Excited states and scattering phase shifts from lattice QCD

Colin Morningstar
Carnegie Mellon University

Workshop of the APS Topical Group on Hadron Physics

Baltimore, MD

April 9, 2015
Overview

- goals:
 - comprehensive survey of QCD stationary states in finite volume
 - hadron scattering phase shifts, decay widths, matrix elements
 - focus: large 32^3 anisotropic lattices, $m_\pi \sim 240$ MeV

- extracting excited-state energies
- single-hadron and multi-hadron operators
- the stochastic LapH method
- level identification issues
- results for $I = 1, S = 0, T^+_{1u}$ channel
 - 100×100 correlator matrix, all needed 2-hadron operators
- other channels
- $I = 1$ P-wave $\pi \pi$ scattering phase shifts and width of ρ
- future work
Dramatis Personae

- current grad students:
 - Jake Fallica
 - CMU
 - Andrew Hanlon
 - Pitt

- former CMU postdocs:
 - Justin Foley
 - Software, NVIDIA
 - Jimmy Juge
 - Faculty, Stockton, CA

- past CMU grad students:
 - Brendan Fahy
 - 2014 Postdoc KEK
 - Japan
 - You-Cyuan Jhang
 - 2013
 - Silicon Valley
 - David Lenkner
 - 2013 Data Science Auto., PGH
 - Ricky Wong
 - 2011 Postdoc
 - Germany
 - John Bulava
 - 2009 Faculty, Dublin
 - Adam Lichtl
 - 2006 SpaceX, LA

- thanks to NSF Teragrid/XSEDE:
 - Athena+Kraken at NICS
 - Ranger+Stampede at TACC
Temporal correlations from path integrals

- Stationary-state energies from $N \times N$ Hermitian correlation matrix

 \[C_{ij}(t) = \langle 0 | O_i(t + t_0) \bar{O}_j(t_0) | 0 \rangle \]

- Judiciously designed operators \bar{O}_j create states of interest

 \[O_j(t) = O_j[\bar{\psi}(t), \psi(t), U(t)] \]

- Correlators from path integrals over quark $\psi, \bar{\psi}$ and gluon U fields

 \[C_{ij}(t) = \frac{\int D(\bar{\psi}, \psi, U) \; O_i(t + t_0) \bar{O}_j(t_0) \exp \left(-S[\bar{\psi}, \psi, U] \right)}{\int D(\bar{\psi}, \psi, U) \exp \left(-S[\bar{\psi}, \psi, U] \right)} \]

- Involves the action

 \[S[\bar{\psi}, \psi, U] = \bar{\psi} \; K[U] \; \psi + S_G[U] \]

- $K[U]$ is fermion Dirac matrix
- $S_G[U]$ is gluon action
Integrating the quark fields

- Integrals over Grassmann-valued quark fields done exactly
- Meson-to-meson example:
 \[
 \int \mathcal{D}(\bar{\psi}, \psi) \, \psi_a \psi_b \, \bar{\psi}_c \bar{\psi}_d \, \exp(-\bar{\psi}K\psi) = \left(K_{ad}^{-1} K_{bc}^{-1} - K_{ac}^{-1} K_{bd}^{-1} \right) \det K.
 \]

- Baryon-to-baryon example:
 \[
 \int \mathcal{D}(\bar{\psi}, \psi) \, \psi_{a_1} \psi_{a_2} \psi_{a_3} \, \bar{\psi}_{b_1} \bar{\psi}_{b_2} \bar{\psi}_{b_3} \, \exp(-\bar{\psi}K\psi) = \left(-K_{a_1 b_1}^{-1} K_{a_2 b_2}^{-1} K_{a_3 b_3}^{-1} + K_{a_1 b_1}^{-1} K_{a_2 b_2}^{-1} K_{a_3 b_2}^{-1} + K_{a_1 b_2}^{-1} K_{a_2 b_1}^{-1} K_{a_3 b_3}^{-1} \right. \\
 \left. - K_{a_1 b_2}^{-1} K_{a_2 b_3}^{-1} K_{a_3 b_1}^{-1} - K_{a_1 b_3}^{-1} K_{a_2 b_1}^{-1} K_{a_3 b_2}^{-1} + K_{a_1 b_3}^{-1} K_{a_2 b_2}^{-1} K_{a_3 b_1}^{-1} \right) \det K.
 \]
Monte Carlo integration

- Correlators have form

\[C_{ij}(t) = \frac{\int D U \ det K[U] \ K^{-1}[U] \cdots K^{-1}[U] \ exp \left(-S_G[U]\right)}{\int D U \ det K[U] \ exp \left(-S_G[U]\right)} \]

- Resort to Monte Carlo method to integrate over gluon fields
- Use Markov chain to generate sequence of gauge-field configurations \(U_1, U_2, \ldots, U_N \)

- Most computationally demanding parts:
 - Including \(\det K \) in updating
 - Evaluating \(K^{-1} \) in numerator
Monte Carlo method using computers requires hypercubic space-time lattice

- quarks reside on sites, gluons reside on links between sites
- for gluons, 8 dimensional integral on each link

- path integral dimension $32N_xN_yN_zN_t$
 - 268 million for $32^3 \times 256$ lattice

Metropolis method with global updating proposal

- RHMC: solve Hamilton equations with Gaussian momenta
- $\det K$ estimates with integral over pseudo-fermion fields

