Excited states and scattering phase shifts from lattice QCD

Colin Morningstar
Carnegie Mellon University

Workshop of the APS Topical Group on Hadron Physics

Baltimore, MD
April 9, 2015

Overview

- goals:
- comprehensive survey of QCD stationary states in finite volume
- hadron scattering phase shifts, decay widths, matrix elements
- focus: large 32^{3} anisotropic lattices, $m_{\pi} \sim 240 \mathrm{MeV}$
- extracting excited-state energies
- single-hadron and multi-hadron operators
- the stochastic LapH method
- level identification issues

- results for $I=1, S=0, T_{1 u}^{+}$channel
- 100×100 correlator matrix, all needed 2 -hadron operators
- other channels
- $I=1 P$-wave $\pi \pi$ scattering phase shifts and width of ρ
- future work

Dramatis Personae

- current grad students:

former CMU postdocs:

- past CMU grad students:

- thanks to NSF Teragrid/XSEDE:
- Athena+Kraken at NICS
- Ranger+Stampede at TACC

Temporal correlations from path integrals

- stationary-state energies from $N \times N$ Hermitian correlation matrix

$$
C_{i j}(t)=\langle 0| O_{i}\left(t+t_{0}\right) \bar{O}_{j}\left(t_{0}\right)|0\rangle
$$

- judiciously designed operators \bar{O}_{j} create states of interest

$$
O_{j}(t)=O_{j}[\bar{\psi}(t), \psi(t), U(t)]
$$

- correlators from path integrals over quark $\psi, \bar{\psi}$ and gluon U fields

$$
C_{i j}(t)=\frac{\int \mathcal{D}(\bar{\psi}, \psi, U) O_{i}\left(t+t_{0}\right) \bar{O}_{j}\left(t_{0}\right) \exp (-S[\bar{\psi}, \psi, U])}{\int \mathcal{D}(\bar{\psi}, \psi, U) \exp (-S[\bar{\psi}, \psi, U])}
$$

- involves the action

$$
S[\bar{\psi}, \psi, U]=\bar{\psi} K[U] \psi+S_{G}[U]
$$

- $K[U]$ is fermion Dirac matrix
- $S_{G}[U]$ is gluon action

Integrating the quark fields

- integrals over Grassmann-valued quark fields done exactly
- meson-to-meson example:

$$
\begin{aligned}
& \int \mathcal{D}(\bar{\psi}, \psi) \psi_{a} \psi_{b} \bar{\psi}_{c} \bar{\psi}_{d} \exp (-\bar{\psi} K \psi) \\
= & \left(K_{a d}^{-1} K_{b c}^{-1}-K_{a c}^{-1} K_{b d}^{-1}\right) \operatorname{det} K .
\end{aligned}
$$

- baryon-to-baryon example:

$$
\begin{aligned}
& \int \mathcal{D}(\bar{\psi}, \psi) \psi_{a_{1}} \psi_{a_{2}} \psi_{a_{3}} \bar{\psi}_{b_{1}} \bar{\psi}_{b_{2}} \bar{\psi}_{b_{3}} \exp (-\bar{\psi} K \psi) \\
= & \left(-K_{a_{1} b_{1}}^{-1} K_{a_{2} b_{2}}^{-1} K_{a_{3} b_{3}}^{-1}+K_{a_{1} b_{1}}^{-1} K_{a_{2} b_{3}}^{-1} K_{a_{3} b_{2}}^{-1}+K_{a_{1} b_{2}}^{-1} K_{a_{2} b_{1}}^{-1} K_{a_{3} b_{3}}^{-1}\right. \\
- & \left.K_{a_{1} b_{2}}^{-1} K_{a_{2} b_{3}}^{-1} K_{a_{3} b_{1}}^{-1}-K_{a_{1} b_{3}}^{-1} K_{a_{2} b_{1}}^{-1} K_{a_{3} b_{2}}^{-1}+K_{a_{1} b_{3}}^{-1} K_{a_{2} b_{2}}^{-1} K_{a_{3} b_{1}}^{-1}\right) \operatorname{det} K
\end{aligned}
$$

Monte Carlo integration

- correlators have form

$$
C_{i j}(t)=\frac{\int \mathcal{D} U \operatorname{det} K[U] K^{-1}[U] \cdots K^{-1}[U] \exp \left(-S_{G}[U]\right)}{\int \mathcal{D} U \operatorname{det} K[U] \exp \left(-S_{G}[U]\right)}
$$

- resort to Monte Carlo method to integrate over gluon fields
- use Markov chain to generate sequence of gauge-field configurations

$$
U_{1}, U_{2}, \ldots, U_{N}
$$

- most computationally demanding parts:
- including det K in updating
- evaluating K^{-1} in numerator

Lattice QCD

- Monte Carlo method using computers requires hypercubic space-time lattice
- quarks reside on sites, gluons reside on links between sites
- for gluons, 8 dimensional integral on each link
- path integral dimension $32 N_{x} N_{y} N_{z} N_{t}$
- 268 million for $32^{3} \times 256$ lattice
- Metropolis method with global updating proposal
- RHMC: solve Hamilton equations with Gaussian momenta
- $\operatorname{det} K$ estimates with integral over pseudo-fermion fields

- systematic errors
- discretization
- finite volume

Excited states from correlation matrices

- in finite volume, energies are discrete (neglect wrap-around)

$$
C_{i j}(t)=\sum_{n} Z_{i}^{(n)} Z_{j}^{(n) *} e^{-E_{n} t}, \quad Z_{j}^{(n)}=\langle 0| O_{j}|n\rangle
$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

$$
\widetilde{C}(t)=U^{\dagger} C\left(\tau_{0}\right)^{-1 / 2} C(t) C\left(\tau_{0}\right)^{-1 / 2} U
$$

