Recent highlights with baryons from lattice QCD

Colin Morningstar
Carnegie Mellon University

12th Int. Workshop on the Physics of Excited Nucleons
Bonn, Campus Poppelsdorf

June 12, 2019
Recent highlights involving baryons in lattice QCD:
- Proton mass decomposition
- Nucleon spin decomposition
- Percent level determination of nucleon axial coupling
- Proton and neutron electromagnetic form factors
- Parton distribution function
- Scattering amplitudes
- Baryon-baryon interactions with HAL QCD method
- H-dibaryon warm up

Key progress:
- Achieving much better precision with disconnected diagrams
- Ability to include multi-hadron operators
- More and more studies being done at physical point
Temporal correlations from path integrals

- Stationary-state energies from $N \times N$ Hermitian correlation matrix

$$C_{ij}(t) = \langle 0 | O_i(t + t_0) \bar{O}_j(t_0) | 0 \rangle$$

- Judiciously designed operators \bar{O}_j create states of interest

$$O_j(t) = O_j[\bar{\psi}(t), \psi(t), U(t)]$$

- Correlators from path integrals over quark $\bar{\psi}, \psi$ and gluon U fields

$$C_{ij}(t) = \frac{\int \mathcal{D}(\bar{\psi}, \psi, U) \ O_i(t + t_0) \bar{O}_j(t_0) \ exp \left(-S[\bar{\psi}, \psi, U]\right)}{\int \mathcal{D}(\bar{\psi}, \psi, U) \ exp \left(-S[\bar{\psi}, \psi, U]\right)}$$

- Involves the action in imaginary time

$$S[\bar{\psi}, \psi, U] = \bar{\psi} K[U] \ \psi + S_G[U]$$

- $K[U]$ is fermion Dirac matrix

- $S_G[U]$ is gluon action
Integrating the quark fields

- integrals over Grassmann-valued quark fields done exactly
- meson-to-meson example:
 \[
 \int \mathcal{D}(\bar{\psi}, \psi) \, \psi_a \psi_b \, \bar{\psi}_c \bar{\psi}_d \, \exp (-\bar{\psi}K\psi) = \left(K_{ad}^{-1} K_{bc}^{-1} - K_{ac}^{-1} K_{bd}^{-1}\right) \det K.
 \]
- baryon-to-baryon example:
 \[
 \int \mathcal{D}(\bar{\psi}, \psi) \, \psi_{a_1} \psi_{a_2} \psi_{a_3} \, \bar{\psi}_{b_1} \bar{\psi}_{b_2} \bar{\psi}_{b_3} \, \exp (-\bar{\psi}K\psi) = \left(-K_{a_1b_1}^{-1} K_{a_2b_2}^{-1} K_{a_3b_3}^{-1} + K_{a_1b_1}^{-1} K_{a_2b_3}^{-1} K_{a_3b_2}^{-1} + K_{a_1b_2}^{-1} K_{a_2b_1}^{-1} K_{a_3b_3}^{-1} \right) \det K
 \]
Monte Carlo integration

- Correlators have form

\[C_{ij}(t) = \frac{\int DU \ det K[U] \ K^{-1}[U] \cdots K^{-1}[U] \ \exp(-S_G[U])}{\int DU \ det K[U] \ \exp(-S_G[U])} \]

- Resort to **Monte Carlo method** to integrate over gluon fields
- Use Markov chain to generate sequence of gauge-field configurations

\[U_1, U_2, \ldots, U_N \]

- Most computationally demanding parts:
 - Including \(\det K \) in updating
 - Evaluating \(K^{-1} \) in numerator
Monte Carlo method using computers requires formulating integral on space-time lattice (usually hypercubic)

- **quarks** reside on sites, **gluons** reside on links between sites
- integrate over gluon fields on each link

- Metropolis method with global updating proposal
 - RHMC: solve Hamilton equations with Gaussian momenta
- \(\det K \) estimates with integral over pseudo-fermion fields
- systematic errors
 - discretization
 - finite volume
 - unphysical quark masses
Building blocks for single-hadron operators