- systematic errors
 - discretization
 - finite volume
Excited states from correlation matrices

• in finite volume, energies are discrete (neglect wrap-around)
 \[C_{ij}(t) = \sum_n Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \quad Z_j^{(n)} = \langle 0 | O_j | n \rangle \]

• not practical to do fits using above form
• define new correlation matrix \(\tilde{C}(t) \) using a single rotation
 \[\tilde{C}(t) = U^\dagger C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U \]
 columns of \(U \) are eigenvectors of \(C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2} \)
• choose \(\tau_0 \) and \(\tau_D \) large enough so \(\tilde{C}(t) \) diagonal for \(t > \tau_D \)
• effective energies
 \[\tilde{m}_\alpha^{\text{eff}}(t) = \frac{1}{\Delta t} \ln \left(\frac{\tilde{C}_{\alpha\alpha}(t)}{\tilde{C}_{\alpha\alpha}(t + \Delta t)} \right) \]
 tend to \(N \) lowest-lying stationary state energies in a channel
• 2-exponential fits to \(\tilde{C}_{\alpha\alpha}(t) \) yield energies \(E_\alpha \) and overlaps \(Z_j^{(n)} \)
Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\tilde{U}_j(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

$$\tilde{\psi}_{a\alpha}(x) = S_{ab}(x,y) \psi_{b\alpha}(y), \quad S = \Theta \left(\sigma_s^2 + \tilde{\Delta} \right)$$

- 3d gauge-covariant Laplacian $\tilde{\Delta}$ in terms of \tilde{U}
- displaced quark fields:

$$q^A_{a\alpha j} = D^{(j)}(x) \tilde{\psi}_{a\alpha}^{(A)}, \quad \overline{q}^A_{a\alpha j} = \overline{\tilde{\psi}}_{a\alpha}^{(A)} \gamma_4 D^{(j)\dagger}$$

- displacement $D^{(j)}$ is product of smeared links:

$$D^{(j)}(x,x') = \tilde{U}_{j_1}(x) \tilde{U}_{j_2}(x+d_2) \tilde{U}_{j_3}(x+d_3) \ldots \tilde{U}_{j_p}(x+d_p) \delta_{x'}, x+d_{p+1}$$

- to good approximation, LapH smearing operator is

$$S = V_s V_s^\dagger$$

- columns of matrix V_s are eigenvectors of $\tilde{\Delta}$
Extended operators for single hadrons

- quark displacements build up orbital, radial structure

Meson configurations

Baryon configurations

\[
\Phi_{AB}^{\alpha\beta}(p, t) = \sum_x e^{i p \cdot (x + \frac{1}{2} (d_\alpha + d_\beta))} \delta_{ab} \overline{q}_b^B(x, t) q_a^A(x, t)
\]

\[
\Phi_{ABC}^{\alpha\beta\gamma}(p, t) = \sum_x e^{i p \cdot x} \varepsilon_{abc} \overline{q}_c^C(x, t) \overline{q}_b^B(x, t) \overline{q}_a^A(x, t)
\]

- group-theory projections onto irreps of lattice symmetry group

\[
\overline{M}_l(t) = c^{(l)*}_{\alpha\beta} \Phi_{AB}^{\alpha\beta}(t) \quad \overline{B}_l(t) = c^{(l)*}_{\alpha\beta\gamma} \Phi_{ABC}^{\alpha\beta\gamma}(t)
\]

- definite momentum \(p \), irreps of little group of \(p \)
Importance of smeared fields

- effective masses of 3 selected nucleon operators shown
- noise reduction of displaced-operators from link smearing $n_{\rho\rho} = 2.5, n_\rho = 16$
- quark-field smearing $\sigma_s = 4.0, n_\sigma = 32$
 reduces excited-state contamination
Early results on small 16^3 and 24^3 lattices

- Bob Sugar in 2005: “You’ll never see more than 2 levels”
- $I = 1, S = 0$ energies on 24^3 lattice, $m_\pi \sim 390$ MeV in 2010
- use of single-meson operators only
- shaded region shows where two-meson energies expected
Early results on small lattices

- kaons on 16^3 lattice, $m_\pi \sim 390$ MeV in 2008
- use of single-meson operators only

Graphs showing mass distribution for different states.

- $I=\frac{1}{2}, S=-1, P=+1$
 - A_{1g}, T_{1g}, E_g, T_{2g}, A_{2g}

- $I=\frac{1}{2}, S=-1, P=-1$
 - A_{1u}, T_{1u}, E_u, T_{2u}, A_{2u}
Early results on small lattices

- N, Δ baryons on 16^3 lattice, $m_\pi \sim 390$ MeV in 2008
- use of single-baryon operators only
Early results on small lattices

- Σ, Λ, Ξ baryons on 16^3 lattice, $m_{\pi} \sim 390$ MeV in 2008
- use of single-baryon operators only
Two-hadron operators

- our approach: superposition of products of single-hadron operators of definite momenta

\[c_{p_a \lambda_a}^{I_3 a} p_{b \lambda_b} B_{p_a \Lambda_a \lambda_a i_a} B_{p_b \Lambda_b \lambda_b i_b} \]

- fixed total momentum \(p = p_a + p_b \), fixed \(\Lambda_a, i_a, \Lambda_b, i_b \)