- columns of U are eigenvectors of $C\left(\tau_{0}\right)^{-1 / 2} C\left(\tau_{D}\right) C\left(\tau_{0}\right)^{-1 / 2}$
- choose τ_{0} and τ_{D} large enough so $\widetilde{C}(t)$ diagonal for $t>\tau_{D}$
- effective energies

$$
\stackrel{\mathrm{s}}{\alpha}^{\widetilde{m}_{\alpha}^{\mathrm{eff}}(t)}=\frac{1}{\Delta t} \ln \left(\frac{\widetilde{C}_{\alpha \alpha}(t)}{\widetilde{C}_{\alpha \alpha}(t+\Delta t)}\right)
$$

tend to N lowest-lying stationary state energies in a channel

- 2-exponential fits to $\widetilde{C}_{\alpha \alpha}(t)$ yield energies E_{α} and overlaps $Z_{j}^{(n)}$

Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_{j}(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

$$
\widetilde{\psi}_{a \alpha}(x)=\mathcal{S}_{a b}(x, y) \psi_{b \alpha}(y), \quad \mathcal{S}=\Theta\left(\sigma_{s}^{2}+\widetilde{\Delta}\right)
$$

- 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$
q_{a \alpha j}^{A}=D^{(j)} \widetilde{\psi}_{a \alpha}^{(A)}, \quad \bar{q}_{a \alpha j}^{A}=\widetilde{\bar{\psi}}_{a \alpha}^{(A)} \gamma_{4} D^{(j) \dagger}
$$

- displacement $D^{(j)}$ is product of smeared links:

$$
D^{(j)}\left(x, x^{\prime}\right)=\widetilde{U}_{j_{1}}(x) \widetilde{U}_{j_{2}}\left(x+d_{2}\right) \widetilde{U}_{j_{3}}\left(x+d_{3}\right) \ldots \widetilde{U}_{j_{p}}\left(x+d_{p}\right) \delta_{x^{\prime}, x+d_{p+1}}
$$

- to good approximation, LapH smearing operator is

$$
\mathcal{S}=V_{s} V_{s}^{\dagger}
$$

- columns of matrix V_{s} are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

- quark displacements build up orbital, radial structure

Meson configurations

Baryon configurations

- group-theory projections onto irreps of lattice symmetry group

$$
\bar{M}_{l}(t)=c_{\alpha \beta}^{(l) *} \bar{\Phi}_{\alpha \beta}^{A B}(t) \quad \bar{B}_{l}(t)=c_{\alpha \beta \gamma}^{(l) *} \bar{\Phi}_{\alpha \beta \gamma}^{A B C}(t)
$$

- definite momentum p, irreps of little group of p

Importance of smeared fields

- effective masses of 3 selected nucleon operators shown
- noise reduction of displaced-operators from link smearing $n_{\rho} \rho=2.5, n_{\rho}=16$
- quark-field smearing
$\sigma_{s}=4.0, n_{\sigma}=32$
reduces excited-state contamination

Early results on small 16^{3} and 24^{3} lattices

- Bob Sugar in 2005: "You'll never see more than 2 levels"
- $I=1, S=0$ energies on 24^{3} lattice, $m_{\pi} \sim 390 \mathrm{MeV}$ in 2010
- use of single-meson operators only
- shaded region shows where two-meson energies expected

Early results on small lattices

- kaons on 16^{3} lattice, $m_{\pi} \sim 390 \mathrm{MeV}$ in 2008
- use of single-meson operators only

Early results on small lattices

- N, Δ baryons on 16^{3} lattice, $m_{\pi} \sim 390 \mathrm{MeV}$ in 2008
- use of single-baryon operators only

Early results on small lattices

- Σ, Λ, Ξ baryons on 16^{3} lattice, $m_{\pi} \sim 390 \mathrm{MeV}$ in 2008
- use of single-baryon operators only

Two-hadron operators

- our approach: superposition of products of single-hadron operators of definite momenta

$$
c_{p_{a} \lambda_{a} ; \boldsymbol{p}_{b} \lambda_{b}}^{l_{3} I_{I_{b}}} B_{p_{a} \Lambda_{a} \lambda_{a} i_{a}}^{l_{a} I_{a} S_{a}} B_{p_{b} \Lambda_{b} \lambda_{b} i_{b}}^{l_{l_{3} S} b_{b}}
$$

- fixed total momentum $\boldsymbol{p}=\boldsymbol{p}_{a}+\boldsymbol{p}_{b}$, fixed $\Lambda_{a}, i_{a}, \Lambda_{b}, i_{b}$
- group-theory projections onto little group of p and isospin irreps
- restrict attention to certain classes of momentum directions
- on axis $\pm \widehat{x}, \pm \widehat{y}, \pm \widehat{z}$
- planar diagonal $\pm \widehat{x} \pm \widehat{y}, \pm \widehat{x} \pm \widehat{z}, \pm \widehat{y} \pm \widehat{z}$
- cubic diagonal $\pm \hat{x} \pm \widehat{y} \pm \widehat{z}$
- crucial to know and fix all phases of single-hadron operators for all momenta
- each class, choose reference direction $p_{\text {ref }}$
- each \boldsymbol{p}, select one reference rotation $R_{\text {ref }}^{p}$ that transforms $\boldsymbol{p}_{\text {ref }}$ into \boldsymbol{p}
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Quark propagation