- Building blocks: covariantly-displaced LapH-smeared quark fields
- Stout links $\tilde{U}_j(x)$
- Laplacian-Heaviside (LapH) smeared quark fields
 \[\tilde{\psi}_{a\alpha}(x) = S_{ab}(x, y) \psi_{b\alpha}(y), \quad S = \Theta \left(\sigma_s^2 + \tilde{\Delta} \right) \]
- 3d gauge-covariant Laplacian $\tilde{\Delta}$ in terms of \tilde{U}
- Displaced quark fields:
 \[q^A_{a\alpha j} = D^{(j)} \tilde{\psi}^{(A)}_{a\alpha}, \quad \bar{q}^A_{a\alpha j} = \bar{\tilde{\psi}}^{(A)}_{a\alpha} \gamma_4 D^{(j)\dagger} \]
- Displacement $D^{(j)}$ is product of smeared links:
 \[D^{(j)}(x, x') = \tilde{U}_{j_1}(x) \tilde{U}_{j_2}(x+d_2) \tilde{U}_{j_3}(x+d_3) \ldots \tilde{U}_{j_p}(x+d_p) \delta_{x', x+d_p+1} \]
- To good approximation, LapH smearing operator is
 \[S = V_s V_s^\dagger \]
 - Columns of matrix V_s are eigenvectors of $\tilde{\Delta}$
Extended operators for single hadrons

- quark displacements build up orbital, radial structure

Meson configurations

\[
\Phi_{AB}^{\alpha\beta}(p, t) = \sum_x e^{ip \cdot (x + \frac{1}{2} (d\alpha + d\beta))} \delta_{ab} \overline{q}_b^B(x, t) q_a^A(x, t)
\]

\[
\Phi_{ABC}^{\alpha\beta\gamma}(p, t) = \sum_x e^{ip \cdot x} \varepsilon_{abc} \overline{q}_c^C(x, t) \overline{q}_b^B(x, t) \overline{q}_a^A(x, t)
\]

- group-theory projections onto irreps of lattice symmetry group

\[
\overline{M}_l(t) = c^{(l)*}_{\alpha\beta} \Phi_{AB}^{\alpha\beta}(t) \quad \overline{B}_l(t) = c^{(l)*}_{\alpha\beta\gamma} \Phi_{ABC}^{\alpha\beta\gamma}(t)
\]

- definite momentum \(p \), irreps of little group of \(p \)
Stable hadron mass success

- low-lying mass spectrum successfully determined
- level of precision: isospin breaking now relevant

[Image of a graph showing hadron masses with various labels such as \(H, H^*, H_s, H_s^*, B_c, B_c^* \) and others, along the x-axis and y-axis labeled as (MeV).]

- challenge: scattering amplitudes and resonances
Matrix elements from lattice QCD

- standard method for matrix element calculations requires 3-point functions

- excited-state contamination removed by taking t_{sep}, t_{ins}, and $t_{\text{sep}} - t_{\text{ins}}$ large

- in practice, difficult to achieve due to signal-to-noise

- current requires renormalization for comparison to $\overline{\text{MS}}$

- nonperturbative/perturbative methods
Proton mass decomposition

- recent determination of mass decomposition of proton
 [Y. Yang, J. Liang, Y. Bi, Y. Chen, T. Draper, K. F. Liu, Z. Liu, PRL 121, 212001 (2018)]

- rest mass M of proton given by [Ji PRL 74, 1071 (1995)]

\[M = -\langle T_{44} \rangle = \langle H_m \rangle + \langle H_E \rangle(\mu) + \langle H_g \rangle(\mu) + \frac{1}{4} \langle H_a \rangle, \]

- $\langle T_{\mu\nu} \rangle$ expectation value of energy momentum tensor in hadron quark condensate $H_m = \sum_{u,d,s} \ldots \int d^3x m \overline{\psi}\psi$

- quark energy $H_E = \sum_{u,d,s} \ldots \int d^3x \overline{\psi}(\vec{D} \cdot \vec{\gamma})\psi$

- glue field energy $H_g = \int d^3x \frac{1}{2}(B^2 - E^2)$

- anomaly term $H_a = \sum_{u,d,s} \ldots \int d^3x \gamma_m m \overline{\psi}\psi - \int d^3x \frac{\beta(g)}{g}(E^2 + B^2)$