- group-theory projections onto little group of \(p \) and isospin irreps

- restrict attention to certain classes of momentum directions
 - on axis \(\pm \hat{x}, \pm \hat{y}, \pm \hat{z} \)
 - planar diagonal \(\pm \hat{x} \pm \hat{y}, \pm \hat{x} \pm \hat{z}, \pm \hat{y} \pm \hat{z} \)
 - cubic diagonal \(\pm \hat{x} \pm \hat{y} \pm \hat{z} \)

- crucial to know and fix all phases of single-hadron operators for all momenta
 - each class, choose reference direction \(p_{\text{ref}} \)
 - each \(p \), select one reference rotation \(R^p_{\text{ref}} \) that transforms \(p_{\text{ref}} \) into \(p \)

- efficient creating large numbers of two-hadron operators

- generalizes to three, four, \ldots two-hadron operators
Quark propagation

- Quark propagator is inverse K^{-1} of Dirac matrix
 - Rows/columns involve lattice site, spin, color
 - Very large $N_{\text{tot}} \times N_{\text{tot}}$ matrix for each flavor

 \[N_{\text{tot}} = N_{\text{site}}N_{\text{spin}}N_{\text{color}} \]

- For $32^3 \times 256$ lattice, $N_{\text{tot}} \sim 101$ million

- Not feasible to compute (or store) all elements of K^{-1}

- Solve linear systems $Kx = y$ for source vectors y

- Translation invariance can drastically reduce number of source vectors y needed

- Multi-hadron operators and isoscalar mesons require large number of source vectors y
Quark line diagrams

- temporal correlations involving our two-hadron operators need
 - slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
 - sink-to-sink quark lines

- isoscalar mesons also require sink-to-sink quark lines

- solution: the stochastic LapH method!
Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix $K[U]$
- use noise vectors η satisfying $E(\eta_i) = 0$ and $E(\eta_i\eta_j^*) = \delta_{ij}$
- Z_4 noise is used \{1, i, -1, $-i$\}
- solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K^{-1}_{ij} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X^{(r)}_i \eta^{(r)*}_j$$

- variance reduction using noise dilution
- dilution introduces projectors

$$P^{(a)} P^{(b)} = \delta^{ab} P^{(a)} , \quad \sum_a P^{(a)} = 1 , \quad P^{(a)\dagger} = P^{(a)}$$

- define

$$\eta^{[a]} = P^{(a)} \eta , \quad X^{[a]} = K^{-1} \eta^{[a]}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$K^{-1}_{ij} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_a X^{(r)[a]}_i \eta^{(r)[a]*}_j$$
Stochastic LapH method

- introduce Z_N noise in the LapH subspace
 \[\rho_{\alpha k}(t), \quad t = \text{time}, \alpha = \text{spin}, \, k = \text{eigenvector number} \]

- four dilution schemes:
 \[
 \begin{align*}
 P_{ij}^{(a)} &= \delta_{ij} \quad &a = 0 &\quad \text{(none)} \\
 P_{ij}^{(a)} &= \delta_{ij}\delta_{ai} \quad &a = 0, 1, \ldots, N - 1 &\quad \text{(full)} \\
 P_{ij}^{(a)} &= \delta_{ij}\delta_{a,Ki/N} \quad &a = 0, 1, \ldots, K - 1 &\quad \text{(interlace-}K) \\
 P_{ij}^{(a)} &= \delta_{ij}\delta_{a, i \mod k} \quad &a = 0, 1, \ldots, K - 1 &\quad \text{(block-}K) \\
 \end{align*}
 \]

- apply dilutions to
 - time indices (full for fixed src, interlace-16 for relative src)
 - spin indices (full)
 - LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)
The effectiveness of stochastic LapH

- comparing use of lattice noise vs noise in LapH subspace
- N_D is number of solutions to $Kx = y$
Quark line estimates in stochastic LapH

- each of our quark lines is the product of matrices
 \[Q = D^{(j)} SK^{-1} \gamma_4 SD^{(k)\dagger} \]
- displaced-smeared-diluted quark source and quark sink vectors:
 \[Q^{[b]}(\rho) = D^{(j)} V_s P^{(b)} \rho \]
 \[\varphi^{[b]}(\rho) = D^{(j)} SK^{-1} \gamma_4 V_s P^{(b)} \rho \]
- estimate in stochastic LapH by \((A, B\) flavor, \(u, \nu\) compound: space, time, color, spin, displacement type)
 \[Q_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_{b} \varphi^{[b]}(\rho^r) Q^{[b]}(\rho^r)^* \]
- occasionally use \(\gamma_5\)-Hermiticity to switch source and sink
 \[Q_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_{b} \overline{Q}^{[b]}(\rho^r) \overline{\varphi}^{[b]}(\rho^r)^* \]
 defining \(\overline{\varphi}(\rho) = -\gamma_5 \gamma_4 \varphi(\rho)\) and \(\overline{\varphi}(\rho) = \gamma_5 \gamma_4 \varphi(\rho)\)
Source-sink factorization in stochastic LapH

- baryon correlator has form

\[C_{\vec{l}\vec{l}} = c_{ijk}^l c_{ijk}^{\vec{l}} \ast Q_i^A Q_j^B Q_k^C \]

