Progress in Excited Hadron States in Lattice QCD

Colin Morningstar (Carnegie Mellon University) Florida International U. Colloquium November 20, 2009

The frontier awaits

- experiments show many excited-state hadrons exist
- significant experimental efforts to map out QCD resonance spectrum → JLab Hall B, Hall D, ELSA, etc.
- great need for ab initio calculations \rightarrow lattice QCD

November 20, 2009

The challenge of exploration!

- most excited hadrons are unstable (resonances)
- excited states more difficult to extract in Monte Carlo calculations
 - correlation matrices needed
 - operators with very good overlaps onto states of interest
- must extract all states lying below a state of interest
 - □ as pion get lighter, more and more multi-hadron states
- best multi-hadron operators made from constituent hadron operators with well-defined relative momenta
 - need for all-to-all quark propagators
- disconnected diagrams

Hadron Spectrum Collaboration (HSC)

- spin-off from the Lattice Hadron Physics Collaboration which was spear-headed by Nathan Isgur and John Negele
- current members:
 - Justin Foley, David Lenkner, Colin Morningstar, Ricky Wong (CMU)
 - John Bulava (DESY, Zeuthen)
 - Eric Engelson, Steve Wallace (U. Maryland)
 - Mike Peardon, Sinead Ryan (Trinity Coll. Dublin)
 - Keisuke Jimmy Juge (U. of Pacific)
 - R. Edwards, B. Joo, D. Richards, C. Thomas (Jefferson Lab.)
 - H.W. Lin (U. Washington), J. Dudek (Old Dominion)
 - N. Mathur (Tata Institute)

Overview of our spectrum project

- obtain stationary state energies of QCD in various boxes
 - \Box Ist milestone: quenched excited states with heavy pion \rightarrow done
 - □ 2nd milestone: N_f =2 excited states with heavy pion → done
 - 3^{rd} milestone: $N_f = 2 + 1$ excited states with light pion
 - multi-hadron operators needed \rightarrow many-to-many quark propagators
 - recent technology breakthrough \rightarrow new quark smearing with improved variance reduction
- interpretation of finite-volume energies
 - spectrum matching to construct effective hadron theory?

Monte Carlo method

- hadron operators $\phi = \phi[\overline{\psi}, \psi, U]$ ψ =quark U =gluon field
- temporal correlations from path integrals

$$\left\langle \phi(t)\phi(0)\right\rangle = \frac{\int D[\overline{\psi},\psi,U] \ \phi(t)\phi(0) \ e^{-\overline{\psi}M[U]\psi-S[U]}}{\int D[\overline{\psi},\psi,U] \ e^{-\overline{\psi}M[U]\psi-S[U]}}$$

integrate exactly over quark Grassmann fields

$$\left\langle \phi(t)\phi(0) \right\rangle = \frac{\int DU \, \det M[U] \left(M^{-1}[U] \cdots \right) e^{-S[U]}}{\int DU \, \det M[U] \, e^{-S[U]}}$$

- resort to Monte Carlo method to integrate over gluon fields
- generate sequence of field configurations $U_1, U_2, U_3, \cdots, U_N$ using Markov chain procedure
 - use of parallel computations on supercomputers
 - especially intensive as quark mass (pion mass) gets small

Lattice regularization

- hypercubic space-time lattice regulator needed for Monte Carlo
- quarks reside on sites, gluons reside on links between sites
- lattice excludes short wavelengths from theory (regulator)
- regulator removed using standard renormalization procedures (continuum limit)
- systematic errors
 - discretization
 - finite volume

Excited-state energies from Monte Carlo

- extracting excited-state energies requires matrix of correlators
- for a given $N \times N$ correlator matrix $C_{\alpha\beta}(t) = \langle 0 | O_{\alpha}(t) O_{\beta}^{+}(0) | 0 \rangle$ one defines the N principal correlators $\lambda_{\alpha}(t,t_{0})$ as the eigenvalues of

$$C(t_0)^{-1/2} C(t) C(t_0)^{-1/2}$$

where t_0 (the time defining the "metric") is small

- can show that $\lim_{t\to\infty} \lambda_{\alpha}(t,t_0) = e^{-(t-t_0)E_{\alpha}} (1+e^{-t\Delta E_{\alpha}})$
- N principal effective masses defined by $m_{\alpha}^{\text{eff}}(t) = \ln\left(\frac{\lambda_{\alpha}(t,t_0)}{\lambda_{\alpha}(t+1,t_0)}\right)$ now tend (plateau) to the N lowest-lying stationary-state energies
- analysis:
 - fit each principal correlator to single exponential
 - optimize on earlier time slice, matrix fit to optimized matrix
 - both methods as consistency check