- $\langle H_m \rangle, \langle H_a \rangle, \langle H_E + H_g \rangle$ scale and scheme independent

- obtain from renormalized quark and gluon momentum fractions $\langle H_g \rangle = \frac{3}{4} M \langle x \rangle_g$ and $\langle H_E \rangle = \frac{3}{4} M \langle x \rangle_q - \frac{3}{4} \langle H_m \rangle$

- anomaly term from $\langle H_a \rangle = M - \langle H_m \rangle$
determined mass M from two-point correlator
used previous determination of $\langle H_m \rangle$ (2016)
momentum fractions from
\[
\langle x \rangle_{q,g} \equiv -\frac{\langle N | \frac{4}{3} T_{44}^{q,g} | N \rangle}{M \langle N | N \rangle},
\]
\[
T_{44}^q = \int d^3 x \overline{\psi}(x) \frac{1}{2} (\gamma_4 \overleftrightarrow{D}_4 - \frac{1}{4} \sum_{i=0,1,2,3} \gamma_i \overleftrightarrow{D}_i) \psi(x),
\]
\[
T_{44}^g = \int d^3 x \frac{1}{2} (E(x)^2 - B(x)^2).
\]
renormalization
\[
\langle x \rangle_{u,d,s}^R = Z_{QQ}^{MS}(\mu) \langle x \rangle_{u,d,s} + \delta Z_{QQ}^{MS}(\mu) \sum_{q=u,d,s} \langle x \rangle_q + Z_{GQ}^{MS}(\mu) \langle x \rangle_g
\]
\[
\langle x \rangle_g^R = \sum_{q=u,d,s} Z_{GQ}^{MS}(\mu) \langle x \rangle_q + Z_{GG}^{MS} \langle x \rangle_g,
\]
obtained results on 4 ensembles ($N_f = 2 + 1$ DWF action, overlap valence)

disconnected insertions: cluster-decomposition error reduction, all time slices looped over

extrapolate with global fit including finite volume, spacing corrections, chiral behavior

- quark energy $32(4)(4)\%$
- glue energy $36(5)(4)\%$
- quark condensate $9(2)(1)\%$
- trace anomaly $23(1)(1)\%$
- with $N_f = 2 + 1$
Nucleon spin decomposition

- spin decomposition of nucleon

 \[J_N = \sum_{q=u,d,s,c\ldots} \left(\frac{1}{2} \Delta \Sigma_q + L_q \right) + J_g \]

- from Ji sum rule [Ji, PRL78, 610 (1997)]

 \[\langle N(p, s')|\bar{q}\gamma_{\mu}\gamma_5 q|N(p, s)\rangle = \bar{u}_N(p, s') \left[g_A^{\mu} \gamma_5 \right] u_N(p, s), \]

\[\langle N(p', s')|\bar{q}\gamma_{\{\mu}^{\{\mu D_{\nu}\}^{\nu}} q|N(p, s)\rangle = \bar{u}_N(p', s') \Lambda_{\mu\nu}^q(Q^2) u_N(p, s), \]

\[\Lambda_{\mu\nu}^q(Q^2) = A_{20}^q(g)(Q^2) \gamma_{\{\mu P^{\nu}\{\mu}^{\nu}} + B_{20}^q(g)(Q^2) \frac{\sigma_{\{\mu\alpha} q_{\alpha P^{\nu}\{\mu}}}{2m} \]

\[+ C_{20}^q(g)(Q^2) \frac{1}{m} Q_{\{\mu} Q^{\nu\{\mu}} \]
Nucleon spin decomposition (con’t)

- quark(gluon) total angular momentum and quark momentum fraction and spin from

\[
J_{q(g)} = \frac{1}{2} [A_{20}^{q(g)}(0) + B_{20}^{q(g)}(0)]
\]

\[
\langle x \rangle_q = A_{20}^q(0), \quad \Delta \Sigma_q = g_A^q
\]

