Excited states and scattering phase shifts from lattice QCD

Colin Morningstar Carnegie Mellon University

Workshop of the APS Topical Group on Hadron Physics

Baltimore, MD

April 9, 2015

Overview

- goals:
 - comprehensive survey of QCD stationary states in finite volume
 - hadron scattering phase shifts, decay widths, matrix elements
 - focus: large 32^3 anisotropic lattices, $m_{\pi} \sim 240$ MeV
- extracting excited-state energies
- single-hadron and multi-hadron operators
- the stochastic LapH method
- level identification issues
- results for I = 1, S = 0, T_{1u}^+ channel
 - 100×100 correlator matrix, all needed 2-hadron operators
- other channels
- I = 1 *P*-wave $\pi\pi$ scattering phase shifts and width of ρ
- future work

Dramatis Personae

o current grad students:

Jake Fallica CMU Andrew Hanlon Pitt

former CMU postdocs:

Justin Foley Software, NVIDIA

Jimmy Juge Faculty, Stockton, CA

• past CMU grad students:

Brendan Fahy 2014 Postdoc KEK Japan S

You-Cyuan Jhang 2013 Silicon Valley

David Lenkner 2013 Data Science Auto., PGH

Ricky Wong 2011 Postdoc Germany

John Bulava 2009 Faculty, Dublin

Adam Lichtl 2006 SpaceX, LA

- thanks to NSF Teragrid/XSEDE:
 - Athena+Kraken at NICS
 - Ranger+Stampede at TACC

C. Morningstar

Temporal correlations from path integrals

- stationary-state energies from $N \times N$ Hermitian correlation matrix $C_{ij}(t) = \langle 0 | O_i(t+t_0) \overline{O}_j(t_0) | 0 \rangle$
- judiciously designed operators \overline{O}_j create states of interest

 $O_j(t) = O_j[\overline{\psi}(t), \psi(t), U(t)]$

• correlators from path integrals over quark $\psi, \overline{\psi}$ and gluon U fields

$$C_{ij}(t) = rac{\int \mathcal{D}(\overline{\psi},\psi,U) ~~O_i(t+t_0)~\overline{O}_j(t_0) ~~\expig(-S[\overline{\psi},\psi,U]ig)}{\int \mathcal{D}(\overline{\psi},\psi,U) ~~\expig(-S[\overline{\psi},\psi,U]ig)}$$

involves the action

$$S[\overline{\psi},\psi,U] = \overline{\psi} K[U] \psi + S_G[U]$$

- *K*[*U*] is fermion Dirac matrix
- S_G[U] is gluon action

Integrating the quark fields

- integrals over Grassmann-valued quark fields done exactly
- meson-to-meson example:

$$\int \mathcal{D}(\overline{\psi}, \psi) \,\psi_a \psi_b \,\overline{\psi}_c \overline{\psi}_d \,\exp\left(-\overline{\psi}K\psi\right)$$
$$= \left(K_{ad}^{-1}K_{bc}^{-1} - K_{ac}^{-1}K_{bd}^{-1}\right) \det K.$$

baryon-to-baryon example:

$$\int \mathcal{D}(\overline{\psi}, \psi) \ \psi_{a_1} \psi_{a_2} \psi_{a_3} \ \overline{\psi}_{b_1} \overline{\psi}_{b_2} \overline{\psi}_{b_3} \ \exp\left(-\overline{\psi} K \psi\right)$$

$$= \left(-K_{a_1b_1}^{-1} K_{a_2b_2}^{-1} K_{a_3b_3}^{-1} + K_{a_1b_1}^{-1} K_{a_2b_3}^{-1} K_{a_3b_2}^{-1} + K_{a_1b_2}^{-1} K_{a_2b_1}^{-1} K_{a_3b_3}^{-1} - K_{a_1b_2}^{-1} K_{a_2b_3}^{-1} K_{a_3b_1}^{-1} - K_{a_1b_3}^{-1} K_{a_2b_1}^{-1} K_{a_3b_2}^{-1} + K_{a_1b_3}^{-1} K_{a_2b_2}^{-1} K_{a_3b_1}^{-1}\right) \ \det K$$

C. Morningstar

Monte Carlo integration

correlators have form

$$C_{ij}(t) = \frac{\int \mathcal{D}U \, \det K[U] \, K^{-1}[U] \cdots K^{-1}[U] \, \exp\left(-S_G[U]\right)}{\int \mathcal{D}U \, \det K[U] \, \exp\left(-S_G[U]\right)}$$

- resort to Monte Carlo method to integrate over gluon fields
- use Markov chain to generate sequence of gauge-field configurations U_1, U_2, \dots, U_N

• most computationally demanding parts:

- including det K in updating
- evaluating K^{-1} in numerator

Lattice QCD

- Monte Carlo method using computers requires hypercubic space-time lattice
- quarks reside on sites, gluons reside on links between sites
- for gluons, 8 dimensional integral on each link
- path integral dimension $32N_xN_yN_zN_t$
 - 268 million for 32³×256 lattice
- Metropolis method with global updating proposal
 - RHMC: solve Hamilton equations with Gaussian momenta
 - det *K* estimates with integral over pseudo-fermion fields
- systematic errors
 - discretization
 - finite volume

C. Morningstar

Excited states from correlation matrices

in finite volume, energies are discrete (neglect wrap-around)

 $C_{ij}(t) = \sum_{n} Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \qquad Z_j^{(n)} = \langle 0 | O_j | n \rangle$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation $\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$
- columns of U are eigenvectors of $C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2}$
- choose τ_0 and τ_D large enough so $\widetilde{C}(t)$ diagonal for $t > \tau_D$

• effective energies

$$\widetilde{m}_{\alpha}^{\text{eff}}(t) = \frac{1}{\Delta t} \ln \left(\frac{\widetilde{C}_{\alpha\alpha}(t)}{\widetilde{C}_{\alpha\alpha}(t + \Delta t)} \right)$$

tend to N lowest-lying stationary state energies in a channel

• 2-exponential fits to $\widetilde{C}_{\alpha\alpha}(t)$ yield energies E_{α} and overlaps $Z_{i}^{(n)}$

Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_j(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

 $\widetilde{\psi}_{a\alpha}(x) = \mathcal{S}_{ab}(x, y) \ \psi_{b\alpha}(y), \qquad \mathcal{S} = \Theta\left(\sigma_s^2 + \widetilde{\Delta}\right)$

- 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$q^A_{a\alpha j} = D^{(j)} \widetilde{\psi}^{(A)}_{a\alpha}, \qquad \overline{q}^A_{a\alpha j} = \overline{\widetilde{\psi}}^{(A)}_{a\alpha} \gamma_4 D^{(j)}$$

• displacement D^(j) is product of smeared links:

 $D^{(j)}(x,x') = \widetilde{U}_{j_1}(x) \ \widetilde{U}_{j_2}(x+d_2) \ \widetilde{U}_{j_3}(x+d_3) \dots \widetilde{U}_{j_p}(x+d_p) \delta_{x',\ x+d_{p+1}}$

to good approximation, LapH smearing operator is

 $S = V_s V_s^{\dagger}$

• columns of matrix V_s are eigenvectors of $\widetilde{\Delta}$

C. Morningstar

Extended operators for single hadrons

• quark displacements build up orbital, radial structure

C. Morningstar

Importance of smeared fields

- effective masses of 3 selected nucleon operators shown
- noise reduction of displaced-operators from link smearing $n_{\rho}\rho = 2.5, n_{\rho} = 16$

• quark-field smearing $\sigma_s = 4.0, n_{\sigma} = 32$ reduces excited-state contamination

Early results on small 16³ and 24³ lattices

- Bob Sugar in 2005: "You'll never see more than 2 levels"
- I = 1, S = 0 energies on 24³ lattice, $m_{\pi} \sim 390$ MeV in 2010
- use of single-meson operators only
- shaded region shows where two-meson energies expected

C. Morningstar

Excited States

11

Early results on small lattices

- kaons on 16^3 lattice, $m_{\pi} \sim 390$ MeV in 2008
- use of single-meson operators only

Early results on small lattices

- N, Δ baryons on 16³ lattice, $m_{\pi} \sim 390$ MeV in 2008
- use of single-baryon operators only

Early results on small lattices

- Σ , Λ , Ξ baryons on 16³ lattice, $m_{\pi} \sim 390$ MeV in 2008
- use of single-baryon operators only

Two-hadron operators

 our approach: superposition of products of single-hadron operators of definite momenta

 $c_{\boldsymbol{p}_a\lambda_a; \boldsymbol{p}_b\lambda_b}^{I_aI_{3a}S_a} B_{\boldsymbol{p}_a\Lambda_a\lambda_ai_a}^{I_bI_{3b}S_b} B_{\boldsymbol{p}_a\Lambda_a\lambda_ai_a}^{I_bI_{3b}S_b}$

- fixed total momentum $\boldsymbol{p} = \boldsymbol{p}_a + \boldsymbol{p}_b$, fixed $\Lambda_a, i_a, \Lambda_b, i_b$
- group-theory projections onto little group of p and isospin irreps
- restrict attention to certain classes of momentum directions
 - on axis $\pm \hat{x}$, $\pm \hat{y}$, $\pm \hat{z}$
 - planar diagonal $\pm \widehat{x} \pm \widehat{y}, \ \pm \widehat{x} \pm \widehat{z}, \ \pm \widehat{y} \pm \widehat{z}$
 - cubic diagonal $\pm \widehat{x} \pm \widehat{y} \pm \widehat{z}$
- crucial to know and fix all phases of single-hadron operators for all momenta
 - each class, choose reference direction p_{ref}
 - each p, select one reference rotation R_{ref}^{p} that transforms p_{ref} into p
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Quark propagation