November 20, 2009

Operator design issues

- statistical noise increases with temporal separation t
- use of very good operators is <u>crucial</u> or noise swamps signal
- recipe for making better operators
 - crucial to construct operators using smeared fields
 - link variable smearing
 - quark field smearing
 - spatially extended operators
 - use large set of operators (variational coefficients)

Three stage approach (prd72:094506,2005)

- concentrate on baryons at rest (zero momentum)
- operators classified according to the irreps of O_h

$$G_{1g}, G_{1u}, G_{2g}, G_{2u}, H_g, H_u$$

• (1) basic building blocks: smeared, covariant-displaced quark fields

 $(\widetilde{D}_{j}^{(p)}\widetilde{\psi}(x))_{Aa\alpha}$ p - link displacement $(j = 0, \pm 1, \pm 2, \pm 3)$

- (2) construct elemental operators (translationally invariant) $B^{F}(x) = \phi^{F}_{ABC} \varepsilon_{abc} (\tilde{D}_{i}^{(p)} \tilde{\psi}(x))_{Aa\alpha} (\tilde{D}_{j}^{(p)} \tilde{\psi}(x))_{Bb\beta} (\tilde{D}_{k}^{(p)} \tilde{\psi}(x))_{Cc\gamma}$ • flavor structure from isospin
 - color structure from gauge invariance
- (3) group-theoretical projections onto irreps of O_h

$$B_{i}^{\Lambda\lambda F}(t) = \frac{d_{\Lambda}}{g_{O_{h}^{D}}} \sum_{R \in O_{h}^{D}} D_{\lambda\lambda}^{(\Lambda)}(R)^{*} U_{R} B_{i}^{F}(t) U_{R}^{+}$$

November 20, 2009

Single-hadron operators

- covariantly-displaced quark fields as building blocks
- group-theoretical projections onto irreps of lattice symmetry group
- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure

• reference: PRD<u>72</u>, 094506 (2005)

Spin identification and other remarks

spin identification possible by pattern matching

J	$n_{G_1}^J$	$n_{G_2}^J$	n_{H}^{J}
$\frac{1}{2}$	1	0	0
$\frac{3}{2}$	0	0	1
$\frac{5}{2}$	0	1	1
$\frac{7}{2}$	1	1	1
$\frac{9}{2}$	1	0	2
$\frac{11}{2}$	1	1	2
$\frac{13}{2}$	1	2	2
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

total numbers of operators assuming two different displacement lengths

Irrep	Δ, Ω	N	Σ, Ξ	Λ
G_{1g}	221	443	664	656
G_{1u}	221	443	664	656
G_{2g}	188	376	564	556
G_{2u}	188	376	564	556
H_g	418	809	1227	1209
H_u	418	809	1227	1209

- total numbers of operators is huge \rightarrow uncharted territory
- ultimately must face two-hadron scattering states

Quark- and gauge-field smearing

- smeared quark and gluon fields fields \rightarrow dramatically reduced coupling with short wavelength modes
- link-variable smearing (stout links PRD<u>69</u>, 054501 (2004))
 - define $C_{\mu}(x) = \sum_{\pm (\nu \neq \mu)} \rho_{\mu\nu} U_{\nu}(x) U_{\mu}(x + \hat{\nu}) U_{\nu}^{+}(x + \hat{\mu})$ spatially isotropic $\rho_{jk} = \rho$, $\rho_{4k} = \rho_{k4} = 0$

exponentiate traceless Hermitian matrix

$$\begin{split} \Omega_{\mu} &= C_{\mu} U_{\mu}^{+} \qquad Q_{\mu} = \frac{i}{2} \Big(\Omega_{\mu}^{+} - \Omega_{\mu} \Big) - \frac{i}{2N} \operatorname{Tr} \Big(\Omega_{\mu}^{+} - \Omega_{\mu} \Big) \\ \text{iterate} \qquad \qquad U_{\mu}^{(n+1)} = \exp \Big(i Q_{\mu}^{(n)} \Big) U_{\mu}^{(n)} \\ U_{\mu} &\to U_{\mu}^{(1)} \to \cdots \to U_{\mu}^{(n)} \stackrel{\mu}{=} \widetilde{U}_{\mu} \end{split}$$

initial quark-field smearing (Laplacian using smeared gauge field)

$$\tilde{\psi}(x) = \left(1 + \frac{\sigma_s}{4n_\sigma}\tilde{\Delta}\right)^{n_\sigma}\psi(x)$$