- gluon momentum fraction from \(\mathcal{O}_{\mu\nu}^g = 2 \text{Tr}[G_{\mu\sigma}G_{\nu\sigma}]\) with

\[
\mathcal{O}_g^g \equiv \mathcal{O}_{44}^g - \frac{1}{3} \mathcal{O}_{jj}^g
\]

\[
\langle N(p, s')|\mathcal{O}_g^g|N(p, s)\rangle = \left(-4E_N^2 - \frac{2}{3}P^2 \right) \langle x \rangle_g,
\]

- one ensemble at physical point \(48^3 \times 96\) twisted mass clover-improved \(a = 0.0939(3)\) fm from nucleon mass

- \(u, d\) disconnected diagrams by exact deflation + one-end-trick

- \(s\) disconnected diagrams by truncated solver method

- renormalization factors determined nonperturbatively
nucleon spin (left) and momentum (right) decompositions
striped segments → valence; solid → sea quark and gluon

\(J_N \)

\(\langle X \rangle \)
Nucleon axial coupling

- recent percent level determination of g_A

$$\epsilon_\pi = \frac{m_\pi}{4\pi F_\pi}$$

g_A model average

- $g_A^{LQCD}(\epsilon_\pi, a = 0)$
- $g_A^{PDG} = 1.2723(23)$

- use of Feynman-Hellman method

$$g_A = 1.2711(103)^s(39)^x(15)^a(19)^V(04)^I(55)^M$$

- errors: statistical, chiral, spacing, volume, isospin, model selection
Nucleon axial coupling (con’t)

- comparison to other determinations

![Graph showing comparison of axial coupling values](image-url)
Proton/neutron electromagnetic form factors

- recent study of proton and neutron electromagnetic form factors
- one ensemble $N_f = 2 + 1 + 1$ twisted mass with $m_\pi = 130$ MeV
- two ensembles $N_f = 2$ twisted mass with $m_\pi = 130$ MeV and two volumes $Lm_\pi \sim 3$ and $Lm_\pi \sim 4$
- unprecedented precision of disconnected diagram contributions
 - hierarchical probing
 - low mode deflation
 - large numbers of smeared point sources to reduce gauge noise
- disconnected diagrams have nonnegligible effects
- thorough investigation of excited-state contamination
- further study of finite-volume effects at low Q^2 needed
Proton/neutron electromagnetic form factors (con’t)

- comparison of $N_f = 2 + 1 + 1$ results to experiment
Proton/neutron electromagnetic form factors (con’t)

- comparing $N_f = 2 + 1 + 1$ and $N_f = 2$ (hollow symbols ignore disconnected)
Light-cone parton distribution function

- first determination of unpolarized helicity parton distribution function at the physical point with nonperturbative renormalization and large momenta treated [C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, F. Steffens, PRL 121, 112001 (2018)]

- extracting PDFs from their moments impractical
- used method proposed by Ji [X. Ji, PRL110, 262002 (2013)] with subsequent refinements
 - compute spatial correlations between boosted nucleon states
 - Fourier transforms produce quasi-PDFs
 - take infinite-momentum limit via a refined matching procedure
 - target mass corrections
 - renormalization scheme for Wilson line operators

- one $48^3 \times 96$ twisted mass $N_f = 2$ ensemble $a = 0.0938(3)(2)$ fm and $m_{\pi}L = 2.98(1)$ at physical point
unpolarized PDFs for three momenta compared to some phenomenological curves
polarized PDFs for three momenta compared to some phenomenological curves

\[\Delta u - \Delta d \]
Excited states from correlation matrices

- in finite volume, energies are discrete (neglect wrap-around)
 \[C_{ij}(t) = \sum_n Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \quad Z_j^{(n)} = \langle 0 | O_j | n \rangle \]

- not practical to do fits using above form
- define new correlation matrix \(\tilde{C}(t) \) using a single rotation
 \[\tilde{C}(t) = U^\dagger C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U \]
 columns of \(U \) are eigenvectors of \(C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2} \)
- choose \(\tau_0 \) and \(\tau_D \) large enough so \(\tilde{C}(t) \) diagonal for \(t > \tau_D \)
- effective energies
 \[\tilde{m}_\alpha^{\text{eff}}(t) = \frac{1}{\Delta t} \ln \left(\frac{\tilde{C}_{\alpha\alpha}(t)}{\tilde{C}_{\alpha\alpha}(t + \Delta t)} \right) \]
 tend to \(N \) lowest-lying stationary state energies in a channel
- 2-exponential fits to \(\tilde{C}_{\alpha\alpha}(t) \) yield energies \(E_\alpha \) and overlaps \(Z_j^{(n)} \)
Two-hadron operators