- stochastic estimate with dilution

\[C_{\vec{l}\vec{l}} \approx \frac{1}{N_R} \sum_r \sum_{d_A d_B d_C} c_{ijk}^l c_{ijk}^{\vec{l}} \ast \left(\varphi_i^{(Ar)}[d_A] \varphi_i^{(Ar)}[d_A]^* \right) \times \left(\varphi_j^{(Br)}[d_B] \varphi_j^{(Br)}[d_B]^* \right) \times \left(\varphi_k^{(Cr)}[d_C] \varphi_k^{(Cr)}[d_C]^* \right) \]

- define baryon source and sink

\[
\begin{align*}
B_l^{(r)[d_A d_B d_C]} (\varphi^A, \varphi^B, \varphi^C) &= c_{ijk}^l \varphi_i^{(Ar)}[d_A] \varphi_j^{(Br)}[d_B] \varphi_k^{(Cr)}[d_C] \\
B_{\vec{l}}^{(r)[d_A d_B d_C]} (\varphi^A, \varphi^B, \varphi^C) &= c_{ijk}^{\vec{l}} Q_i^{(Ar)}[d_A] Q_j^{(Br)}[d_B] Q_k^{(Cr)}[d_C]
\end{align*}
\]

- correlator is dot product of source vector with sink vector

\[C_{\vec{l}\vec{l}} \approx \frac{1}{N_R} \sum_r \sum_{d_A d_B d_C} B_l^{(r)[d_A d_B d_C]} (\varphi^A, \varphi^B, \varphi^C) B_{\vec{l}}^{(r)[d_A d_B d_C]} (\varphi^A, \varphi^B, \varphi^C)^* \]
Correlators and quark line diagrams

- **baryon correlator**

\[
\mathcal{C}_{\bar{l}l} \approx \frac{1}{N_R} \sum_r \sum_{d_Ad_Bd_C} \mathcal{B}_l^{(r)[d_Ad_Bd_C]} (\phi^A, \phi^B, \phi^C) \mathcal{B}_{\bar{l}}^{(r)[d_Ad_Bd_C]} (\bar{\phi}^A, \bar{\phi}^B, \bar{\phi}^C) *
\]

- **express diagrammatically**

- **meson correlator**

\[
- \mathcal{C} \mathcal{G} \left[\begin{array}{c} \phi \\ \phi \\ \phi \\ \phi \\ \phi \\ \phi \end{array} \right] \left[\begin{array}{c} \bar{\phi} \\ \bar{\phi} \\ \bar{\phi} \\ \bar{\phi} \\ \bar{\phi} \\ \bar{\phi} \end{array} \right] + \mathcal{C} \mathcal{G} \left[\begin{array}{c} \phi \\ \phi \\ \phi \\ \phi \\ \phi \\ \phi \end{array} \right] \left[\begin{array}{c} \bar{\phi} \\ \bar{\phi} \\ \bar{\phi} \\ \bar{\phi} \\ \bar{\phi} \\ \bar{\phi} \end{array} \right]
\]
More complicated correlators

- two-meson to two-meson correlators (non isoscalar mesons)
Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group O_h
 $$A_{1a}, A_{2g}, E_g, T_{1a}, T_{2a}, \quad G_{1a}, G_{2a}, H_a, \quad a = g, u$$
 - on-axis momenta: little group C_{4v}
 $$A_1, A_2, B_1, B_2, E, \quad G_1, G_2$$
 - planar-diagonal momenta: little group C_{2v}
 $$A_1, A_2, B_1, B_2, \quad G_1, G_2$$
 - cubic-diagonal momenta: little group C_{3v}
 $$A_1, A_2, E, \quad F_1, F_2, G$$

- include G parity in some meson sectors (superscript $+$ or $-$)
Spin content of cubic box irreps

- numbers of occurrences of Λ irreps in J subduced

<table>
<thead>
<tr>
<th>J</th>
<th>A_1</th>
<th>A_2</th>
<th>E</th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>G_1</th>
<th>G_2</th>
<th>H</th>
<th>J</th>
<th>G_1</th>
<th>G_2</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$\frac{9}{2}$</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$\frac{11}{2}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{5}{2}$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$\frac{13}{2}$</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{7}{2}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{15}{2}$</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Common hadrons

<table>
<thead>
<tr>
<th>Hadron</th>
<th>Irrep</th>
<th>Hadron</th>
<th>Irrep</th>
<th>Hadron</th>
<th>Irrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>A^{-}_{1u}</td>
<td>K</td>
<td>A_{1u}</td>
<td>η, η'</td>
<td>A^{+}_{1u}</td>
</tr>
<tr>
<td>ρ</td>
<td>T^{+}_{1u}</td>
<td>ω, ϕ</td>
<td>T^{-}_{1u}</td>
<td>K^*</td>
<td>T_{1u}</td>
</tr>
<tr>
<td>a_0</td>
<td>A^{+}_{1g}</td>
<td>f_0</td>
<td>A^{+}_{1g}</td>
<td>h_1</td>
<td>T^{-}_{1g}</td>
</tr>
<tr>
<td>b_1</td>
<td>T^{+}_{1g}</td>
<td>K_1</td>
<td>T_{1g}</td>
<td>π_1</td>
<td>T^{-}_{1u}</td>
</tr>
<tr>
<td>N, Σ</td>
<td>G^{+}_{1g}</td>
<td>Λ, Ξ</td>
<td>G_{1g}</td>
<td>Δ, Ω</td>
<td>H_g</td>
</tr>
</tbody>
</table>
Ensembles and run parameters