- quark propagator is inverse K^{-1} of Dirac matrix
- rows/columns involve lattice site, spin, color
- very large $N_{\text {tot }} \times N_{\text {tot }}$ matrix for each flavor

$$
N_{\text {tot }}=N_{\text {site }} N_{\text {spin }} N_{\text {color }}
$$

- for $32^{3} \times 256$ lattice, $N_{\text {tot }} \sim 101$ million
- not feasible to compute (or store) all elements of K^{-1}
- solve linear systems $K x=y$ for source vectors y
- translation invariance can drastically reduce number of source vectors y needed
- multi-hadron operators and isoscalar mesons require large number of source vectors y

Quark line diagrams

- temporal correlations involving our two-hadron operators need
- slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
- sink-to-sink quark lines

- isoscalar mesons also require sink-to-sink quark lines

- solution: the stochastic LapH method!

Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix $K[U]$
- use noise vectors η satisfying $E\left(\eta_{i}\right)=0$ and $E\left(\eta_{i} \eta_{j}^{*}\right)=\delta_{i j}$
- Z_{4} noise is used $\{1, i,-1,-i\}$
- solve $K[U] X^{(r)}=\eta^{(r)}$ for each of N_{R} noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$
K_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} X_{i}^{(r)} \eta_{j}^{(r) *}
$$

- variance reduction using noise dilution
- dilution introduces projectors
- define

$$
P^{(a)} P^{(b)}=\delta^{a b} P^{(a)}, \quad \sum_{a} P^{(a)}=1, \quad P^{(a) \dagger}=P^{(a)}
$$

$$
\eta^{[a]}=P^{(a)} \eta, \quad X^{[a]}=K^{-1} \eta^{[a]}
$$

to obtain Monte Carlo estimate with drastically reduced variance

$$
K_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \sum_{a} X_{i}^{(r)[a]} \eta_{j}^{(r)[a] *}
$$

Stochastic LapH method

- introduce Z_{N} noise in the LapH subspace

$$
\rho_{\alpha k}(t), \quad t=\text { time }, \alpha=\text { spin, } k=\text { eigenvector number }
$$

- four dilution schemes:

$$
\begin{array}{lll}
P_{i j}^{(a)}=\delta_{i j} & a=0 & \text { (none) } \\
P_{i j}^{(a)}=\delta_{i j} \delta_{a i} & a=0,1, \ldots, N-1 & \text { (full) } \tag{full}\\
P_{i i}^{(a)}=\delta_{i j} \delta_{a, K i / N} & a=0,1, \ldots, K-1 & \text { (interlace-K) } \\
P_{i j}^{(a)}=\delta_{i j} \delta_{a, i \bmod k} & a=0,1, \ldots, K-1 & \text { (block-K) }
\end{array}
$$

- apply dilutions to
- time indices (full for fixed src, interlace-16 for relative src)
- spin indices (full)
- LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)

The effectiveness of stochastic LapH

- comparing use of lattice noise vs noise in LapH subspace
- N_{D} is number of solutions to $K x=y$

Quark line estimates in stochastic LapH

- each of our quark lines is the product of matrices

$$
\mathcal{Q}=D^{(j)} \mathcal{S} K^{-1} \gamma_{4} \mathcal{S} D^{(k) \dagger}
$$

- displaced-smeared-diluted quark source and quark sink vectors:

$$
\begin{aligned}
\varrho^{[b]}(\rho) & =D^{(j)} V_{s} P^{(b)} \rho \\
\varphi^{[b]}(\rho) & =D^{(j)} \mathcal{S} K^{-1} \gamma_{4} V_{s} P^{(b)} \rho
\end{aligned}
$$

- estimate in stochastic LapH by (A, B flavor, u, v compound: space, time, color, spin, displacement type)

$$
\mathcal{Q}_{u v}^{(A B)} \approx \frac{1}{N_{R}} \delta_{A B} \sum_{r=1}^{N_{R}} \sum_{b} \varphi_{u}^{[b]}\left(\rho^{r}\right) \varrho_{v}^{[b]}\left(\rho^{r}\right)^{*}
$$

- occasionally use γ_{5}-Hermiticity to switch source and sink

$$
\mathcal{Q}_{u v}^{(A B)} \approx \frac{1}{N_{R}} \delta_{A B} \sum_{r=1}^{N_{R}} \sum_{b} \bar{\varrho}_{u}^{[b]}\left(\rho^{r}\right) \bar{\varphi}_{v}^{[b]}\left(\rho^{r}\right)^{*}
$$

defining $\bar{\varrho}(\rho)=-\gamma_{5} \gamma_{4} \varrho(\rho)$ and $\bar{\varphi}(\rho)=\gamma_{5} \gamma_{4} \varphi(\rho)$

Source-sink factorization in stochastic LapH

- baryon correlator has form

$$
C_{\bar{l}}=c_{i j k}^{(l)} c_{i \bar{j} \bar{k}}^{(\bar{l}) *} \mathcal{Q}_{i \bar{i}}^{A} \mathcal{Q}_{j \bar{j}}^{B} \mathcal{Q}_{k \bar{k}}^{C}
$$