- our approach: superposition of products of single-hadron operators of definite momenta

\[c^{I_3 a I_3 b}_{p_a \lambda_a; p_b \lambda_b} B^{I_a I_3 a S_a}_{p_a \Lambda_a \lambda_a i_a} B^{I_b I_3 b S_b}_{p_b \Lambda_b \lambda_b i_b} \]

- fixed total momentum \(p = p_a + p_b \), fixed \(\Lambda, i_a, \Lambda_b, i_b \)
- group-theory projections onto little group of \(p \) and isospin irreps
- crucial to know and fix all phases of single-hadron operators for all momenta
 - each class, choose reference direction \(p_{\text{ref}} \)
 - each \(p \), select one reference rotation \(R^p_{\text{ref}} \) that transforms \(p_{\text{ref}} \) into \(p \)
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, \ldots hadron operators
Quark propagation

- quark propagator is inverse K^{-1} of Dirac matrix
 - rows/columns involve lattice site, spin, color
 - very large $N_{\text{tot}} \times N_{\text{tot}}$ matrix for each flavor
 - $N_{\text{tot}} = N_{\text{site}} N_{\text{spin}} N_{\text{color}}$
 - for $64^3 \times 128$ lattice, $N_{\text{tot}} \sim 403$ million
- not feasible to compute (or store) all elements of K^{-1}
- solve linear systems $Kx = y$ for source vectors y
- translation invariance can drastically reduce number of source vectors y needed
- multi-hadron operators and isoscalar mesons require large number of source vectors y
Quark line diagrams

- temporal correlations involving our two-hadron operators need
 - slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
 - sink-to-sink quark lines

- isoscalar mesons also require sink-to-sink quark lines

- solution: the stochastic LapH method! [CM et al., PRD83, 114505 (2011)]
Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent \Rightarrow using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group O_h
 $$A_{1a}, A_{2a}, E_a, T_{1a}, T_{2a}, \ G_{1a}, G_{2a}, H_a, \quad a = g, u$$
 - on-axis momenta: little group C_{4v}
 $$A_1, A_2, B_1, B_2, E, \quad G_1, G_2$$
 - planar-diagonal momenta: little group C_{2v}
 $$A_1, A_2, B_1, B_2, \quad G_1, G_2$$
 - cubic-diagonal momenta: little group C_{3v}
 $$A_1, A_2, E, \quad F_1, F_2, G$$

- include G parity in some meson sectors (superscript $+$ or $-$)
Spin content of cubic box irreps

- numbers of occurrences of Λ irreps in J subduced

<table>
<thead>
<tr>
<th>J</th>
<th>A_1</th>
<th>A_2</th>
<th>E</th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>G_1</th>
<th>G_2</th>
<th>H</th>
<th>J</th>
<th>G_1</th>
<th>G_2</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$\frac{9}{2}$</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$\frac{11}{2}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{5}{2}$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$\frac{13}{2}$</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{7}{2}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{15}{2}$</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Common hadrons

- irreps of commonly-known hadrons at rest

<table>
<thead>
<tr>
<th>Hadron</th>
<th>Irrep</th>
<th>Hadron</th>
<th>Irrep</th>
<th>Hadron</th>
<th>Irrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>A_{1u}^-</td>
<td>K</td>
<td>A_{1u}</td>
<td>η, η'</td>
<td>A_{1u}^+</td>
</tr>
<tr>
<td>ρ</td>
<td>T_{1u}^+</td>
<td>ω, ϕ</td>
<td>T_{1u}^-</td>
<td>K^*</td>
<td>T_{1u}</td>
</tr>
<tr>
<td>a_0</td>
<td>A_{1g}^+</td>
<td>f_0</td>
<td>A_{1g}^+</td>
<td>h_1</td>
<td>T_{1g}</td>
</tr>
<tr>
<td>b_1</td>
<td>T_{1g}^+</td>
<td>K_1</td>
<td>T_{1g}</td>
<td>π_1</td>
<td>T_{1u}^-</td>
</tr>
<tr>
<td>N, Σ</td>
<td>G_{1g}</td>
<td>Λ, Ξ</td>
<td>G_{1g}</td>
<td>Δ, Ω</td>
<td>H_g</td>
</tr>
</tbody>
</table>
Local multi-hadron operators