Importance of smearing

Nucleon G_{1g} channel
 effective masses of 3 selected operators

 noise reduction from link variable smearing, especially for displaced operators

•quark-field smearing reduces couplings to high-lying states

 $\sigma_s = 4.0, \quad n_\sigma = 32$ $n_\rho \rho = 2.5, \quad n_\rho = 16$

•less noise in excited states using $\sigma_s = 3.0$

November 20, 2009

Operator selection

- operator construction leads to very large number of operators
- rules of thumb for "pruning" operator sets
 - noise is the enemy!
 - prune first using intrinsic noise (diagonal correlators)
 - prune next within operator types (single-site, singly-displaced, etc.) based on condition number of
 - prune across all operators based on condition number
- best to keep a variety of different types of operators, as long as condition numbers maintained $\hat{C}_{ij}(t) = C_{ij}(t)$
 - $\hat{C}_{ij}(t) = \frac{C_{ij}(t)}{\sqrt{C_{ii}(t)C_{jj}(t)}}, \quad t = 1$
- typically use 16 operators to get 8 lowest lying levels

Nucleon G_{1q} effective masses

- 200 quenched configs, 12³×48 anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_{\pi} \sim 700$ MeV
- nucleon G_{1g} channel
- green=fixed coefficients, red=principal

Nucleon H_u effective masses

- 200 quenched configs, 12³×48 anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_{\pi} \sim 700$ MeV
- nucleon H_u channel
- green=fixed coefficients, red=principal

Nucleons

- $N_f = 2$ on $24^3 \times 64$ anisotropic clover lattice, $a_s \sim 0.11$ fm, $a_s/a_t \sim 3$
- Left: m_{π} =578 MeV Right: m_{π} =416 MeV PRD <u>79</u>, 034505 (2009)

multi-hadron thresholds above show need for multi-hadron operators to go to lower pion masses!!

November 20, 2009

Spatial summations

baryon at rest is operator of form

$$B(\vec{p}=0,t) = \frac{1}{V} \sum_{\vec{x}} \varphi_B(\vec{x},t)$$

• baryon correlator has a double spatial sum $\left\langle 0 \left| \overline{B}(\vec{p}=0,t) B(\vec{p}=0,0) \right| 0 \right\rangle = \frac{1}{V^2} \sum_{\vec{x} \in \vec{x}} \left\langle 0 \left| \overline{\varphi}_B(\vec{x},t) \varphi_B(\vec{y},0) \right| 0 \right\rangle$

- computing all elements of propagators exactly not feasible
- translational invariance can limit summation over source site to a single site for local operators

$$\left\langle 0 \left| \overline{B}(\vec{p}=0,t) B(\vec{p}=0,0) \right| 0 \right\rangle = \frac{1}{V} \sum_{\vec{x}} \left\langle 0 \left| \overline{\varphi}_B(\vec{x},t) \varphi_B(0,0) \right| 0 \right\rangle$$

Slice-to-slice quark propagators

good baryon-meson operator of total zero momentum has form

$$B(\vec{p},t)M(-\vec{p},t) = \frac{1}{V^2} \sum_{\vec{x},\vec{y}} \varphi_B(\vec{x},t) \varphi_M(\vec{y},t) e^{i\vec{p} \cdot (\vec{x}-\vec{y})}$$

- cannot limit source to single site for multi-hadron operators
- disconnected diagrams (scalar mesons) will also need many-to-many quark propagators
- quark propagator elements from all spatial sites to all spatial sites are needed!

Laplacian Heaviside quark-field smearing

- new quark-field smearing method PRD<u>80</u>, 054506 (2009)
- judicious choice of quark-field smearing makes exact computations with all-to-all quark propagators possible (on small volumes)
- to date, quark field smeared using covariant Laplacian

$$\tilde{\psi}(x) = \left(1 + \frac{\sigma_s}{4n_\sigma}\tilde{\Delta}\right)^{n_\sigma}\psi(x)$$

express in term of eigenvectors/eigenvalues of Laplacian

$$\widetilde{\psi}(x) = \left(1 + \frac{\sigma_s}{4n_\sigma} \widetilde{\Delta}\right)^{n_\sigma} \sum_k |\varphi_k\rangle \langle \varphi_k | \psi(x) |$$
$$= \sum_k \left(1 + \frac{\sigma_s \lambda_k}{4n_\sigma}\right)^{n_\sigma} |\varphi_k\rangle \langle \varphi_k | \psi(x) |$$