- plan to use three Monte Carlo ensembles
 - $(32^3|240)$: 412 configs $32^3 \times 256$, $m_\pi \approx 240$ MeV, $m_\pi L \sim 4.4$
 - $(24^3|240)$: 584 configs $24^3 \times 128$, $m_\pi \approx 240$ MeV, $m_\pi L \sim 3.3$
 - $(24^3|390)$: 551 configs $24^3 \times 128$, $m_\pi \approx 390$ MeV, $m_\pi L \sim 5.7$

- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta = 1.5$ such that $a_s \sim 0.12$ fm, $a_t \sim 0.035$ fm
- strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- work in $m_u = m_d$ limit so $SU(2)$ isospin exact
- generated using RHMC, configs separated by 20 trajectories

- stout-link smearing in operators $\xi = 0.10$ and $n_\xi = 10$
- LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - $N_v = 112$ for 24^3 lattices
 - $N_v = 264$ for 32^3 lattices

- source times:
 - 4 widely-separated t_0 values on 24^3
 - 8 t_0 values used on 32^3 lattice
Use of XSEDE resources

- use of XSEDE resources crucial
- Monte Carlo generation of gauge-field configurations: \(\sim 200 \text{ million core hours} \)
- quark propagators: \(\sim 100 \text{ million core hours} \)
- hadrons + correlators: \(\sim 40 \text{ million core hours} \)
- storage: \(\sim 300 \text{ TB} \)

![Kraken at NICS](image1.png) ![Stampede at TACC](image2.png)

C. Morningstar Excited States
correlator software last_laph completed summer 2013
 • testing of all flavor channels for single and two-mesons completed fall 2013
 • testing of all flavor channels for single baryon and meson-baryons completed summer 2014

small-\(a\) expansions of all operators completed

first focus on the resonance-rich \(\rho\)-channel: \(I = 1, S = 0, T_{1u}^+\)

results from \(63 \times 63\) matrix of correlators \((32^3|240)\) ensemble
 • 10 single-hadron (quark-antiquark) operators
 • “\(\pi\pi\)” operators
 • “\(\eta\pi\)” operators, “\(\phi\pi\)” operators
 • “\(K\bar{K}\)” operators

inclusion of all possible 2-meson operators

3-meson operators currently neglected

still finalizing analysis code sigmond

next focus: the 20 bosonic channels with \(I = 1, S = 0\)
Operator accounting

- Numbers of operators for $I = 1$, $S = 0$, $P = (0, 0, 0)$ on 32^3 lattice

| (322|240) | A^+_{1g} | A^+_{1u} | A^+_{2g} | A^+_{2u} | E^-_g | E^-_u | T^+_{1g} | T^+_{1u} | T^+_{2g} | T^+_{2u} |
|----------|-------------|-------------|-------------|-------------|---------|---------|-------------|-------------|-------------|-------------|
| SH | 9 | 7 | 13 | 13 | 9 | 9 | 14 | 23 | 15 | 16 |
| "ππ" | 10 | 17 | 8 | 11 | 8 | 17 | 23 | 30 | 17 | 27 |
| "ηπ" | 6 | 15 | 10 | 7 | 11 | 18 | 31 | 20 | 21 | 23 |
| "φπ" | 6 | 15 | 9 | 7 | 12 | 19 | 37 | 11 | 23 | 23 |
| "K̄K̄" | 0 | 5 | 3 | 5 | 3 | 6 | 9 | 12 | 5 | 10 |
| Total | 31 | 59 | 43 | 43 | 43 | 69 | 114 | 96 | 81 | 99 |

| (322|240) | A^-_{1g} | A^-_{1u} | A^-_{2g} | A^-_{2u} | E^-_g | E^-_u | T^-_{1g} | T^-_{1u} | T^-_{2g} | T^-_{2u} |
|----------|-------------|-------------|-------------|-------------|---------|---------|-------------|-------------|-------------|-------------|
| SH | 10 | 8 | 11 | 10 | 12 | 9 | 21 | 15 | 19 | 16 |
| "ππ" | 3 | 7 | 7 | 3 | 8 | 11 | 22 | 12 | 12 | 15 |
| "ηπ" | 26 | 15 | 10 | 12 | 24 | 21 | 25 | 33 | 28 | 30 |
| "φπ" | 26 | 15 | 10 | 12 | 27 | 22 | 26 | 38 | 30 | 32 |
| "K̄K̄" | 11 | 3 | 4 | 2 | 11 | 5 | 12 | 5 | 12 | 6 |
| Total | 76 | 48 | 42 | 39 | 82 | 68 | 106 | 103 | 101 | 99 |