- stochastic estimate with dilution

$$
\begin{aligned}
C_{\bar{l} \bar{l}} & \approx \frac{1}{N_{R}} \sum_{r} \sum_{d_{A} d_{B} d_{C}} c_{i j k}^{(l)} c_{\overline{i j k}}^{(\bar{l}) *}\left(\varphi_{i}^{(A r)\left[d_{A}\right]} \varrho_{\bar{i}}^{(A r)\left[d_{A}\right] *}\right) \\
& \times\left(\varphi_{j}^{(B r)\left[d_{B}\right]} \varrho_{\bar{j}}^{(B r)\left[d_{B}\right] *}\right)\left(\varphi_{k}^{(C r)\left[d_{C}\right]} \varrho_{\bar{k}}^{(C r)\left[d_{C}\right] *}\right)
\end{aligned}
$$

- define baryon source and sink

$$
\begin{aligned}
\mathcal{B}_{l}^{(r)\left[d_{A} d_{B} d_{C]}\right]}\left(\varphi^{A}, \varphi^{B}, \varphi^{C}\right) & =c_{i j k}^{(l)} \varphi_{i}^{(A r)\left[d_{A}\right]} \varphi_{j}^{(B r)\left[d_{B}\right]} \varphi_{k}^{(C r)\left[d_{c}\right]} \\
\mathcal{B}_{l}^{(r)\left[d_{A} d_{B} d_{C}\right]}\left(\varrho^{A}, \varrho^{B}, \varrho^{C}\right) & =c_{i j k}^{(l)} \varrho_{i}^{(A r)\left[d_{A}\right]} \varrho_{j}^{(B r)\left[d_{B}\right]} \varrho_{k}^{(C r)\left[d_{c}\right]}
\end{aligned}
$$

- correlator is dot product of source vector with sink vector

$$
C_{\bar{l}} \approx \frac{1}{N_{R}} \sum_{r} \sum_{d_{A} d_{B} d_{C}} \mathcal{B}_{l}^{(r)\left[d_{A} d_{B} d_{C}\right]}\left(\varphi^{A}, \varphi^{B}, \varphi^{C}\right) \mathcal{B}_{\bar{l}}^{(r)\left[d_{A} d_{B} d_{c}\right]}\left(\varrho^{A}, \varrho^{B}, \varrho^{C}\right)^{*}
$$

Correlators and quark line diagrams

- baryon correlator

$$
C_{\bar{l}} \approx \frac{1}{N_{R}} \sum_{r} \sum_{d_{A} d_{B} d_{C}} \mathcal{B}_{l}^{(r)\left[d_{A} d_{B} d_{C}\right]}\left(\varphi^{A}, \varphi^{B}, \varphi^{C}\right) \mathcal{B}_{\bar{l}}^{(r)\left[d_{A} d_{B} d_{c}\right]}\left(\varrho^{A}, \varrho^{B}, \varrho^{C}\right)^{*}
$$

- express diagrammatically

- meson correlator

More complicated correlators

- two-meson to two-meson correlators (non isoscalar mesons)

Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
- not all directions equivalent \Rightarrow using $J^{P C}$ is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
- zero momentum states: little group O_{h}

$$
A_{1 a}, A_{2 g a}, E_{a}, T_{1 a}, T_{2 a}, \quad G_{1 a}, G_{2 a}, H_{a}, \quad a=g, u
$$

- on-axis momenta: little group $C_{4 v}$

$$
A_{1}, A_{2}, B_{1}, B_{2}, E, \quad G_{1}, G_{2}
$$

- planar-diagonal momenta: little group $C_{2 v}$

$$
A_{1}, A_{2}, B_{1}, B_{2}, \quad G_{1}, G_{2}
$$

- cubic-diagonal momenta: little group $C_{3 v}$

$$
A_{1}, A_{2}, E, \quad F_{1}, F_{2}, G
$$

- include G parity in some meson sectors (superscript + or -)

Spin content of cubic box irreps

- numbers of occurrences of Λ irreps in J subduced

			A_{1}		A_{2}	E	T_{1}		T_{2}	
			1		0	0	0		0	
			0		0	0	1		0	
			0		0	1	0		1	
			0		1	0	1		1	
			1		0	1	1		1	
			0		0	1	2		1	
			1		1	1	1		2	
			0		1	1	2		2	
J	G_{1}		G_{2}	H		J		G_{1}	G_{2}	H
$\frac{1}{2}$	1		0	0		$\frac{9}{2}$		1	0	2
$\frac{3}{2}$	0		0	1		$\frac{11}{2}$		1	1	2
$\frac{5}{2}$	0		1	1		$\frac{13}{2}$		1	2	2
$\frac{7}{2}$	1		1	1		$\frac{15}{2}$		1	1	3

Common hadrons

- irreps of commonly-known hadrons at rest

Hadron	Irrep	Hadron	Irrep	Hadron	Irrep
π	$A_{1 u}^{-}$	K	$A_{1 u}$	η, η^{\prime}	$A_{1 u}^{+}$
ρ	$T_{1 u}^{+}$	ω, ϕ	$T_{1 u}^{-}$	K^{*}	$T_{1 u}$
a_{0}	$A_{1 g}^{+}$	f_{0}	$A_{1 g}^{+}$	h_{1}	$T_{1 g}^{-}$
b_{1}	$T_{1 g}^{+}$	K_{1}	$T_{1 g}$	π_{1}	$T_{1 u}^{-}$
N, Σ	$G_{1 g}$	Λ, Ξ	$G_{1 g}$	Δ, Ω	H_{g}

