_{\mu \nu}^{g}=2 \operatorname{Tr}\left[G_{\mu \sigma} G_{\nu \sigma}\right]$ with $\overline{\mathcal{O}}^{g} \equiv \mathcal{O}_{44}^{g}-\frac{1}{3} \mathcal{O}_{j j}^{g}$

$$
\left\langle N\left(p, s^{\prime}\right)\right| \overline{\mathcal{O}}^{g}|N(p, s)\rangle=\left(-4 E_{N}^{2}-\frac{2}{3} \vec{p}^{2}\right)\langle x\rangle_{g},
$$

- one ensemble at physical point $48^{3} \times 96$ twisted mass clover-improved $a=0.0939$ (3) fm from nucleon mass
- u, d disconnected diagrams by exact deflation + one-end-trick
- s disconnected diagrams by truncated solver method
- renormalization factors determined nonperturbatively

Nucleon spin decomposition (con't)

- nucleon spin (left) and momentum (right) decompositions
- striped segments \rightarrow valence; solid \rightarrow sea quark and gluon

Nucleon axial coupling

- recent percent level determination of g_{A}

- use of Feynman-Hellman method

$$
g_{A}=1.2711(103)^{s}(39)^{\chi}(15)^{a}(19)^{V}(04)^{I}(55)^{M}
$$

- errors: statistical,chiral,spacing,volume,isospin,model selection

Nucleon axial coupling (con't)

- comparison to other determinations

Proton/neutron electromagnetic form factors

- recent study of proton and neutron electromagnetic form factors [C.Alexandrou, S.Bacchio, M.Constantinou, J.Finkenrath, K.Hadjiyiannakou, K.Jansen, G.Koutsou, A.V.Aviles Casco, arXiv:1812.10311]
- one ensemble $N_{f}=2+1+1$ twisted mass with $m_{\pi}=130 \mathrm{MeV}$
- two ensembles $N_{f}=2$ twisted mass with $m_{\pi}=130 \mathrm{MeV}$ and two volumes $L m_{\pi} \sim 3$ and $L m_{\pi} \sim 4$
- unprecedented precision of disconnected diagram contributions
- hierarchical probing
- low mode deflation
- large numbers of smeared point sources to reduce gauge noise
- disconnected diagrams have nonnegligible effects
- thorough investigation of excited-state contamination
- further study of finite-volume effects at low Q^{2} needed

Proton/neutron electromagnetic form factors (con't)

- comparison of $N_{f}=2+1+1$ results to experiment

Proton/neutron electromagnetic form factors (con't)

- comparing $N_{f}=2+1+1$ and $N_{f}=2$ (hollow symbols ignore disconnected)

Light-cone parton distribution function

- first determination of unpolarized helicity parton distribution function at the physical point with nonperturbative renormalization and large momenta treated [C.Alexandrou, K.Cichy, M.Constantinou, K.Jansen, A.Scapellato, F.Steffens, PRL 121, 112001 (2018)]
- extracting PDFs from their moments impractical
- used method proposed by Ji [X.Ji, PRL110, 262002 (2013)] with subsequent refinements
- compute spatial correlations between boosted nucleon states
- Fourier transforms produce quasi-PDFs
- take infinite-momentum limit via a refined matching procedure
- target mass corrections
- renormalization scheme for Wilson line operators
- one $48^{3} \times 96$ twisted mass $N_{f}=2$ ensemble $a=0.0938(3)(2) \mathrm{fm}$ and $m_{\pi} L=2.98(1)$ at physical point

Light-cone parton distribution function (con't)

- unpolarized PDFs for three momenta compared to some phenomenological curves

Light-cone parton distribution function (con't)

- polarized PDFs for three momenta compared to some phenomenological curves

Excited states from correlation matrices

- in finite volume, energies are discrete (neglect wrap-around)

$$
C_{i j}(t)=\sum_{n} Z_{i}^{(n)} Z_{j}^{(n) *} e^{-E_{n} t}, \quad Z_{j}^{(n)}=\langle 0| O_{j}|n\rangle
$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

$$
\widetilde{C}(t)=U^{\dagger} C\left(\tau_{0}\right)^{-1 / 2} C(t) C\left(\tau_{0}\right)^{-1 / 2} U
$$