• truncate sum and set weights to unity \rightarrow Laplacian Heaviside

Getting to know the Laplacian

- spectrum of the covariant Laplacian
- *left*: dependence on lattice size; *right*: dependence on link smearing

November 20, 2009

Choosing the smearing cut-off

Laplacian Heaviside (Laph) quark smearing

$$\tilde{\psi}(x) = \Theta\left(\sigma_s^2 + \tilde{\Delta}\right)\psi(x)$$

$$\approx \sum_{k=1}^{N_{\max}} |\varphi_k\rangle \langle \varphi_k | \psi(x) \rangle$$

- choose smearing cut-off based on minimizing excited-state contamination, keep noise small
 - \Box behavior of nucleon *t*=1 effective masses

November 20, 2009

Tests of Laplacian Heaviside smearing

 comparison of ρ-meson effective masses using same number of gauge-field configurations

- typically need about 32 modes on 16³ lattice
- about 128 modes on 24³ lattice

Nucleon operator pruning

• $N_f=2+1$ on 16³×128 lattice, $m_{\pi}=380$ MeV (100 configs, 32 eigvecs)

Delta operator pruning

• $N_f=2+1$ on 16³×128 lattice, $m_{\pi}=380$ MeV (481 configs, 32 eigvecs)

November 20, 2009

Sigma operator pruning

• $N_f = 2 + 1$ on $16^3 \times 128$ lattice, $m_{\pi} = 380$ MeV (100 configs, 32 eigvecs)

November 20, 2009

Isovector G-parity odd mesons

$N_f=2+1$ on 16³×128 lattice, m_π= 380 MeV (100 configs, 32 eigvecs)

a mesons π mesons

Kaons

$N_f=2+1$ on 16³×128 lattice, m_π= 380 MeV (100 configs, 32 eigvecs)

Stochastic estimation of quark propagators

- new Laph quark smearing method allows exact computation of all-toall quark propagators
- but number of Laplacian eigenvectors needed becomes prohibitively large on large lattices
 - □ 128 modes needed on 24³ lattice
- computational method is rather cumbersome, too
- need to resort to stochastic estimation

Stochastic estimation

- quark propagator is just inverse of Dirac matrix M
- noise vectors η satisfying $E(\eta_i)=0$ and $E(\eta_i\eta_j^*)=\delta_{ij}$ are useful for stochastic estimates of inverse of a matrix M
- Z_4 noise is used $\{1, i, -1, -i\}$
- define $X(\eta) = M^{-1}\eta$ then

$$E(X_{i}\eta_{j}^{*}) = E\left(\sum_{k} M_{ik}^{-1}\eta_{k}\eta_{j}^{*}\right) = \sum_{k} M_{ik}^{-1}E\left(\eta_{k}\eta_{j}^{*}\right) = \sum_{k} M_{ik}^{-1}\delta_{kj} = M_{ij}^{-1}$$

• if can solve $M X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$ then we have a Monte Carlo estimate of all elements of M^{-1} :

$$M_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)}$$

- variances in above estimates usually unacceptably large
- introduce variance reduction using source dilution

Source dilution for single matrix inverse

dilution introduces a complete set of projections:

$$P^{(a)}P^{(b)} = \delta^{ab}P^{(a)}, \qquad \sum_{a} P^{(a)} = 1, \qquad P^{(a)\dagger} = P^{(a)}$$

observe that

$$M_{ij}^{-1} = M_{ik}^{-1}\delta_{kj} = \sum_{a} M_{ik}^{-1}P_{kj}^{(a)} = \sum_{a} M_{ik}^{-1}P_{kk'}^{(a)}\delta_{k'j'}P_{j'j}^{(a)}$$

$$= \sum_{a} M_{ik}^{-1}P_{kk'}^{(a)}E(\eta_{k'}\eta_{j'}^{*})P_{j'j}^{(a)} = \sum_{a} M_{ik}^{-1}E(P_{kk'}^{(a)}\eta_{k'}\eta_{j'}^{*}P_{j'j}^{(a)})$$

e define

$$\eta_{k}^{[a]} = P_{kk'}^{(a)}\eta_{k'}, \qquad \eta_{j}^{[a]*} = \eta_{j'}^{*}P_{j'j}^{(a)}, \qquad X_{k}^{[a]} = M_{kj}^{-1}\eta_{j}^{[a]}$$

so that

$$M_{ij}^{-1} = \sum_{a} E(X_{i}^{[a]}\eta_{j}^{[a]*})$$

Monte Carlo estimate is now

$$M_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{a} X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