Ensembles and run parameters

- plan to use three Monte Carlo ensembles
- $\left(32^{3} \mid 240\right): 412$ configs $32^{3} \times 256, \quad m_{\pi} \approx 240 \mathrm{MeV}, \quad m_{\pi} L \sim 4.4$
- $\left(24^{3} \mid 240\right): 584$ configs $24^{3} \times 128, \quad m_{\pi} \approx 240 \mathrm{MeV}, \quad m_{\pi} L \sim 3.3$
- $\left(24^{3} \mid 390\right)$: 551 configs $24^{3} \times 128, \quad m_{\pi} \approx 390 \mathrm{MeV}, \quad m_{\pi} L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta=1.5$ such that $a_{s} \sim 0.12 \mathrm{fm}, a_{t} \sim 0.035 \mathrm{fm}$
- strange quark mass $m_{s}=-0.0743$ nearly physical (using kaon)
- work in $m_{u}=m_{d}$ limit so $S U(2)$ isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi=0.10$ and $n_{\xi}=10$
- LapH smearing cutoff $\sigma_{s}^{2}=0.33$ such that
- $N_{v}=112$ for 24^{3} lattices
- $N_{v}=264$ for 32^{3} lattices
- source times:
- 4 widely-separated t_{0} values on 24^{3}
- $8 t_{0}$ values used on 32^{3} lattice

Use of XSEDE resources

- use of XSEDE resources crucial
- Monte Carlo generation of gauge-field configurations:
~ 200 million core hours
- quark propagators: ~ 100 million core hours
- hadrons + correlators: ~ 40 million core hours
- storage: ~ 300 TB

Kraken at NICS

Stampede at TACC

Status report

- correlator software last_laph completed summer 2013
- testing of all flavor channels for single and two-mesons completed fall 2013
- testing of all flavor channels for single baryon and meson-baryons completed summer 2014
- small- a expansions of all operators completed
- first focus on the resonance-rich ρ-channel: $I=1, S=0, T_{1 u}^{+}$
- results from 63×63 matrix of correlators $\left(32^{3} \mid 240\right)$ ensemble
- 10 single-hadron (quark-antiquark) operators
- " $\pi \pi$ " operators
- " $\eta \pi$ " operators, " $\phi \pi$ " operators
- "K \bar{K} " operators
- inclusion of all possible 2-meson operators
- 3-meson operators currently neglected
- still finalizing analysis code sigmond
- next focus: the 20 bosonic channels with $I=1, S=0$

Operator accounting

- numbers of operators for $I=1, S=0, P=(0,0,0)$ on 32^{3} lattice

$\left(32^{2} \mid 240\right)$	$A_{1 g}^{+}$	$A_{1 u}^{+}$	$A_{2 g}^{+}$	$A_{2 u}^{+}$	E_{g}^{+}	E_{u}^{+}	$T_{1 g}^{+}$	$T_{1 u}^{+}$	$T_{2 g}^{+}$	$T_{2 u}^{+}$
SH	9	7	13	13	9	9	14	23	15	16
$" \pi \pi "$	10	17	8	11	8	17	23	30	17	27
$" \eta \pi$ "	6	15	10	7	11	18	31	20	21	23
$" \phi \pi "$	6	15	9	7	12	19	37	11	23	23
$" K \bar{K}$ "	0	5	3	5	3	6	9	12	5	10
Total	31	59	43	43	43	69	114	96	81	99

$\left(32^{2} \mid 240\right)$	$A_{1 g}^{-}$	$A_{1 u}^{-}$	$A_{2 g}^{-}$	$A_{2 u}^{-}$	E_{g}^{-}	E_{u}^{-}	$T_{1 g}^{-}$	$T_{1 u}^{-}$	$T_{2 g}^{-}$	$T_{2 u}^{-}$
SH	10	8	11	10	12	9	21	15	19	16
$" \pi \pi$ "	3	7	7	3	8	11	22	12	12	15
$" \eta \pi$ "	26	15	10	12	24	21	25	33	28	30
$" \phi \pi$ "	26	15	10	12	27	22	26	38	30	32
" $K \bar{K}$ "	11	3	4	2	11	5	12	5	12	6
Total	76	48	42	39	82	68	106	103	101	99

Operator accounting

- numbers of operators for $I=1, S=0, P=(0,0,0)$ on 24^{3} lattice

$\left(24^{2} \mid 390\right)$	$A_{1 g}^{+}$	$A_{1 u}^{+}$	$A_{2 g}^{+}$	$A_{2 u}^{+}$	E_{g}^{+}	E_{u}^{+}	$T_{1 g}^{+}$	$T_{1 u}^{+}$	$T_{2 g}^{+}$	$T_{2 u}^{+}$
SH	9	7	13	13	9	9	14	23	15	16
$" \pi \pi "$	6	12	2	6	8	9	15	17	10	12
$" \eta \pi "$	2	10	8	4	8	11	21	14	14	13
$" \phi \pi "$	2	10	8	4	8	11	23	3	14	13
" $K \bar{K}$ "	0	4	1	4	1	4	8	10	4	6
Total	19	43	32	31	34	44	81	67	57	60

$\left(24^{2} \mid 390\right)$	$A_{1 g}^{-}$	$A_{1 u}^{-}$	$A_{2 g}^{-}$	$A_{2 u}^{-}$	E_{g}^{-}	E_{u}^{-}	$T_{1 g}^{-}$	$T_{1 u}^{-}$	$T_{2 g}^{-}$	$T_{2 u}^{-}$
SH	10	8	11	10	12	9	20	15	19	16
$" \pi \pi$ "	1	5	6	2	3	7	18	8	10	9
$" \eta \pi$ "	19	9	4	6	13	12	11	18	15	14
$" \phi \pi$ "	18	9	4	6	14	12	11	19	15	15
$" K \bar{K}$ "	7	2	2	2	6	4	9	4	8	4