- columns of U are eigenvectors of $C\left(\tau_{0}\right)^{-1 / 2} C\left(\tau_{D}\right) C\left(\tau_{0}\right)^{-1 / 2}$
- choose τ_{0} and τ_{D} large enough so $\widetilde{C}(t)$ diagonal for $t>\tau_{D}$
- effective energies $\widetilde{m}_{\alpha}^{\text {eff }}(t)=\frac{1}{\Delta t} \ln \left(\frac{\widetilde{C}_{\alpha \alpha}(t)}{\widetilde{C}_{\alpha \alpha}(t+\Delta t)}\right)$
tend to N lowest-lying stationary state energies in a channel
- 2-exponential fits to $\widetilde{C}_{\alpha \alpha}(t)$ yield energies E_{α} and overlaps $Z_{j}^{(n)}$

Two-hadron operators

- our approach: superposition of products of single-hadron operators of definite momenta

$$
c_{p_{a} \lambda_{a} ; \boldsymbol{p}_{b} \lambda_{b}}^{l_{a} I_{I_{b}}} B_{p_{a} \Lambda_{a} \lambda_{a} i_{a}}^{I_{a} I_{a} S_{a}} B_{p_{b} \Lambda_{b} \lambda_{b} i_{b}}^{l_{l_{3} S}}
$$

- fixed total momentum $\boldsymbol{p}=\boldsymbol{p}_{a}+\boldsymbol{p}_{b}$, fixed $\Lambda_{a}, i_{a}, \Lambda_{b}, i_{b}$
- group-theory projections onto little group of p and isospin irreps
- crucial to know and fix all phases of single-hadron operators for all momenta
- each class, choose reference direction $p_{\text {ref }}$
- each \boldsymbol{p}, select one reference rotation $R_{\text {ref }}^{p}$ that transforms $\boldsymbol{p}_{\text {ref }}$ into p
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Quark propagation

- quark propagator is inverse K^{-1} of Dirac matrix
- rows/columns involve lattice site, spin, color
- very large $N_{\text {tot }} \times N_{\text {tot }}$ matrix for each flavor

$$
N_{\text {tot }}=N_{\text {site }} N_{\text {spin }} N_{\text {color }}
$$

- for $64^{3} \times 128$ lattice, $N_{\text {tot }} \sim 403$ million
- not feasible to compute (or store) all elements of K^{-1}
- solve linear systems $K x=y$ for source vectors y
- translation invariance can drastically reduce number of source vectors y needed
- multi-hadron operators and isoscalar mesons require large number of source vectors y

Quark line diagrams

- temporal correlations involving our two-hadron operators need
- slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
- sink-to-sink quark lines

- isoscalar mesons also require sink-to-sink quark lines

- solution: the stochastic LapH method! [CM et al., PRD83, 114505 (2011)]

Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
- not all directions equivalent \Rightarrow using $J^{P C}$ is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
- zero momentum states: little group O_{h}

$$
A_{1 a}, A_{2 g a}, E_{a}, T_{1 a}, T_{2 a}, \quad G_{1 a}, G_{2 a}, H_{a}, \quad a=g, u
$$

- on-axis momenta: little group $C_{4 v}$

$$
A_{1}, A_{2}, B_{1}, B_{2}, E, \quad G_{1}, G_{2}
$$

- planar-diagonal momenta: little group $C_{2 v}$

$$
A_{1}, A_{2}, B_{1}, B_{2}, \quad G_{1}, G_{2}
$$

- cubic-diagonal momenta: little group $C_{3 v}$

$$
A_{1}, A_{2}, E, \quad F_{1}, F_{2}, G
$$

- include G parity in some meson sectors (superscript + or -)

Spin content of cubic box irreps

- numbers of occurrences of Λ irreps in J subduced

Common hadrons

- irreps of commonly-known hadrons at rest

Hadron	Irrep	Hadron	Irrep	Hadron	Irrep
π	$A_{1 u}^{-}$	K	$A_{1 u}$	η, η^{\prime}	$A_{1 u}^{+}$
ρ	$T_{1 u}^{+}$	ω, ϕ	$T_{1 u}^{-}$	K^{*}	$T_{1 u}$
a_{0}	$A_{1 g}^{+}$	f_{0}	$A_{1 g}^{+}$	h_{1}	$T_{1 g}^{-}$
b_{1}	$T_{1 g}^{+}$	K_{1}	$T_{1 g}$	π_{1}	$T_{1 u}^{-}$
N, Σ	$G_{1 g}$	Λ, Ξ	$G_{1 g}$	Δ, Ω	H_{g}