- comparison of $\pi(k)\pi(-k)$ and localized $\sum_x \pi(x)\pi(x)$ operators

- much more contamination from higher states with local multi-hadron operators
The challenge of excited states

- stationary state energies $I = 1$, $S = 0$, T_{1u}^+ channel on $(32^3 \times 256)$ anisotropic lattice $m_\pi \sim 240$ MeV

![Graph showing levels and mixing types]
Level identification

- Level identification inferred from $|Z|^2$ overlaps with probe operators
- Overlaps for various operators

C. Morningstar Lattice QCD Baryons 33
Staircase of energy levels

- stationary state energies $I = 0$, $S = -1$, G_{1g}^+ channel on $(32^3 \times 256)$ anisotropic lattice
- challenge: dashed horizontal lines show 3 and 4 particle thresholds

$I = 0$, $S = -1$, G_{1g} Spectrum
Comparison with experiment

- right: G_{1g} energies of $\bar{q}q$-dominant states as ratios over m_N for $(32^3|240)$ ensemble (resonance precursor states)
- left: experiment

G_{1g} Spectrum Comparison

![Graph showing comparison between experiment and lattice results for G_{1g} spectrum.]

C. Morningstar Lattice QCD Baryons 35
Staircase of energy levels

- stationary state energies $I = 0$, $S = -1$, G_{1u}^+ channel on $(32^3 \times 256)$ anisotropic lattice

$I = 0$, $S = -1$, G_{1u} Spectrum
Comparison with experiment

- right: G_{1u} energies of $\bar{q}q$-dominant states as ratios over m_N for $(32^3|240)$ ensemble (resonance precursor states)
- left: experiment

G_{1u} Spectrum Comparison

Experiment	Lattice
$\Lambda_{1/2}(1405)$ | $\Lambda_{1/2}(1670)$
$\Lambda_{1/2}(1800)$ | $\Lambda_{3/2}(2100)$

C. Morningstar
Lattice QCD Baryons
Staircase of energy levels

- stationary state energies $I = 0, S = -1, H_g^+$ channel on $(32^3 \times 256)$ anisotropic lattice

$I = 0, S = -1, H_g$ Spectrum

![Graph showing the energy levels for $I = 0, S = -1, H_g$ on an anisotropic lattice](image.png)
Comparison with experiment

- right: H_g energies of $\bar{q}q$-dominant states as ratios over m_N for $(32^3|240)$ ensemble (resonance precursor states)
- left: experiment

![H_g Spectrum Comparison](image)

H_g Spectrum Comparison

Experiment

<table>
<thead>
<tr>
<th>State</th>
<th>E/m_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda_{s2}^{(1820)}$</td>
<td>2</td>
</tr>
<tr>
<td>$\Lambda_{s2}^{(1890)}$</td>
<td>2</td>
</tr>
<tr>
<td>$\Lambda_{s2}^{(2110)}$</td>
<td>2</td>
</tr>
</tbody>
</table>

Lattice

<table>
<thead>
<tr>
<th>State</th>
<th>E/m_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda_{s2}^{(2350)}$</td>
<td>3</td>
</tr>
</tbody>
</table>
Staircase of energy levels

- stationary state energies $I = 0, S = -1, H_u^+$ channel on $(32^3 \times 256)$ anisotropic lattice

$I = 0, S = -1, H_u$ Spectrum
Comparison with experiment

- right: H_u energies of $\bar{q}q$-dominant states as ratios over m_N for $(32^3|240)$ ensemble (resonance precursor states)
- left: experiment