$I=1, S=0, T_{1 u}^{+}$channel

- effective energies $\widetilde{m}^{\text {eff }}(t)$ for levels 0 to 24
- energies obtained from two-exponential fits

$I=1, S=0, T_{1 u}^{+}$energy extraction, continued

- effective energies $\widetilde{m}^{\text {eff }}(t)$ for levels 25 to 49
- energies obtained from two-exponential fits

Level identification

- level identification inferred from Z overlaps with probe operators
- analogous to experiment: infer resonances from scattering cross sections
- keep in mind:
- probe operators \bar{O}_{j} act on vacuum, create a "probe state" $\left|\Phi_{j}\right\rangle$, Z's are overlaps of probe state with each eigenstate

$$
\left|\Phi_{j}\right\rangle \equiv \bar{O}_{i}|0\rangle, \quad Z_{j}^{(n)}=\left\langle\Phi_{i} \mid n\right\rangle
$$

- have limited control of "probe states" produced by probe operators
- ideal to be ρ, single $\pi \pi$, and so on
- use of small-a expansions to characterize probe operators
- use of smeared quark, gluon fields
- field renormalizations
- mixing is prevalent
- identify by dominant probe state(s) whenever possible

Level identification

- overlaps for various operators

Identifying quark-antiquark resonances

- resonances: finite-volume "precursor states"
- probes: optimized single-hadron operators
- analyze matrix of just single-hadron operators $O_{i}^{[S H]}(12 \times 12)$
- perform single-rotation as before to build probe operators

$$
O_{m}^{\prime[S H]}=\sum_{i} v_{i}^{\prime(m) *} O_{i}^{[S H]}
$$

- obtain Z^{\prime} factors of these probe operators

$$
Z_{m}^{\prime(n)}=\langle 0| O_{m}^{[S H]}|n\rangle
$$

Staircase of energy levels

- stationary state energies $I=1, S=0, T_{1 u}^{+}$channel on $\left(32^{3} \times 256\right)$ anisotropic lattice

Tlup

Summary and comparison with experiment

- right: energies of $\bar{q} q$-dominant states as ratios over m_{K} for $\left(32^{3} \mid 240\right)$ ensemble (resonance precursor states)
- left: experiment

Issues

- address presence of 3 and 4 meson states
- in other channels, address scalar particles in spectrum
- scalar probe states need vacuum subtractions
- hopefully can neglect due to OZI suppression
- infinite-volume resonance parameters from finite-volume energies
- Luscher method too cumbersome, restrictive in applicability
- need for new hadron effective field theory techniques

Bosonic $I=1, S=0, A_{1 u}^{-}$channel

- finite-volume stationary-state energies: "staircase" plot
- $32^{3} \times 256$ lattice for $m_{\pi} \sim 240 \mathrm{MeV}$
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

Alum 1

Bosonic $I=1, S=0, E_{u}^{+}$channel

- finite-volume stationary-state energies: "staircase" plot
- $32^{3} \times 256$ lattice for $m_{\pi} \sim 240 \mathrm{MeV}$
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

Eup 1

Bosonic $I=1, S=0, T_{1 g}^{-}$channel

- finite-volume stationary-state energies: "staircase" plot
- $32^{3} \times 256$ lattice for $m_{\pi} \sim 240 \mathrm{MeV}$
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

T1gm 1

Bosonic $I=1, S=0, T_{1 u}^{-}$channel

- finite-volume stationary-state energies: "staircase" plot
- $32^{3} \times 256$ lattice for $m_{\pi} \sim 240 \mathrm{MeV}$
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

Tlum 1

Bosonic $I=\frac{1}{2}, S=1, T_{1 u}$ channel

- kaon channel: effective energies $\widetilde{m}^{\text {eff }}(t)$ for levels 0 to 8
- results for $32^{3} \times 256$ lattice for $m_{\pi} \sim 240 \mathrm{MeV}$
- two-exponential fits

Bosonic $I=\frac{1}{2}, S=1, T_{1 u}$ channel

- effective energies $\widetilde{m}^{\text {eff }}(t)$ for levels 9 to 17
- results for $32^{3} \times 256$ lattice for $m_{\pi} \sim 240 \mathrm{MeV}$
- two-exponential fits

Bosonic $I=\frac{1}{2}, S=1, T_{1 u}$ channel

- effective energies $\widetilde{m}^{\text {eff }}(t)$ for levels 18 to 23
- dashed lines show energies from single exponential fits

Bosonic $I=\frac{1}{2}, S=1, T_{1 u}$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^{3} \times 256$ lattice for $m_{\pi} \sim 240 \mathrm{MeV}$
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

Scattering phase shifts from finite-volume energies

- correlator of two-particle operator σ in finite volume

- Bethe-Salpeter kernel

- $C^{\infty}(P)$ has branch cuts where two-particle thresholds begin
- momentum quantization in finite volume: cuts \rightarrow series of poles
- C^{L} poles: two-particle energy spectrum of finite volume theory

Phase shift from finite-volume energies (con't)

- finite-volume momentum sum is infinite-volume integral plus correction \mathcal{F}

- define the following quantities: A, A^{\prime}, invariant scattering amplitude $i \mathcal{M}$

$$
\begin{aligned}
& \begin{aligned}
(A)= & (\sigma) \\
& +(\sigma):(i K)
\end{aligned} \\
& -\left(A^{+}\right)=-\left(\sigma^{+}\right)+\left(\text {C }^{\left(\sigma^{+}\right)}\right. \\
& + \text {(iK) }{ }^{+}+\ldots \\
& -(i M)=-i K+i K \\
& +i K
\end{aligned}
$$