Local multi-hadron operators

- comparison of $\pi(\boldsymbol{k}) \pi(-\boldsymbol{k})$ and localized $\sum_{x} \pi(\boldsymbol{x}) \pi(\boldsymbol{x})$ operators

- much more contamination from higher states with local multi-hadron operators

The challenge of excited states

- stationary state energies $I=1, S=0, T_{1 u}^{+}$channel on $\left(32^{3} \times 256\right)$ anisotropic lattice $m_{\pi} \sim 240 \mathrm{MeV}$

Tlup

Level identification

- level identification inferred from $|Z|^{2}$ overlaps with probe operators
- overlaps for various operators

Staircase of energy levels

- stationary state energies $I=0, S=-1, G_{1 g}^{+}$channel on $\left(32^{3} \times 256\right)$ anisotropic lattice
- challenge: dashed horizontal lines show 3 and 4 particle thresholds

Comparison with experiment

- right: $G_{1 g}$ energies of $\bar{q} q$-dominant states as ratios over m_{N} for $\left(32^{3} \mid 240\right)$ ensemble (resonance precursor states)
- left: experiment
$G_{1 g}$ Spectrum Comparison

Staircase of energy levels

- stationary state energies $I=0, S=-1, G_{1 u}^{+}$channel on $\left(32^{3} \times 256\right)$ anisotropic lattice

Comparison with experiment

- right: $G_{1 u}$ energies of $\bar{q} q$-dominant states as ratios over m_{N} for $\left(32^{3} \mid 240\right)$ ensemble (resonance precursor states)
- left: experiment
$G_{1 u}$ Spectrum Comparison

Staircase of energy levels

- stationary state energies $I=0, S=-1, H_{g}^{+}$channel on $\left(32^{3} \times 256\right)$ anisotropic lattice

Comparison with experiment

- right: H_{g} energies of $\bar{q} q$-dominant states as ratios over m_{N} for $\left(32^{3} \mid 240\right)$ ensemble (resonance precursor states)
- left: experiment

Staircase of energy levels

- stationary state energies $I=0, S=-1, H_{u}^{+}$channel on $\left(32^{3} \times 256\right)$ anisotropic lattice

Comparison with experiment

- right: H_{u} energies of $\bar{q} q$-dominant states as ratios over m_{N} for $\left(32^{3} \mid 240\right)$ ensemble (resonance precursor states)
- left: experiment
H_{u} Spectrum Comparison

Scattering amplitudes from lattice QCD

- finite-volume energies E related to infinite-volume S matrix [M. Lüscher, NPB354, 531 (1991)]
- introduce K-matrix (Wigner 1946)

$$
S=(1+i K)(1-i K)^{-1}=(1-i K)^{-1}(1+i K)
$$

- $J L S a$ basis: total ang mom J, orbital L, spin S, species channel a
- introduce

$$
K_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}(E)=q_{\mathrm{cm}, a^{\prime}}^{-L^{\prime}-\frac{1}{2}} \widetilde{K}_{L^{\prime} S^{\prime} a^{\prime} ; L S a}^{-1}\left(E_{\mathrm{cm}}\right) q_{\mathrm{cm}, a}^{-L-\frac{1}{2}}
$$

- below 3-particle thresholds, quantization condition is

$$
\operatorname{det}\left(1-B^{(P)} \widetilde{K}\right)=\operatorname{det}\left(1-\widetilde{K} B^{(P)}\right)=0
$$

- or

$$
\operatorname{det}\left(\widetilde{K}^{-1}-B^{(P)}\right)=0
$$

- Hermitian "box matrix" $B^{(P)}$ encodes effects of cubic finite-volume

Scattering amplitudes from lattice QCD (con't)