- quark propagator is inverse K^{-1} of Dirac matrix
 - rows/columns involve lattice site, spin, color
 - very large $N_{\text{tot}} \times N_{\text{tot}}$ matrix for each flavor

 $N_{\rm tot} = N_{\rm site} N_{\rm spin} N_{\rm color}$

- for $32^3 \times 256$ lattice, $N_{\rm tot} \sim 101$ million
- not feasible to compute (or store) all elements of K^{-1}
- solve linear systems Kx = y for source vectors y
- translation invariance can drastically reduce number of source vectors y needed
- multi-hadron operators and isoscalar mesons require large number of source vectors y

Quark line diagrams

- temporal correlations involving our two-hadron operators need
 - slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
 - sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!

C. Morningstar

Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix *K*[*U*]
- use noise vectors η satisfying $E(\eta_i) = 0$ and $E(\eta_i \eta_i^*) = \delta_{ij}$
- Z_4 noise is used $\{1, i, -1, -i\}$
- solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

- variance reduction using noise dilution
- dilution introduces projectors

$$\begin{split} P^{(a)}P^{(b)} &= \delta^{ab}P^{(a)}, \qquad \sum_{a}P^{(a)} = 1, \qquad P^{(a)\dagger} = P^{(a)} \\ \bullet \mbox{ define } & \eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]} \end{split}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{a} X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

C. Morningstar

Stochastic LapH method

• introduce Z_N noise in the LapH subspace

 $\rho_{\alpha k}(t), \quad t = time, \ \alpha = spin, \ k = eigenvector number$

four dilution schemes:

 $\begin{array}{ll} P_{ij}^{(a)} = \delta_{ij} & a = 0 & (\text{none}) \\ P_{ij}^{(a)} = \delta_{ij}\delta_{ai} & a = 0, 1, \dots, N-1 & (\text{full}) \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,Ki/N} & a = 0, 1, \dots, K-1 & (\text{interlace-}K) \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,i \mod k} & a = 0, 1, \dots, K-1 & (\text{block-}K) \end{array}$

- apply dilutions to
 - time indices (full for fixed src, interlace-16 for relative src)
 - spin indices (full)
 - LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)

The effectiveness of stochastic LapH

- comparing use of lattice noise vs noise in LapH subspace
- N_D is number of solutions to Kx = y

C. Morningstar

Excited States

20

Quark line estimates in stochastic LapH

each of our quark lines is the product of matrices

 $\mathcal{Q} = D^{(j)} \mathcal{S} K^{-1} \gamma_4 \mathcal{S} D^{(k)\dagger}$

• displaced-smeared-diluted quark source and quark sink vectors:

$$\begin{aligned} \varrho^{[b]}(\rho) &= D^{(j)} V_s P^{(b)} \rho \\ \varphi^{[b]}(\rho) &= D^{(j)} \mathcal{S} K^{-1} \gamma_4 V_s P^{(b)} \rho \end{aligned}$$

 estimate in stochastic LapH by (A, B flavor, u, v compound: space, time, color, spin, displacement type)

$$\mathcal{Q}_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_b \varphi_u^{[b]}(\rho^r) \ \varrho_v^{[b]}(\rho^r)^*$$

• occasionally use γ_5 -Hermiticity to switch source and sink

$$\mathcal{Q}_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_{b} \overline{\varrho}_u^{[b]}(\rho^r) \ \overline{\varphi}_v^{[b]}(\rho^r)^*$$

defining $\overline{\varrho}(\rho) = -\gamma_5 \gamma_4 \varrho(\rho)$ and $\overline{\varphi}(\rho) = \gamma_5 \gamma_4 \varphi(\rho)$

C. Morningstar

Source-sink factorization in stochastic LapH

baryon correlator has form

$$C_{l\bar{l}} = c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \mathcal{Q}_{l\bar{i}}^{A} \mathcal{Q}_{j\bar{j}}^{B} \mathcal{Q}_{k\bar{k}}^{C}$$

stochastic estimate with dilution

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \left(\varphi_i^{(Ar)[d_A]} \varrho_{\bar{l}}^{(Ar)[d_A]*}\right) \\ \times \left(\varphi_j^{(Br)[d_B]} \varrho_{\bar{j}}^{(Br)[d_B]*}\right) \left(\varphi_k^{(Cr)[d_C]} \varrho_{\bar{k}}^{(Cr)[d_C]*}\right)$$

• define baryon source and sink

$$\begin{array}{lll} \mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varphi^{A},\varphi^{B},\varphi^{C}) & = & c_{ijk}^{(l)} \; \varphi_{i}^{(Ar)[d_{A}]} \varphi_{j}^{(Br)[d_{B}]} \varphi_{k}^{(Cr)[d_{C}]} \\ \mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varrho^{A},\varrho^{B},\varrho^{C}) & = & c_{ijk}^{(l)} \; \varrho_{i}^{(Ar)[d_{A}]} \varrho_{j}^{(Br)[d_{B}]} \varrho_{k}^{(Cr)[d_{C}]} \end{array}$$

correlator is dot product of source vector with sink vector

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^*$$

C. Morningstar

Correlators and quark line diagrams

• baryon correlator

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^*$$

express diagrammatically

meson correlator

C. Morningstar

More complicated correlators

• two-meson to two-meson correlators (non isoscalar mesons)