Phase shifts from finite-volume energies (con't)

- subtracted correlator $C_{\text {sub }}(P)=C^{L}(P)-C^{\infty}(P)$ given by

$$
\begin{aligned}
& C_{\mathrm{sub}}(P)=(A) \quad(A)+(A):(A) \\
& + \text { (A) } \begin{array}{rl:l}
\text { (iM) } & \text { (iM) } & (A)+\ldots \\
\mathcal{F}
\end{array}
\end{aligned}
$$

- sum geometric series

$$
C_{\mathrm{sub}}(P)=A \mathcal{F}(1-i \mathcal{M} \mathcal{F})^{-1} A^{\prime} .
$$

- poles of $C_{\text {sub }}(P)$ are poles of $C^{L}(P)$ from $\operatorname{det}(1-i \mathcal{M} \mathcal{F})=0$

Phase shifts from finite-volume energies (con't)

- work in spatial L^{3} volume with periodic b.c.
- total momentum $\boldsymbol{P}=(2 \pi / L) \boldsymbol{d}$, where \boldsymbol{d} vector of integers
- masses m_{1} and m_{2} of particle 1 and 2
- calculate lab-frame energy E of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$
\begin{aligned}
E_{\mathrm{cm}} & =\sqrt{E^{2}-\boldsymbol{P}^{2}}, \quad \gamma=\frac{E}{E_{\mathrm{cm}}}, \\
\boldsymbol{q}_{\mathrm{cm}}^{2} & =\frac{1}{4} E_{\mathrm{cm}}^{2}-\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}\right)+\frac{\left(m_{1}^{2}-m_{2}^{2}\right)^{2}}{4 E_{\mathrm{cm}}^{2}} \\
u^{2} & =\frac{L^{2} \boldsymbol{q}_{\mathrm{cm}}^{2}}{(2 \pi)^{2}}, \quad \boldsymbol{s}=\left(1+\frac{\left(m_{1}^{2}-m_{2}^{2}\right)}{E_{\mathrm{cm}}^{2}}\right) \boldsymbol{d}
\end{aligned}
$$

- E related to S matrix (and phase shifts) by

$$
\operatorname{det}\left[1+F^{(s, \gamma, u)}(S-1)\right]=0,
$$

where F matrix defined next slide

Phase shifts from finite-volume energies (con't)

- F matrix in $J L S$ basis states given by

$$
\begin{aligned}
& F_{J^{\prime} m_{J^{\prime}} L^{\prime} S^{\prime} a^{\prime} ; J m_{J} L S a}^{(s, \gamma, u}=\frac{\rho_{a}}{2} \delta_{a^{\prime} a} \delta_{S^{\prime} S}\left\{\delta_{J^{\prime} J} \delta_{m_{J^{\prime}} m_{J}} \delta_{L^{\prime} L}\right. \\
& \left.+W_{L^{\prime} m_{L^{\prime}} ; L m_{L}}^{(s, \gamma, u)}\left\langle J^{\prime} m_{J^{\prime}} \mid L^{\prime} m_{L^{\prime}}, S m_{S}\right\rangle\left\langle L m_{L}, S m_{S} \mid J m_{J}\right\rangle\right\},
\end{aligned}
$$

- total angular mom J, J^{\prime}, orbital mom L, L^{\prime}, intrinsic spin S, S^{\prime}
- a, a^{\prime} channel labels
- $\rho_{a}=1$ distinguishable particles, $\rho_{a}=\frac{1}{2}$ identical

$$
W_{L^{\prime} m_{L^{\prime}} ; L m_{L}}^{(s, \gamma, u)}=\frac{2 i}{\pi \gamma u^{l+1}} \mathcal{Z}_{l m}\left(\boldsymbol{s}, \gamma, u^{2}\right) \int d^{2} \Omega Y_{L^{\prime} m_{L^{\prime}}}^{*}(\Omega) Y_{l m}^{*}(\Omega) Y_{L m_{L}}(\Omega)
$$

- Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions $\mathcal{Z}_{l m}$ defined next slide
- $F^{(s, \gamma, u)}$ diagonal in channel space, mixes different J, J^{\prime}
- recall S diagonal in angular momentum, but off-diagonal in channel space

RGL shifted zeta functions

- compute $\mathcal{Z}_{l m}$ using

$$
\begin{aligned}
& \mathcal{Z}_{l m}\left(\boldsymbol{s}, \gamma, u^{2}\right)=\sum_{n \in \mathbb{Z}^{3}} \frac{\mathcal{Y}_{l m}(z)}{\left(z^{2}-u^{2}\right)} e^{-\Lambda\left(z^{2}-u^{2}\right)} \\
& +\delta_{l 0} \gamma \pi e^{\Lambda u^{2}}\left(2 u D(u \sqrt{\Lambda})-\Lambda^{-1 / 2}\right) \\
& +\frac{i^{l} \gamma}{\Lambda^{l+1 / 2}} \int_{0}^{1} d t\left(\frac{\pi}{t}\right)^{l+3 / 2} e^{\Lambda t u^{2}} \sum_{\substack{n \in \mathbb{Z}^{3} \\
n \neq 0}} e^{\pi i n \cdot s} \mathcal{Y}_{l m}(\mathbf{w}) e^{-\pi^{2} \mathbf{w}^{2} /(t \Lambda)}
\end{aligned}
$$