C. Morningstar

Excited States 31
Operator accounting

numbers of operators for $I = 1$, $S = 0$, $P = (0, 0, 0)$ on 24^3 lattice

| (242|390) | A^+_{1g} | A^+_{1u} | A^+_{2g} | A^+_{2u} | E^+_{g} | E^+_{u} | T^+_{1g} | T^+_{1u} | T^+_{2g} | T^+_{2u} |
|-----------|------------|------------|------------|------------|-----------|-----------|------------|------------|------------|------------|
| SH | 9 | 7 | 13 | 13 | 9 | 9 | 14 | 23 | 15 | 16 |
| “$\pi\pi$”| 6 | 12 | 2 | 6 | 8 | 9 | 15 | 17 | 10 | 12 |
| “$\eta\pi$” | 2 | 10 | 8 | 4 | 8 | 11 | 21 | 14 | 14 | 13 |
| “$\phi\pi$” | 2 | 10 | 8 | 4 | 8 | 11 | 23 | 3 | 14 | 13 |
| “$K\bar{K}$” | 0 | 4 | 1 | 4 | 1 | 4 | 8 | 10 | 4 | 6 |
| Total | 19 | 43 | 32 | 31 | 34 | 44 | 81 | 67 | 57 | 60 |

| (242|390) | A^-_{1g} | A^-_{1u} | A^-_{2g} | A^-_{2u} | E^-_{g} | E^-_{u} | T^-_{1g} | T^-_{1u} | T^-_{2g} | T^-_{2u} |
|-----------|------------|------------|------------|------------|-----------|-----------|------------|------------|------------|------------|
| SH | 10 | 8 | 11 | 10 | 12 | 9 | 20 | 15 | 19 | 16 |
| “$\pi\pi$”| 1 | 5 | 6 | 2 | 3 | 7 | 18 | 8 | 10 | 9 |
| “$\eta\pi$” | 19 | 9 | 4 | 6 | 13 | 12 | 11 | 18 | 15 | 14 |
| “$\phi\pi$” | 18 | 9 | 4 | 6 | 14 | 12 | 11 | 19 | 15 | 15 |
| “$K\bar{K}$” | 7 | 2 | 2 | 2 | 6 | 4 | 9 | 4 | 8 | 4 |
| Total | 55 | 33 | 27 | 26 | 48 | 44 | 69 | 64 | 67 | 58 |
\(I = 1, \ S = 0, \ T_{1u}^+ \) channel

- effective energies \(\tilde{m}^{\text{eff}}(t) \) for levels 0 to 24
- energies obtained from two-exponential fits
$I = 1, \ S = 0, \ T_{1u}^+ \ energy\ extraction, \ continued$

- effective energies $\tilde{m}_{eff}(t)$ for levels 25 to 49
- energies obtained from two-exponential fits
Level identification

- Level identification inferred from Z overlaps with probe operators.
- Analogous to experiment: infer resonances from scattering cross sections.
- Keep in mind:
 - Probe operators \overline{O}_j act on vacuum, create a “probe state” $|\Phi_j\rangle$.
 - Z’s are overlaps of probe state with each eigenstate:
 $$|\Phi_j\rangle \equiv \overline{O}_i|0\rangle, \quad Z_j^{(n)} = \langle \Phi_j | n \rangle$$
 - Have limited control of “probe states” produced by probe operators:
 - Ideal to be ρ, single $\pi\pi$, and so on.
 - Use of small $-a$ expansions to characterize probe operators.
 - Use of smeared quark, gluon fields.
 - Field renormalizations.
 - Mixing is prevalent.
 - Identify by dominant probe state(s) whenever possible.
Level identification

- overlaps for various operators

\[
\begin{align*}
\pi A_2^+ S S1 \pi A_2^+ S S1 OA \\
\pi(140) \pi(140)
\end{align*}
\]

\[
\begin{align*}
K A_2 S S1 K^+ A_2 S S1 OA \\
K(497) K^+(497)
\end{align*}
\]

\[
\begin{align*}
\pi A_2^+ S S0 \pi A_2^+ S S0 PD \\
\pi(140) \pi(140)
\end{align*}
\]

\[
\begin{align*}
\eta E S S1 \pi A_2^- L S D1 OA \\
\omega(782) \pi(140)
\end{align*}
\]

\[
\begin{align*}
K A_2 S S0 K^+ A_2 S S0 PD \\
K(497) K^+(497)
\end{align*}
\]

\[
\begin{align*}
\phi E S S1 \pi A_2^- S S1 OA \\
\phi(1020) \pi(140)
\end{align*}
\]

\[
\begin{align*}
\pi A_2^+ S S0 \pi A_2^- S S0 C D \\
\pi(140) \pi(140)
\end{align*}
\]

\[
\begin{align*}
\eta T_{1u} S S0 \pi A_1^+ S S0 \\
\omega(782) a_0(980)
\end{align*}
\]

\[
\begin{align*}
\pi A_2^+ S S1 \pi A_2^- T S D0 OA \\
\pi(140) \pi(1300)
\end{align*}
\]
Identifying quark-antiquark resonances

- resonances: finite-volume “precursor states”
- probes: *optimized* single-hadron operators
 - analyze matrix of just single-hadron operators $O^{[SH]}_i$ (12×12)
 - perform single-rotation as before to build probe operators
 $$O^{[SH]}_m = \sum_i v_i^{(m)*} O^{[SH]}_i$$
- obtain Z' factors of these probe operators
 $$Z'_m(n) = \langle 0 | O^{[SH]}_m | n \rangle$$
stationary state energies $I = 1$, $S = 0$, T_{1u}^+ channel on $(32^3 \times 256)$ anisotropic lattice
Summary and comparison with experiment

- right: energies of $\bar{q}q$-dominant states as ratios over m_K for $(32^3|240)$ ensemble (resonance precursor states)
- left: experiment