- quantization condition relates single energy E to entire K-matrix
- cannot solve for K-matrix (except single channel, single wave)
- approximate K-matrix with functions depending on handful of fit parameters
- obtain estimates of fit parameters using many energies
- quantization condition involves infinite-dimensional determinant
- make practical by (a) transforming to a block-diagonal basis and (b) truncating in orbital angular momentum
- meson-meson scattering becoming mature
- only a few meson-baryon scattering attempts
- baryon-baryon scattering currently gestating

Decay of Δ

- recent study of $\Delta(1232) \rightarrow N \pi$ amplitude
[C.W.Andersen, J.Bulava, B.Hörz, CM, PRD 97, 014506 (2018)]
- included $L=1$ wave only (for now)
- large $48^{3} \times 128$ isotropic lattice, $m_{\pi} \approx 280 \mathrm{MeV}, a \sim 0.076 \mathrm{fm}$
- Breit-Wigner fit gives $m_{\Delta} / m_{\pi}=4.738(47)$ and $g_{\Delta N \pi}=19.0(4.7)$ in agreement with experiment ~ 16.9

Another recent Δ study

- Preliminary results $L=2.8 \mathrm{fm}, \mathrm{a}=0.116 \mathrm{fm}, \mathrm{m}_{\pi}=260 \mathrm{MeV}$ [S.Paul, G.Silvi, C.Alexandrou, G.Koutsou, S.Krieg, L.Leskovec, S.Meinel, J.Negele, M.Petschlies, A.Pochinsky, G.Rendon, S.Syritsyn, Lattice 2018]

- no slice-to-slice propagators
- three total momenta
- ground and excited states
- single partial wave

Our Δ study in progress

- Preliminary results $L=4.2 \mathrm{fm}$, $\mathrm{a}=0.065 \mathrm{fm}, \mathrm{m}_{\pi}=200 \mathrm{MeV}$
[C.Andersen, B.Hörz, J.Bulava, CM, in prep.]

- five total momenta
- ground and excited states
- preliminary statistics: expect 6 times smaller errors
- light pion mass \rightarrow small elastic region

Our Δ study in progress (con't)

- fits include irreps which mix S and P waves
- relies on automated determination of B-matrix elements
[CM et al., NPB924, 477 (2017)]
- finite-volume spectrum:

$\Lambda(1405) \rightarrow \Sigma \pi$ study in progress

- Preliminary results $L=3.2 \mathrm{fm}$, $\mathrm{a}=0.065 \mathrm{fm}, \mathrm{m}_{\pi}=280 \mathrm{MeV}$ [B.Hörz, C.Andersen, J.Bulava, M.Hansen, D.Möhler, CM, H.Wittig, in prep.]

- $G_{1 u}(0)$ below inelastic threshold only
- fit form

$$
\frac{q}{\mu} \cot \delta_{0}=\frac{1}{a_{0} \mu}+\frac{\mu r}{2}\left(\frac{q}{\mu}\right)^{2}
$$

- best fit:

$$
\begin{aligned}
\frac{m_{R}}{\mu} & =6.143(77), \quad \frac{1}{a_{0} \mu}=-2.41(57), \quad \frac{\mu r}{2}=-2.9(1.1), \\
m_{R} & =1399(24) \mathrm{MeV}
\end{aligned}
$$

Time-like pion form factor (warm up for Δ)

- recent determination of time-like pion form factor [C.Andersen, J.Bulava, B.Hörz, CM, NPB939, 145 (2019)]

$$
\begin{aligned}
& \text { - extracted using } \\
& \left.\left|F_{\pi}\left(E_{\mathrm{cm}}\right)\right|^{2}=g_{\Lambda}(\gamma)\left(q_{\mathrm{cm}} \frac{\partial \delta_{1}}{\partial q_{\mathrm{cm}}}+u \frac{\partial \phi_{1}^{(\boldsymbol{d}, \Lambda)}}{\partial u}\right) \frac{3 \pi E_{\mathrm{cm}}^{2}}{2 q_{\mathrm{cm}}^{5} L^{3}}\left|\langle 0| V^{(d, \Lambda)}\right| \boldsymbol{d} \Lambda n\right\rangle\left.\right|^{2}
\end{aligned}
$$