C. Morningstar

Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group O_h

 $A_{1a}, A_{2ga}, E_a, T_{1a}, T_{2a}, G_{1a}, G_{2a}, H_a, a = g, u$

• on-axis momenta: little group $C_{4\nu}$

 $A_1, A_2, B_1, B_2, E, \quad G_1, G_2$

• planar-diagonal momenta: little group $C_{2\nu}$

 $A_1,A_2,B_1,B_2,\quad G_1,G_2$

cubic-diagonal momenta: little group C_{3ν}

 $A_1, A_2, E, \quad F_1, F_2, G$

• include G parity in some meson sectors (superscript + or -)

Spin content of cubic box irreps

• numbers of occurrences of Λ irreps in J subduced

		J	A_1	A_2	E	T_1	T_2		
	_	0	1	0	0	0	0 0		
		1	0	0	0	1	0		
		2	0	0	1	0	1		
		3	0	1	0	1	1		
		4	1	0	1	1	1		
		5	0	0	1	2	1		
		6	1	1	1	1	2		
		7	0	1	1	2	2		
J	G_1	0	\mathbf{J}_2	Η		J	G_1	G_2	H
$\frac{1}{2}$	1		0	0		$\frac{9}{2}$	1	0	2
$\frac{3}{2}$	0		0	1		$\frac{11}{2}$	1	1	2
$\frac{5}{2}$	0		1	1		$\frac{13}{2}$	1	2	2
$\frac{7}{2}$	1		1	1		$\frac{15}{2}$	1	1	3

C. Morningstar

Common hadrons

• irreps of commonly-known hadrons at rest

Hadron	Irrep	Hadron	Irrep	Hadron	Irrep
π	A_{1u}^{-}	K	A_{1u}	η,η^\prime	A_{1u}^{+}
ρ	T_{1u}^+	ω,ϕ	T^{-}_{1u}	<i>K</i> *	T_{1u}
a_0	A^+_{1g}	f_0	A^+_{1g}	h_1	T_{1g}^{-}
\boldsymbol{b}_1	T^+_{1g}	K_1	T_{1g}	π_1	T_{1u}^-
N, Σ	G_{1g}	Λ, Ξ	G_{1g}	Δ, Ω	H_{g}

Ensembles and run parameters

plan to use three Monte Carlo ensembles

- $(32^3|240)$: 412 configs $32^3 \times 256$, $m_\pi \approx 240$ MeV, $m_\pi L \sim 4.4$
- $(24^3|240)$: 584 configs $24^3 \times 128$, $m_\pi \approx 240$ MeV, $m_\pi L \sim 3.3$
- $(24^3|390)$: 551 configs $24^3 \times 128$, $m_\pi \approx 390$ MeV, $m_\pi L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta = 1.5$ such that $a_s \sim 0.12$ fm, $a_t \sim 0.035$ fm
- strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- work in $m_u = m_d$ limit so SU(2) isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi = 0.10$ and $n_{\xi} = 10$
- LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - $N_{\nu} = 112$ for 24^3 lattices
 - $N_{\nu} = 264$ for 32^3 lattices
- source times:
 - 4 widely-separated t₀ values on 24³
 - 8 t₀ values used on 32³ lattice

C. Morningstar

Use of XSEDE resources

- use of XSEDE resources crucial
- Monte Carlo generation of gauge-field configurations: \sim 200 million core hours
- quark propagators: ~ 100 million core hours
- hadrons + correlators: ~ 40 million core hours
- storage: ~ 300 TB

Kraken at NICS

Stampede at TACC

C. Morningstar

Status report

- correlator software last_laph completed summer 2013
 - testing of all flavor channels for single and two-mesons completed fall 2013
 - testing of all flavor channels for single baryon and meson-baryons completed summer 2014
- small-*a* expansions of all operators completed
- first focus on the resonance-rich ρ -channel: I = 1, S = 0, $T_{1\mu}^+$
- results from 63×63 matrix of correlators $(32^3|240)$ ensemble
 - 10 single-hadron (quark-antiquark) operators
 - " $\pi\pi$ " operators
 - " $\eta\pi$ " operators, " $\phi\pi$ " operators
 - "KK" operators
- inclusion of all possible 2-meson operators
- 3-meson operators currently neglected
- still finalizing analysis code sigmond
- next focus: the 20 bosonic channels with I = 1, S = 0