Experiment

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>Experimental mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.77</td>
<td>$\rho(770)$</td>
</tr>
<tr>
<td>1.45</td>
<td>$\rho(1450)$</td>
</tr>
<tr>
<td>1.57</td>
<td>$\rho(1570)$</td>
</tr>
<tr>
<td>1.69</td>
<td>$\rho_2(1690)$</td>
</tr>
<tr>
<td>1.70</td>
<td>$\rho(1700)$</td>
</tr>
<tr>
<td>1.90</td>
<td>$\rho(1900)$</td>
</tr>
<tr>
<td>1.99</td>
<td>$\rho_3(1990)$</td>
</tr>
<tr>
<td>2.15</td>
<td>$\rho(2150)$</td>
</tr>
</tbody>
</table>

Lattice T_{1u}^+

- lattice $q\bar{q}$ state
- experimental mass
- experimental width
Issues

- address presence of 3 and 4 meson states
- in other channels, address scalar particles in spectrum
 - scalar probe states need vacuum subtractions
 - hopefully can neglect due to OZI suppression
- infinite-volume resonance parameters from finite-volume energies
 - Luscher method too cumbersome, restrictive in applicability
 - need for new hadron effective field theory techniques
Bosonic $I = 1$, $S = 0$, A_{1u}^- channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators
Bosonic $I = 1$, $S = 0$, E_u^+ channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators

![Energy vs Levels Plot]

C. Morningstar

Excited States
Bosonic $I = 1$, $S = 0$, T_{1g}^- channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators
Bosonic $I = 1$, $S = 0$, T_{1u}^- channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators
Bosonic $I = \frac{1}{2}$, $S = 1$, T_{1u} channel

- kaon channel: effective energies $\tilde{m}_{\text{eff}}(t)$ for levels 0 to 8
- results for $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- two-exponential fits
Bosonic $I = \frac{1}{2}$, $S = 1$, T_{1u} channel

- effective energies $\tilde{m}_{\text{eff}}(t)$ for levels 9 to 17
- results for $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- two-exponential fits
Bosonic $I = \frac{1}{2}, \ S = 1, \ T_{1u} \ channel$

- effective energies $\tilde{m}^{\text{eff}}(t)$ for levels 18 to 23
- dashed lines show energies from single exponential fits
Bosonic $I = \frac{1}{2}$, $S = 1$, T_{1u} channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators
Scattering phase shifts from finite-volume energies

- correlator of two-particle operator σ in finite volume

$$C^L(P) = \sigma \sigma^\dagger + \sigma iK \sigma^\dagger + \cdots$$

- Bethe-Salpeter kernel

$$iK = \times + \cdots$$

- $C^\infty(P)$ has branch cuts where two-particle thresholds begin
- momentum quantization in finite volume: cuts \rightarrow series of poles
- C^L poles: two-particle energy spectrum of finite volume theory
finite-volume momentum sum is infinite-volume integral plus correction \mathcal{F}

define the following quantities: A, A', invariant scattering amplitude $i\mathcal{M}$

$$A = \sigma + \sigma iK + \sigma iK + \sigma iK + \ldots$$

$$A' = \sigma^\dagger + iK \sigma^\dagger + iK \sigma^\dagger + iK \sigma^\dagger + \ldots$$

$$i\mathcal{M} = iK + iK iK + iK iK + iK iK + \ldots$$
Phase shifts from finite-volume energies (con’t)

- subtracted correlator \(C_{\text{sub}}(P) = C^L(P) - C^\infty(P) \) given by

\[
C_{\text{sub}}(P) = A \frac{1}{\mathcal{F}} + A \frac{iM}{\mathcal{F}} A' + A \frac{iM}{\mathcal{F}} iM \frac{iM}{\mathcal{F}} A' + \ldots
\]

- sum geometric series

\[
C_{\text{sub}}(P) = A \mathcal{F}(1 - iM\mathcal{F})^{-1} A'.
\]

- poles of \(C_{\text{sub}}(P) \) are poles of \(C^L(P) \) from \(\det(1 - iM\mathcal{F}) = 0 \)
Phase shifts from finite-volume energies (con’t)

- work in spatial L^3 volume with periodic b.c.
- total momentum $P = (2\pi/L)d$, where d vector of integers
- masses m_1 and m_2 of particle 1 and 2
- calculate lab-frame energy E of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$E_{\text{cm}} = \sqrt{E^2 - P^2}, \quad \gamma = \frac{E}{E_{\text{cm}}},$$

$$q_{\text{cm}}^2 = \frac{1}{4} E_{\text{cm}}^2 - \frac{1}{2} (m_1^2 + m_2^2) + \frac{(m_1^2 - m_2^2)^2}{4 E_{\text{cm}}^2},$$

$$u^2 = \frac{L^2 q_{\text{cm}}^2}{(2\pi)^2}, \quad s = \left(1 + \frac{(m_1^2 - m_2^2)}{E_{\text{cm}}^2}\right) d$$

- E related to S matrix (and phase shifts) by

$$\det[1 + F^{(s,\gamma,u)}(S - 1)] = 0,$$

where F matrix defined next slide
Phase shifts from finite-volume energies (con’t)