• $\sum_{a} \eta_{i}^{[a]} \eta_{j}^{[a]*}$ has same expected value as $\eta_{i} \eta_{j}^{*}$, but reduced variance (statistical zeros \rightarrow exact)

November 20, 2009

Earlier schemes

• Introduce Z_N noise in color, spin, space, time

$$\eta_{alpha}\left(ec{x},t
ight)$$

• Time dilution (particularly effective)

$$P_{a\alpha;b\beta}^{(B)}\left(\vec{x},t;\vec{y},t'\right) = \delta_{ab}\delta_{\alpha\beta}\delta\left(\vec{x},\vec{y}\right)\delta_{Bt}\delta_{Bt'}, \qquad I$$

$$B = 0, 1, ..., N_t - 1$$

• Spin dilution

$$P_{a\alpha;b\beta}^{(B)}\left(\vec{x},t;\vec{y},t'\right) = \delta_{ab}\delta_{B\alpha}\delta_{B\beta}\delta\left(\vec{x},\vec{y}\right)\delta_{tt'}, \qquad B = 0, 1, 2, 3$$

Color dilution

$$P_{a\alpha;b\beta}^{(B)}\left(\vec{x},t;\vec{y},t'\right) = \delta_{Ba}\delta_{Bb}\delta_{\alpha\beta}\delta\left(\vec{x},\vec{y}\right)\delta_{tt'}, \qquad B = 0,1,2$$

- Spatial dilutions?
 - even-odd

Dilution tests (old method)

• 100 quenched configs, 12³×48 anisotropic Wilson lattice

C(t=5) for single-site nucleon

November 20, 2009

New stochastic Laph method

Introduce Z_N noise in Laph subspace

 $\rho_{\alpha k}(t)$ $t = \text{time}, \alpha = \text{spin}, k = \text{eigenvector number}$

Time dilution (particularly effective)

$$P_{\alpha k;\beta l}^{(B)}(t;t') = \delta_{kl} \delta_{\alpha \beta} \delta_{Bt} \delta_{Bt'}, \qquad B = 0, 1, \dots, N_t - 1$$

Spin dilution

$$P_{\alpha k;\beta l}^{(B)}(t;t') = \delta_{kl} \delta_{B\alpha} \delta_{B\beta} \delta_{tt'}, \qquad B = 0, 1, 2$$

- Laplacian eigenvector dilution
 - define $P_{\alpha k;\beta l}^{(B)}(t;t') = \delta_{Bk} \delta_{Bl} \delta_{\alpha\beta} \delta_{tt'}, \qquad B = 0, 1, 2, N_{eig} 1$

,3

- group projectors together
 - by blocking
 - as interlaced

Old stochastic versus new stochastic

- new method (open symbols) has dramatically decreased variance
- test using a triply-displaced-T nucleon operator

November 20, 2009

Old stochastic versus new stochastic (zoom in)

zoom in of triply-displaced-T nucleon plot on last slide

November 20, 2009

Old stochastic versus new stochastic

• comparison using single-site π operator

November 20, 2009

Old stochastic versus new stochastic

• zoom in of π plot on previous slide

November 20, 2009

Mild volume dependence

- 16³ lattice versus 20³ lattice, both old and new stochastic methods
- test using triply-displaced-T nucleon operator

November 20, 2009

Mild volume dependence

zoom in of plot on previous slide

November 20, 2009

Source-sink factorization

baryon correlator has form

 $C_{l\bar{l}} = c_{ijk}^{(l)} c_{\bar{l}\bar{j}\bar{k}}^{(\bar{l})*} Q_{i\bar{l}}^{A} Q_{j\bar{j}}^{B} Q_{k\bar{k}}^{C}$

stochastic estimates with dilution

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \left(\varphi_i^{(Ar)[d_A]} \eta_{\bar{i}}^{(Ar)[d_A]*} \right)$$

$$\times \Big(\varphi_j^{(Br)[d_B]} \eta_{\overline{j}}^{(Br)[d_B]*}\Big) \Big(\varphi_k^{(Cr)[d_C]} \eta_{\overline{k}}^{(Cr)[d_C]*}\Big)$$