C. Morningstar

Operator accounting

• numbers of operators for I = 1, S = 0, P = (0, 0, 0) on 32^3 lattice

$(32^2 240)$	A_{1g}^{+}	A_{1u}^{+}	A_{2g}^{+}	A_{2u}^{+}	E_g^+	E_u^+	T_{1g}^{+}	T_{1u}^{+}	T_{2g}^{+}	T_{2u}^{+}
SH	9	7	13	13	9	9	14	23	15	16
" $\pi\pi$ "	10	17	8	11	8	17	23	30	17	27
" $\eta\pi$ "	6	15	10	7	11	18	31	20	21	23
" $\phi\pi$ "	6	15	9	7	12	19	37	11	23	23
" $K\overline{K}$ "	0	5	3	5	3	6	9	12	5	10
Total	31	59	43	43	43	69	114	96	81	99
$(32^2 240)$	A^{-}_{1g}	A_{1u}^{-}	A_{2g}^{-}	A_{2u}^{-}	E_g^-	E_u^-	T_{1g}^{-}	T_{1u}^{-}	T_{2g}^{-}	T_{2u}^{-}
(32 ² 240) SH	$\frac{A_{1g}^{-}}{10}$	$\frac{A_{1u}^{-}}{8}$	A_{2g}^{-} 11	$\frac{A_{2u}^{-}}{10}$	<i>E</i> ⁻ 12	<i>E</i> _{<i>u</i>} ⁻ 9	$\frac{T_{1g}^{-}}{21}$	$\frac{T_{1u}^{-}}{15}$	$\frac{T_{2g}^{-}}{19}$	<i>T</i> ⁻ _{2<i>u</i>} 16
$\frac{(32^2 240)}{\text{SH}}$ "\pi \pi \pi \pi \pi \pi \pi \pi \pi \pi	$\frac{A_{1g}^{-}}{10}$	$\frac{A_{1u}^{-}}{8}$	A_{2g}^{-} 11 7	A_{2u}^{-} 10 3	<i>E</i> ⁻ 12 8	<i>E</i> _{<i>u</i>} ⁻ 9 11	<i>T</i> ⁻ _{1g} 21 22	<i>T</i> ⁻ _{1<i>u</i>} 15 12	<i>T</i> ⁻ _{2g} 19 12	<i>T</i> ⁻ _{2u} 16 15
$\frac{(32^2 240)}{\text{SH}} \\ ``π\pi"'" $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	A_{1g}^{-} 10 3 26	A _{1u} 8 7 15	A_{2g}^{-} 11 7 10	A_{2u}^{-} 10 3 12	<i>E</i> ⁻ 12 8 24	E _u 9 11 21	T ⁻ _{1g} 21 22 25	$\frac{T_{1u}^{-}}{15}$ 12 33	<i>T</i> _{2g} 19 12 28	<i>T</i> ⁻ _{2<i>u</i>} 16 15 30
$\frac{(32^2 240)}{\text{SH}} \\ {}^{``\pi\pi"}_{~~\eta\pi"} \\ {}^{``\eta\pi"}_{~~\phi\pi"}$	A_{1g}^{-} 10 3 26 26	A _{1u} 8 7 15 15	A_{2g}^{-} 11 7 10 10	A_{2u}^{-} 10 3 12 12	E _g 12 8 24 27	<i>E</i> _{<i>u</i>} ⁻ 9 11 21 22	<i>T</i> ⁻ _{1g} 21 22 25 26	<i>T</i> _{1<i>u</i>} 15 12 33 38	<i>T</i> ⁻ _{2g} 19 12 28 30	<i>T</i> ⁻ _{2<i>u</i>} 16 15 30 32
$(32^{2} 240) \\ SH \\ "\pi\pi" \\ "\eta\pi" \\ "\phi\pi" \\ "K\overline{K}"$	A_{1g}^{-} 10 3 26 26 11	A _{1u} 8 7 15 15 3	A_{2g}^{-} 11 7 10 10 4	A ⁻ _{2u} 10 3 12 12 2	<i>E</i> ⁻ 12 8 24 27 11	<i>E</i> _{<i>u</i>} ⁻ 9 11 21 22 5	<i>T</i> ⁻ _{1g} 21 22 25 26 12	<i>T</i> _{1<i>u</i>} 15 12 33 38 5	<i>T</i> ⁻ _{2g} 19 12 28 30 12	<i>T</i> ⁻ _{2<i>u</i>} 16 15 30 32 6