H_u Spectrum Comparison

E/m_N

Experiment | Lattice

$\Lambda_{32}(1520)$ | $\Lambda_{32}(1690)$ | $\Lambda_{52}(1830)$ | $\Lambda_{72}(2100)$
Scattering amplitudes from lattice QCD

- finite-volume energies E related to infinite-volume S matrix
 [M. Lüscher, NPB354, 531 (1991)]

- introduce K-matrix (Wigner 1946)
 \[S = (1 + iK)(1 - iK)^{-1} = (1 - iK)^{-1}(1 + iK) \]

- $JLSa$ basis: total ang mom J, orbital L, spin S, species channel a

- introduce
 \[K_{L'S'a'; LSa}(E) = q_{cm,a'}^{-L'-\frac{1}{2}} \tilde{K}_{L'S'a'; LSa}(E_{cm}) q_{cm,a}^{-L-\frac{1}{2}} \]

- below 3-particle thresholds, quantization condition is
 \[\det(1 - B^{(P)}\tilde{K}) = \det(1 - \tilde{K}B^{(P)}) = 0 \]

- or
 \[\det(\tilde{K}^{-1} - B^{(P)}) = 0 \]

- Hermitian “box matrix” $B^{(P)}$ encodes effects of cubic finite-volume
Scattering amplitudes from lattice QCD (con’t)

- quantization condition relates single energy E to entire K-matrix
- cannot solve for K-matrix (except single channel, single wave)
- approximate K-matrix with functions depending on handful of fit parameters
- obtain estimates of fit parameters using many energies
- quantization condition involves infinite-dimensional determinant
 - make practical by (a) transforming to a block-diagonal basis and (b) truncating in orbital angular momentum
- meson-meson scattering becoming mature
- only a few meson-baryon scattering attempts
- baryon-baryon scattering currently gestating
Decay of \(\Delta \)

- recent study of \(\Delta(1232) \rightarrow N\pi \) amplitude

 [C.W. Andersen, J. Bulava, B. Hörz, CM, PRD 97, 014506 (2018)]

- included \(L = 1 \) wave only (for now)
- large \(48^3 \times 128 \) isotropic lattice, \(m_\pi \approx 280 \) MeV, \(a \sim 0.076 \) fm
- Breit-Wigner fit gives \(m_\Delta/m_\pi = 4.738(47) \) and \(g_{\Delta N\pi} = 19.0(4.7) \) in agreement with experiment \(\sim 16.9 \)
Another recent △ study

- Preliminary results $L = 2.8$ fm, $a = 0.116$ fm, $m_\pi = 260$ MeV

- no slice-to-slice propagators
- three total momenta
- ground and excited states
- single partial wave

$m_{\Delta 3/2,1} = 1414(36)$ MeV
$g_{\Delta - nN} = 26(7)$
Our Δ study in progress

- Preliminary results $L = 4.2 \text{ fm}$, $a = 0.065 \text{ fm}$, $m_\pi = 200 \text{ MeV}$

[C. Andersen, B. Hörz, J. Bulava, CM, in prep.]

- five total momenta
- ground and excited states
- preliminary statistics: expect 6 times smaller errors
- light pion mass \rightarrow small elastic region
Our Δ study in progress (con’t)

- Fits include irreps which mix S and P waves
- Relies on automated determination of B-matrix elements
 [CM et al., NPB924, 477 (2017)]
- Finite-volume spectrum:
Λ(1405) → Σπ study in progress

- Preliminary results $L = 3.2$ fm, $a = 0.065$ fm, $m_\pi = 280$ MeV
 [B.Hörz, C.Andersen, J.Bulava, M.Hansen, D.Möhler, CM, H.Wittig, in prep.]