where

$$
{ }^{\mathrm{e}} \gamma=\frac{E}{E_{\mathrm{cm}}}, \quad u=\frac{L q_{\mathrm{cm}}}{2 \pi}, \quad g_{\Lambda}(\gamma)= \begin{cases}\gamma^{-1}, & \Lambda=A_{1}^{+} \\ \gamma, & \text { otherwise }\end{cases}
$$

and δ_{1} is the physical phase shift, and $B_{11}^{(d, \Lambda)}=\left(q_{\mathrm{cm}} / m_{\pi}\right)^{3} \cot \phi_{1}^{(\boldsymbol{d}, \Lambda)}$ gives the pseudophase $\phi_{1}^{(\boldsymbol{d}, \Lambda)}$

- we compute the matrix element

$$
\begin{gathered}
V^{(d, \Lambda)}=\sum_{\mu} b_{\mu}^{(d, \Lambda)} V_{R, \mu}, \quad \sum_{\mu} b_{\mu}^{(d, \Lambda) *} b_{\mu}^{(d, \Lambda)}=1, \\
V_{R, \mu}=Z_{V}\left(1+a b_{V} m_{1}+a \bar{b}_{V} \operatorname{Tr} M_{q}\right) V_{I, \mu}, \quad V_{I, \mu}=V_{\mu}+a c_{V} \widetilde{\partial}_{\nu} T_{\mu \nu}, \\
V_{\mu}^{a}=\frac{1}{2} \bar{\psi} \gamma_{\mu} \tau^{a} \psi, \quad \widetilde{\partial}_{\nu} T_{\mu \nu}^{a}=\frac{1}{2} i \widetilde{\partial}_{\nu} \bar{\psi} \sigma_{\mu \nu} \tau^{a} \psi
\end{gathered}
$$

Time-like pion form factor results

- results for CLS N200 ensemble $48^{3} \times 128$ with $a=0.064 \mathrm{fm}$ and $m_{\pi}=280 \mathrm{MeV}$ (curve is fit with thrice-subtracted dispersion)

Time-like pion form factor results

- results for CLS J303 ensemble $64^{3} \times 192$ with $a=0.050 \mathrm{fm}$ and $m_{\pi}=260 \mathrm{MeV}$ (curve is fit with thrice-subtracted dispersion)

- similar method is now being used for Δ transition form factor needed by Deep Underground Neutrino Experiment

Baryon-baryon interactions in HAL QCD method

- HAL QCD collaboration has extensively studied $N N$ interactions
- their method extracts observables from non-local kernels associated with tempo-spatial correlation functions
- controversy: disagreements with direct method
- recent study shows discrepany is from misidentification of energies in direct method
[T.Iritani, S.Aoki, T.Doi, T.Hatsuda, Y.Ikeda, T.Inoue, N.Ishii, H.Nemura, K.Sasaki, JHEP03, 007 (2019)]
- used the $\Xi \Xi\left({ }^{1} S_{0}\right)$ temporal correlation functions

- accelerate progress in baryon-baryon scattering with this resolution

Recent H-dibaryon study

- recent report on ongoing study of the H-dibaryon [A.Hanlon, A.Francis, J.Green, P.Junnarkar, H.Wittig, arXiv:1810.13282]
- obtained results at the $S U(3)$ flavor symmetric point
- used baryon-baryon operators since previous study showed hexaquark operators would not saturate signal
- found several finite-volume energies below $\Lambda \Lambda$ threshold
- scattering amplitude analysis needed to determine if bound/resonance
- warm up exercise (small lattices, pion much too heavy)
- future work on larger lattices and lighter pions will involve stochastic LapH method

Recent H-dibaryon study (con’t)

- effective masses for spin-0 and spin-1 operators of different flavor irreps using 3 ensembles
- horizontal black lines show two-octet baryon threshold

Conclusion

- recent highlights involving baryons in lattice QCD
- proton mass decomposition
- nucleon spin decomposition
- percent level determination of nucleon axial coupling
- proton and neutron electromagnetic form factors
- parton distribution function
- scattering amplitudes
- baryon-baryon interactions with HAL QCD method
- H-dibaryon warm up
- key progress
- achieving much better precision with disconnected diagrams
- ability to include multi-hadron operators
- more and more studies being done at physical point
- excited-baryon resonances in near future