Operator accounting

• numbers of operators for I = 1, S = 0, P = (0, 0, 0) on 24³ lattice

$(24^2 390)$	A_{1g}^{+}	A_{1u}^{+}	A_{2g}^{+}	A_{2u}^{+}	E_g^+	E_u^+	T_{1g}^{+}	T_{1u}^{+}	T_{2g}^{+}	T_{2u}^{+}
SH	9	7	13	13	9	9	14	23	15	16
" $\pi\pi$ "	6	12	2	6	8	9	15	17	10	12
" $\eta\pi$ "	2	10	8	4	8	11	21	14	14	13
" $\phi\pi$ "	2	10	8	4	8	11	23	3	14	13
" $K\overline{K}$ "	0	4	1	4	1	4	8	10	4	6
Total	19	43	32	31	34	44	81	67	57	60
$(24^2 390)$	A^{1g}	A_{1u}^{-}	A^{2g}	A_{2u}^{-}	E_g^-	E_u^-	T_{1g}^{-}	T_{1u}^{-}	T_{2g}^{-}	T_{2u}^{-}
(24 ² 390) SH	$\frac{A_{1g}^{-}}{10}$	$\frac{A_{1u}^{-}}{8}$	A_{2g}^{-} 11	$\frac{A_{2u}^{-}}{10}$	<i>E</i> ⁻ 12	<i>E</i> _{<i>u</i>} ⁻ 9	$\frac{T_{1g}^{-}}{20}$	<i>T</i> ⁻ _{1<i>u</i>} 15	$\frac{T_{2g}^{-}}{19}$	$\frac{T_{2u}^{-}}{16}$
$\frac{(24^2 390)}{\text{SH}} \\ "\pi\pi"$	$\frac{A_{1g}^{-}}{10}$	A_{1u}^{-} 8 5	A_{2g}^{-} 11 6	A ⁻ _{2u} 10 2	<i>E</i> _g ⁻ 12 3	<i>E</i> _{<i>u</i>} ⁻ 9 7	<i>T</i> _{1g} 20 18	<i>T</i> _{1<i>u</i>} 15 8	<i>T</i> _{2g} 19 10	<i>T</i> _{2<i>u</i>} 16 9
$\frac{(24^2 390)}{SH} \\ {}^{"\pi\pi"}_{"\eta\pi"}$	A_{1g}^{-} 10 1 19	A ⁻ _{1u} 8 5 9	A_{2g}^{-} 11 6 4	A_{2u}^{-} 10 2 6	<i>E</i> ⁻ 12 3 13	E _u 9 7 12	<i>T</i> ⁻ _{1g} 20 18 11	T_1_ 15 8 18	<i>T</i> ⁻ _{2g} 19 10 15	<i>T</i> ⁻ _{2<i>u</i>} 16 9 14
$\frac{(24^2 390)}{\text{SH}} \\ {}^{``\pi\pi"}_{~~\eta\pi"} \\ {}^{``\eta\pi"}_{~~\phi\pi"}$	A ⁻ _{1g} 10 1 19 18	A ⁻ _{1u} 8 5 9 9	A_{2g}^{-} 11 6 4 4	A _{2u} 10 2 6 6	E _g 12 3 13 14	<i>E</i> _{<i>u</i>} ⁻ 9 7 12 12	<i>T</i> ⁻ _{1g} 20 18 11 11	<i>T</i> ⁻ _{1<i>u</i>} 15 8 18 19	<i>T</i> ⁻ _{2g} 19 10 15 15	<i>T</i> ⁻ _{2u} 16 9 14 15
$\begin{array}{c} (24^2 390)\\ \hline {\rm SH}\\ ``\pi\pi"\\ ``\eta\pi"\\ ``\phi\pi"\\ ``\phi\pi"\\ ``K\overline{K}"\end{array}$	A_{1g}^{-} 10 1 19 18 7	A _{1u} 8 5 9 9 2	A_{2g}^{-} 11 6 4 4 2	A _{2u} 10 2 6 6 2	<i>E</i> ⁻ 12 3 13 14 6	<i>E</i> ⁻ 9 7 12 12 4	<i>T</i> ⁻ _{1g} 20 18 11 11 9	<i>T</i> _{1<i>u</i>} 15 8 18 19 4	<i>T</i> ⁻ _{2g} 19 10 15 15 8	$ \frac{T_{2u}^{-}}{16} 9 14 15 4 $

$I = 1, S = 0, T_{1u}^+$ channel

- effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 0 to 24
- energies obtained from two-exponential fits

C. Morningstar

$I = 1, S = 0, T_{1u}^+$ energy extraction, continued

- effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 25 to 49
- energies obtained from two-exponential fits

C. Morningstar

Level identification

- level identification inferred from Z overlaps with probe operators
- analogous to experiment: infer resonances from scattering cross sections
- keep in mind:
 - probe operators \overline{O}_i act on vacuum, create a "probe state" $|\Phi_i\rangle$, Z's are overlaps of probe state with each eigenstate

- have limited control of "probe states" produced by probe operators
 - ideal to be ρ , single $\pi\pi$, and so on
 - use of small-a expansions to characterize probe operators
 - use of smeared guark, gluon fields
 - field renormalizations
- mixing is prevalent
- identify by dominant probe state(s) whenever possible