define

$$\Gamma_{l}^{(r)[d_{A}d_{B}d_{C}]} = c_{ijk}^{(l)} \varphi_{i}^{(Ar)[d_{A}]} \varphi_{j}^{(Br)[d_{B}]} \varphi_{k}^{(Cr)[d_{C}]}$$
$$\Omega_{l}^{(r)[d_{A}d_{B}d_{C}]} = c_{ijk}^{(l)} \eta_{i}^{(Ar)[d_{A}]} \eta_{j}^{(Br)[d_{B}]} \eta_{k}^{(Cr)[d_{C}]}$$

correlator becomes dot product of source vector with sink vector

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \Gamma_l^{(r)[d_A d_B d_C]} \Omega_{\bar{l}}^{(r)[d_A d_B d_C]*}$$

store ABC permutations to handle Wick orderings

November 20, 2009

Moving π and a mesons

first step towards including multi-hadron operators:

- moving single hadrons
- results below have one unit of on-axis momentum
- projections onto space group irreps (see J. Foley talk)

November 20, 2009

Configuration generation

- significant time on USQCD (DOE) and NSF computing resources
- anisotropic clover fermion action (with stout links) and anisotropic improved gauge action
 - □ tunings of couplings, aspect ratio, lattice spacing done
- anisotropic Wilson configurations generated during clover tuning
- current goal:
 - three lattice spacings: a = 0.125 fm, 0.10 fm, 0.08 fm
 - three volumes: $V = (3.2 \text{ fm})^4$, $(4.0 \text{ fm})^4$, $(5.0 \text{ fm})^4$
 - □ 2+1 flavors, $m_{\pi} \sim 350$ MeV, 220 MeV, 180 MeV
- USQCD Chroma software suite

Resonances in a box: an example

- Consider simple ID quantum mechanics example
- Hamiltonian

$$H = \frac{1}{2}p^{2} + V(x) \qquad V(x) = (x^{4} - 3)e^{-x^{2}/2}$$

November 20, 2009

1D example spectrum

• Spectrum has two bound states, two resonances for E < 4

transmission coefficient

Scattering phase shifts

• define even- and odd-parity phase shifts δ_{\pm}

phase between transmitted and incident wave

Spectrum in box (periodic b.c.)

- spectrum is discrete in box (momentum quantized)
- narrow resonance is avoided level crossing, broad resonance?

Positive parity energies

Negative parity energies

Dotted curves are V=0 spectrum

November 20, 2009

Unstable particles (resonances)

- our computations done in a periodic box
 - momenta quantized
 - □ discrete energy spectrum of stationary states → single hadron, 2 hadron, ...

- how to extract resonance info from box info?
- <u>approach I</u>: crude scan
 - \Box if goal is exploration only \rightarrow "ferret" out resonances
 - spectrum in a few volumes
 - placement, pattern of multi-particle states known
 - □ resonances → level distortion near energy with little volume dependence
 - □ short-cut tricks of McNeile/Michael, Phys Lett B556, 177 (2003)

Unstable particles (resonances)

- <u>approach 2</u>: phase-shift method
 - \Box if goal is high precision \rightarrow work much harder!
 - relate finite-box energy of multi-particle
 model to infinite-volume phase shifts

- evaluate energy spectrum in several volumes to compute phase shifts using formula from previous step
- deduce resonance parameters from phase shifts
- early references
 - B. DeWitt, PR 103, 1565 (1956) (sphere)
 - M. Luscher, NPB**364**, 237 (1991) (ρ - $\pi\pi$ in cube)
- <u>approach 3</u>: histogram method
 - recent work for pion-nucleon system:
 - □ V. Bernard et al, arXiv:0806.4495 [hep-lat]
- <u>new approach</u>: construct effective theory of hadrons?

Summary

- goal: to wring out hadron spectrum from QCD Lagrangian using Monte Carlo methods on a space-time lattice
 baryons, mesons (and glueballs, hybrids, tetraquarks, ...)
- discussed extraction of excited states in Monte Carlo calculations
 - correlation matrices needed
 - operators with very good overlaps onto states of interest
- must extract all states lying below a state of interest
 - □ as pion get lighter, more and more multi-hadron states
- multi-hadron operators \rightarrow relative momenta
 - need for slice-to-slice quark propagators
- new stochastic Laph method \rightarrow end game in sight?
- interpretation of finite-box energies