- $G_{1u}(0)$ below inelastic threshold only

- fit form
 \[
 \frac{q}{\mu} \cot \delta_0 = \frac{1}{a_0 \mu} + \frac{\mu r}{2} \left(\frac{q}{\mu} \right)^2
 \]

- best fit:
 \[
 \frac{m_R}{\mu} = 6.143(77), \quad \frac{1}{a_0 \mu} = -2.41(57), \quad \frac{\mu r}{2} = -2.9(1.1),
 \]
 \[
 m_R = 1399(24) \text{ MeV}
 \]
recent determination of time-like pion form factor
[C. Andersen, J. Bulava, B. Hörz, CM, NPB939, 145 (2019)]

extracted using
\[|F_\pi(E_{cm})|^2 = g_\Lambda(\gamma) \left(q_{cm} \frac{\partial \delta_1}{\partial q_{cm}} + u \frac{\partial \phi_1^{(d,\Lambda)}}{\partial u} \right) \frac{3\pi E_{cm}^2}{2q_{cm}^5 L^3} |\langle 0 | V^{(d,\Lambda)} | d\Lambda n \rangle|^2 \]

where
\[\gamma = \frac{E}{E_{cm}}, \quad u = \frac{Lq_{cm}}{2\pi}, \quad g_\Lambda(\gamma) = \begin{cases} \gamma^{-1}, & \Lambda = A_1^+ \\ \gamma, & \text{otherwise} \end{cases} \]

and \(\delta_1 \) is the physical phase shift, and
\[B_{11}^{(d,\Lambda)} = (q_{cm}/m_\pi)^3 \cot \phi_1^{(d,\Lambda)} \]
gives the pseudophase \(\phi_1^{(d,\Lambda)} \)

we compute the matrix element
\[V^{(d,\Lambda)} = \sum_\mu b_\mu^{(d,\Lambda)} V_{R,\mu}, \quad \sum_\mu b_\mu^{(d,\Lambda)}* b_\mu^{(d,\Lambda)} = 1, \]
\[V_{R,\mu} = Z_V (1 + ab V m_1 + ab V \text{Tr} M_q) V_{I,\mu}, \quad V_{I,\mu} = V_\mu + ac V \tilde{\sigma}_\nu T_{\mu\nu}, \]
\[V^a_\mu = \frac{1}{2} \bar{\psi} \gamma_\mu \tau^a \psi, \quad \tilde{\sigma}_\nu T^a_{\mu\nu} = \frac{1}{2} i \tilde{\sigma}_\nu \bar{\psi} \sigma_{\mu\nu} \tau^a \psi \]
Time-like pion form factor results

- Results for CLS N200 ensemble $48^3 \times 128$ with $a = 0.064$ fm and $m_\pi = 280$ MeV (curve is fit with thrice-subtracted dispersion)
Time-like pion form factor results

- results for CLS J303 ensemble $64^3 \times 192$ with $a = 0.050$ fm and $m_\pi = 260$ MeV (curve is fit with thrice-subtracted dispersion)

- similar method is now being used for Δ transition form factor needed by Deep Underground Neutrino Experiment
Baryon-baryon interactions in HAL QCD method

- HAL QCD collaboration has extensively studied NN interactions
- their method extracts observables from non-local kernels associated with tempo-spatial correlation functions
- controversy: disagreements with direct method
- recent study shows discrepancy is from misidentification of energies in direct method
- used the $\Xi\Xi(1S_0)$ temporal correlation functions

- accelerate progress in baryon-baryon scattering with this resolution
Recent H-dibaryon study

- obtained results at the $SU(3)$ flavor symmetric point
- used baryon-baryon operators since previous study showed hexaquark operators would not saturate signal
- found several finite-volume energies below $\Lambda\Lambda$ threshold
- scattering amplitude analysis needed to determine if bound/resonance
- warm up exercise (small lattices, pion much too heavy)
- future work on larger lattices and lighter pions will involve stochastic LapH method
Effective masses for spin-0 and spin-1 operators of different flavor irreps using 3 ensembles

Horizontal black lines show two-octet baryon threshold
Conclusion

- recent highlights involving baryons in lattice QCD
 - proton mass decomposition
 - nucleon spin decomposition
 - percent level determination of nucleon axial coupling
 - proton and neutron electromagnetic form factors
 - parton distribution function
 - scattering amplitudes
 - baryon-baryon interactions with HAL QCD method
 - H-dibaryon warm up

- key progress
 - achieving much better precision with disconnected diagrams
 - ability to include multi-hadron operators
 - more and more studies being done at physical point

- excited-baryon resonances in near future