Level identification

overlaps for various operators

Identifying quark-antiquark resonances

- resonances: finite-volume "precursor states"
- probes: optimized single-hadron operators
 - analyze matrix of just single-hadron operators $O_i^{[SH]}$ (12 × 12)
 - perform single-rotation as before to build probe operators $O'^{[SH]}_m = \sum_i v'^{(m)*}_i O^{[SH]}_i$
- obtain Z' factors of these probe operators

 $Z_m^{\prime(n)} = \langle 0 | O_m^{\prime[SH]} | n \rangle$

C. Morningstar

Staircase of energy levels

• stationary state energies I = 1, S = 0, T_{1u}^+ channel on $(32^3 \times 256)$ anisotropic lattice

Summary and comparison with experiment

- right: energies of $\overline{q}q$ -dominant states as ratios over m_K for $(32^3|240)$ ensemble (resonance precursor states)
- Ieft: experiment

C. Morningstar

Issues

- address presence of 3 and 4 meson states
- in other channels, address scalar particles in spectrum
 - scalar probe states need vacuum subtractions
 - hopefully can neglect due to OZI suppression
- infinite-volume resonance parameters from finite-volume energies
 - Luscher method too cumbersome, restrictive in applicability
 - need for new hadron effective field theory techniques

Bosonic $I = 1, S = 0, A_{1u}^-$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

A1um 1

C. Morningstar

Bosonic $I = 1, S = 0, E_u^+$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

Eup 1

C. Morningstar

Bosonic $I = 1, S = 0, T_{1g}^{-}$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

T1gm 1

C. Morningstar

Bosonic $I = 1, S = 0, T_{1u}^{-}$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

T1um 1

C. Morningstar

- kaon channel: effective energies $\tilde{m}^{\text{eff}}(t)$ for levels 0 to 8
- results for $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- two-exponential fits

C. Morningstar

- effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 9 to 17
- results for $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- two-exponential fits

C. Morningstar

- effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 18 to 23
- dashed lines show energies from single exponential fits

C. Morningstar

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

kaon T1u 32

C. Morningstar

Scattering phase shifts from finite-volume energies

• correlator of two-particle operator σ in finite volume

• $C^{\infty}(P)$ has branch cuts where two-particle thresholds begin

- momentum quantization in finite volume: cuts \rightarrow series of poles
- *C^L* poles: two-particle energy spectrum of finite volume theory

Phase shift from finite-volume energies (con't)

 finite-volume momentum sum is infinite-volume integral plus correction *F*

 define the following quantities: A, A', invariant scattering amplitude iM

Phase shifts from finite-volume energies (con't)

• subtracted correlator $C_{sub}(P) = C^{L}(P) - C^{\infty}(P)$ given by

sum geometric series

$$C_{\rm sub}(P) = A \ \mathcal{F}(1 - i\mathcal{M}\mathcal{F})^{-1} A'.$$

• poles of $C_{\text{sub}}(P)$ are poles of $C^{L}(P)$ from $\det(1 - i\mathcal{MF}) = 0$

Phase shifts from finite-volume energies (con't)

- work in spatial *L*³ volume with periodic b.c.
- total momentum $P = (2\pi/L)d$, where d vector of integers
- masses m_1 and m_2 of particle 1 and 2
- calculate lab-frame energy *E* of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$\begin{split} E_{\rm cm} &= \sqrt{E^2 - \boldsymbol{P}^2}, \qquad \gamma = \frac{E}{E_{\rm cm}}, \\ \boldsymbol{q}_{\rm cm}^2 &= \frac{1}{4} E_{\rm cm}^2 - \frac{1}{2} (m_1^2 + m_2^2) + \frac{(m_1^2 - m_2^2)^2}{4E_{\rm cm}^2}, \\ u^2 &= \frac{L^2 \boldsymbol{q}_{\rm cm}^2}{(2\pi)^2}, \qquad \boldsymbol{s} = \left(1 + \frac{(m_1^2 - m_2^2)}{E_{\rm cm}^2}\right) \boldsymbol{d} \end{split}$$

• E related to S matrix (and phase shifts) by

$$\det[1 + F^{(s,\gamma,u)}(S-1)] = 0,$$

where F matrix defined next slide

C. Morningstar

Phase shifts from finite-volume energies (con't)

F matrix in JLS basis states given by

$$F_{J'm_{J'}L'S'a'; Jm_{J}LSa}^{(s,\gamma,u)} = \frac{\rho_a}{2} \delta_{a'a} \delta_{S'S} \bigg\{ \delta_{J'J} \delta_{m_{J'}m_{J}} \delta_{L'L}$$

 $+ W_{L'm_{L'}; Lm_{L}}^{(s,\gamma,u)} \langle J'm_{J'} | L'm_{L'}, Sm_{S} \rangle \langle Lm_{L}, Sm_{S} | Jm_{J} \rangle \bigg\},$ • total angular mom J, J', orbital mom L, L', intrinsic spin S, S'