- where

$$
\begin{aligned}
& z=\boldsymbol{n}-\gamma^{-1}\left[\frac{1}{2}+(\gamma-1) s^{-2} \boldsymbol{n} \cdot \boldsymbol{s}\right] \boldsymbol{s}, \\
& \mathbf{w}=\boldsymbol{n}-(1-\gamma) s^{-2} \boldsymbol{s} \cdot \boldsymbol{n s}, \quad \mathcal{Y}_{l m}(\mathbf{x})=|\mathbf{x}|^{l} Y_{l m}(\widehat{\mathbf{x}}) \\
& D(x)=e^{-x^{2}} \int_{0}^{x} d t e^{t^{2}} \quad \text { (Dawson function) }
\end{aligned}
$$

- choose $\Lambda \approx 1$ for convergence of the summation
- integral done Gauss-Legendre quadrature, Dawson with Rybicki

P-wave $I=1 \pi \pi$ scattering

- for P-wave phase shift $\delta_{1}\left(E_{\mathrm{cm}}\right)$ for $\pi \pi I=1$ scattering
- define

$$
w_{l m}=\frac{\mathcal{Z}_{l m}\left(\boldsymbol{s}, \gamma, u^{2}\right)}{\gamma \pi^{3 / 2} u^{l+1}}
$$

\boldsymbol{d}	Λ	$\cot \delta_{1}$
$(0,0,0)$	$T_{1 u}^{+}$	$\operatorname{Re} w_{0,0}$
$(0,0,1)$	A_{1}^{+}	$\operatorname{Re} w_{0,0}+\frac{2}{\sqrt{5}} \operatorname{Re} w_{2,0}$
	E^{+}	$\operatorname{Re} w_{0,0}-\frac{1}{\sqrt{5}} \operatorname{Re} w_{2,0}$
$(0,1,1)$	A_{1}^{+}	$\operatorname{Re} w_{0,0}+\frac{1}{2 \sqrt{5}} \operatorname{Re} w_{2,0}-\sqrt{\frac{6}{5}} \operatorname{Im} w_{2,1}-\sqrt{\frac{3}{10}} \operatorname{Re} w_{2,2}$,
	B_{1}^{+}	$\operatorname{Re} w_{0,0}-\frac{1}{\sqrt{5}} \operatorname{Re} w_{2,0}+\sqrt{\frac{6}{5}} \operatorname{Re} w_{2,2}$,
	B_{2}^{+}	$\operatorname{Re} w_{0,0}+\frac{1}{2 \sqrt{5}} \operatorname{Re} w_{2,0}+\sqrt{\frac{6}{5}} \operatorname{Im} w_{2,1}-\sqrt{\frac{3}{10}} \operatorname{Re} w_{2,2}$
$(1,1,1)$	A_{1}^{+}	$\operatorname{Re} w_{0,0}+2 \sqrt{\frac{6}{5}} \operatorname{Im} w_{2,2}$
	E^{+}	$\operatorname{Re} w_{0,0}-\sqrt{\frac{6}{5}} \operatorname{Im} w_{2,2}$

Finite-volume $\pi \pi I=1$ energies

- $\pi \pi$-state energies for various \boldsymbol{d}^{2}
- dashed lines are non-interacting energies, shaded region above inelastic thresholds

Pion dispersion relation

- boost to cm frame requires aspect ratio on anisotropic lattice
- aspect ratio ξ from pion dispersion

$$
\left(a_{t} E\right)^{2}=\left(a_{t} m\right)^{2}+\frac{1}{\xi^{2}}\left(\frac{2 \pi a_{s}}{L}\right)^{2} \boldsymbol{d}^{2}
$$

- slope below equals $(\pi /(16 \xi))^{2}$, where $\xi=a_{s} / a_{t}$

$I=1 \pi \pi$ scattering phase shift and width of the ρ

- preliminary results $32^{3} \times 256, m_{\pi} \approx 240 \mathrm{MeV}$
- additional collaborator: Ben Hoerz (Dublin)

- fit $\quad \tan \left(\delta_{1}\right)=\frac{\Gamma / 2}{m_{r}-E}+A \quad$ and $\quad \Gamma=\frac{g^{2}}{48 \pi m_{r}^{2}}\left(m_{r}^{2}-4 m_{\pi}^{2}\right)^{3 / 2}$

References

R．Basak et al．，Group－theoretical construction of extended baryon operators in lattice QCD，Phys．Rev．D 72， 094506 （2005）．
直 S．Basak et al．，Lattice QCD determination of patterns of excited baryon states，Phys．Rev．D 76， 074504 （2007）．
囯 C．Morningstar et al．，Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD， Phys．Rev．D 83， 114505 （2011）．
囲 C．Morningstar et al．，Extended hadron and two－hadron operators of definite momentum for spectrum calculations in lattice QCD， Phys．Rev．D 88， 014511 （2013）．

Conclusion

- goal: comprehensive survey of energy spectrum of QCD stationary states in a finite volume
- stochastic LapH method works very well
- allows evaluation of all needed quark-line diagrams
- source-sink factorization facilitates large number of operators
- last_laph software completed for evaluating correlators
- analysis software sigmond urgently being developed
- analysis of 20 channels $I=1, S=0$ for $\left(24^{3} \mid 390\right)$ and $\left(32^{3} \mid 240\right)$ ensembles nearing completion
- can evaluate and analyze correlator matrices of unprecedented size 100×100 due to XSEDE resources
- study various scattering phase shifts also planned
- infinite-volume resonance parameters from finite-volume energies \longrightarrow need new effective field theory techniques