- a, a' channel labels
- $\rho_a = 1$ distinguishable particles, $\rho_a = \frac{1}{2}$ identical

$$W_{L'm_{L'}; Lm_{L}}^{(s,\gamma,u)} = \frac{2i}{\pi\gamma u^{l+1}} \mathcal{Z}_{lm}(s,\gamma,u^{2}) \int d^{2}\Omega Y_{L'm_{L'}}^{*}(\Omega) Y_{lm}(\Omega) Y_{Lm_{L}}(\Omega)$$

- Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions Z_{lm} defined next slide
- $F^{(s,\gamma,u)}$ diagonal in channel space, mixes different J, J'
- recall S diagonal in angular momentum, but off-diagonal in channel space

C. Morningstar

RGL shifted zeta functions

• compute Z_{lm} using

$$\begin{aligned} \mathcal{Z}_{lm}(\boldsymbol{s},\gamma,\boldsymbol{u}^2) &= \sum_{\boldsymbol{n}\in\mathbb{Z}^3} \frac{\mathcal{Y}_{lm}(\boldsymbol{z})}{(\boldsymbol{z}^2 - \boldsymbol{u}^2)} e^{-\Lambda(\boldsymbol{z}^2 - \boldsymbol{u}^2)} \\ &+ \delta_{l0}\gamma \pi e^{\Lambda \boldsymbol{u}^2} \left(2uD(\boldsymbol{u}\sqrt{\Lambda}) - \Lambda^{-1/2} \right) \\ &+ \frac{i^l\gamma}{\Lambda^{l+1/2}} \int_0^1 dt \left(\frac{\pi}{t}\right)^{l+3/2} e^{\Lambda t\boldsymbol{u}^2} \sum_{\boldsymbol{n}\in\mathbb{Z}^3\atop\boldsymbol{n}\neq\boldsymbol{0}} e^{\pi i\boldsymbol{n}\cdot\boldsymbol{s}} \mathcal{Y}_{lm}(\boldsymbol{w}) \ e^{-\pi^2 \boldsymbol{w}^2/(t\Lambda)} \end{aligned}$$

where

$$z = n - \gamma^{-1} \left[\frac{1}{2} + (\gamma - 1)s^{-2}n \cdot s \right] s,$$

$$w = n - (1 - \gamma)s^{-2}s \cdot ns, \qquad \mathcal{Y}_{lm}(\mathbf{x}) = |\mathbf{x}|^l Y_{lm}(\widehat{\mathbf{x}})$$

$$D(x) = e^{-x^2} \int_0^x dt \ e^{t^2} \qquad \text{(Dawson function)}$$

- choose $\Lambda \approx 1$ for convergence of the summation
- integral done Gauss-Legendre quadrature, Dawson with Rybicki

P-wave $I = 1 \pi \pi$ scattering

- for *P*-wave phase shift $\delta_1(E_{\rm cm})$ for $\pi\pi I = 1$ scattering
- define $w_{lm} = rac{\mathcal{Z}_{lm}(s,\gamma,u^2)}{\gamma \pi^{3/2} u^{l+1}}$

C. Morningstar

Finite-volume $\pi\pi I = 1$ energies

- $\pi\pi$ -state energies for various d^2
- dashed lines are non-interacting energies, shaded region above inelastic thresholds

C. Morningstar

Pion dispersion relation

- boost to cm frame requires aspect ratio on anisotropic lattice
- aspect ratio ξ from pion dispersion

$$(a_t E)^2 = (a_t m)^2 + \frac{1}{\xi^2} \left(\frac{2\pi a_s}{L}\right)^2 d^2$$

• slope below equals $(\pi/(16\xi))^2$, where $\xi = a_s/a_t$

$I = 1 \ \pi \pi$ scattering phase shift and width of the ρ

- preliminary results $32^3 \times 256$, $m_{\pi} \approx 240$ MeV
- additional collaborator: Ben Hoerz (Dublin)

C. Morningstar

Excited States

58

References

- S. Basak et al., Group-theoretical construction of extended baryon operators in lattice QCD, Phys. Rev. D 72, 094506 (2005).
- S. Basak et al., *Lattice QCD determination of patterns of excited baryon states*, Phys. Rev. D **76**, 074504 (2007).
- C. Morningstar et al., Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD, Phys. Rev. D 83, 114505 (2011).
- C. Morningstar et al., Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD, Phys. Rev. D 88, 014511 (2013).

Conclusion

- goal: comprehensive survey of energy spectrum of QCD stationary states in a finite volume
- stochastic LapH method works very well
 - allows evaluation of all needed quark-line diagrams
 - source-sink factorization facilitates large number of operators
 - last_laph software completed for evaluating correlators
- analysis software sigmond urgently being developed
- analysis of 20 channels I = 1, S = 0 for $(24^3|390)$ and $(32^3|240)$ ensembles nearing completion
- can evaluate and analyze correlator matrices of unprecedented size 100×100 due to XSEDE resources
- study various scattering phase shifts also planned
- infinite-volume resonance parameters from finite-volume energies → need new effective field theory techniques