- F matrix in JLS basis states given by
 \[
 F_{J'm_j',L'S'\alpha'}^{(s,\gamma,u)}; JmJLSa = \frac{\rho_a}{2} \delta_{\alpha'\alpha} \delta_{S'S} \left\{ \delta_{J'J} \delta_{m_j'm_j} \delta_{L'L} + W_{L'm_{L'}; Lm_L}^{(s,\gamma,u)} \langle J'm_j' | L'm_{L'}, S_{m} \rangle \langle Lm_L, S_{m} | Jm_J \rangle \right\},
 \]
- total angular mom J, J', orbital mom L, L', intrinsic spin S, S'
- α, α' channel labels
- $\rho_a = 1$ distinguishable particles, $\rho_a = \frac{1}{2}$ identical
- $W_{L'm_{L'}; Lm_L}^{(s,\gamma,u)} = \frac{2i}{\pi \gamma u^{l+1}} Z_{lm}(s, \gamma, u^2) \int d^2\Omega \ Y_{L'm_{L'}}^*(\Omega) Y_{lm}^*(\Omega) Y_{Lm_L}(\Omega)$
- Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions Z_{lm} defined next slide
- $F^{(s,\gamma,u)}$ diagonal in channel space, mixes different J, J'
- recall S diagonal in angular momentum, but off-diagonal in channel space
compute Z_{lm} using

$$Z_{lm}(s, \gamma, u^2) = \sum_{n \in \mathbb{Z}^3} \frac{Y_{lm}(z)}{(z^2 - u^2)} e^{-\Lambda(z^2 - u^2)}$$

$$+ \delta_{l0} \gamma \pi e^{\Lambda u^2} \left(2uD(u\sqrt{\Lambda}) - \Lambda^{-1/2}\right)$$

$$+ \frac{i^l \gamma}{\Lambda^{l+1/2}} \int_0^1 dt \left(\frac{\pi}{t}\right)^{l+3/2} e^{\Lambda tu^2} \sum_{n \in \mathbb{Z}^3} e^{\pi in \cdot s} Y_{lm}(w) e^{-\pi^2 w^2/(t\Lambda)}$$

where

$$z = n - \gamma^{-1} \left[\frac{1}{2} + (\gamma - 1)s^{-2} n \cdot s\right] s,$$

$$w = n - (1 - \gamma)s^{-2} s \cdot ns,$$

$$Y_{lm}(x) = |x|^l Y_{lm}(\hat{x})$$

$$D(x) = e^{-x^2} \int_0^x dt \ e^{t^2} \quad \text{(Dawson function)}$$

choose $\Lambda \approx 1$ for convergence of the summation

integral done Gauss-Legendre quadrature, Dawson with Rybicki
P-wave $I = 1 \pi\pi$ scattering

- For P-wave phase shift $\delta_1(E_{\text{cm}})$ for $\pi\pi$ $I = 1$ scattering
- Define

\[
w_{lm} = \frac{Z_{lm}(s, \gamma, u^2)}{\gamma \pi^{3/2} u^{l+1}}\]

<table>
<thead>
<tr>
<th>d</th>
<th>Λ</th>
<th>$\cot \delta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0,0,0)$</td>
<td>T_{1u}^+</td>
<td>$\text{Re } w_{0,0}$</td>
</tr>
<tr>
<td>$(0,0,1)$</td>
<td>A_1^+</td>
<td>$\text{Re } w_{0,0} + \frac{2}{\sqrt{5}} \text{Re } w_{2,0}$</td>
</tr>
<tr>
<td></td>
<td>E^+</td>
<td>$\text{Re } w_{0,0} - \frac{1}{\sqrt{5}} \text{Re } w_{2,0}$</td>
</tr>
<tr>
<td>$(0,1,1)$</td>
<td>A_1^+</td>
<td>$\text{Re } w_{0,0} + \frac{1}{2\sqrt{5}} \text{Re } w_{2,0} - \sqrt{\frac{6}{5}} \text{Im } w_{2,1} - \sqrt{\frac{3}{10}} \text{Re } w_{2,2}$</td>
</tr>
<tr>
<td></td>
<td>B_{1}^+</td>
<td>$\text{Re } w_{0,0} - \frac{1}{\sqrt{5}} \text{Re } w_{2,0} + \sqrt{\frac{6}{5}} \text{Re } w_{2,2}$</td>
</tr>
<tr>
<td></td>
<td>B_{2}^+</td>
<td>$\text{Re } w_{0,0} + \frac{1}{2\sqrt{5}} \text{Re } w_{2,0} + \sqrt{\frac{6}{5}} \text{Im } w_{2,1} - \sqrt{\frac{3}{10}} \text{Re } w_{2,2}$</td>
</tr>
<tr>
<td>$(1,1,1)$</td>
<td>A_1^+</td>
<td>$\text{Re } w_{0,0} + 2 \sqrt{\frac{6}{5}} \text{Im } w_{2,2}$</td>
</tr>
<tr>
<td></td>
<td>E^+</td>
<td>$\text{Re } w_{0,0} - \sqrt{\frac{6}{5}} \text{Im } w_{2,2}$</td>
</tr>
</tbody>
</table>
Finite-volume $\pi\pi I = 1$ energies

- $\pi\pi$-state energies for various d^2
- dashed lines are non-interacting energies, shaded region above inelastic thresholds
Pion dispersion relation

- Boost to cm frame requires aspect ratio on anisotropic lattice
- Aspect ratio ξ from pion dispersion

\[
(a_t E)^2 = (a_t m)^2 + \frac{1}{\xi^2} \left(\frac{2\pi a_s}{L} \right)^2 d^2
\]

- Slope below equals \((\pi/(16\xi))^2\), where $\xi = a_s/a_t$
$I = 1 \pi \pi$ scattering phase shift and width of the ρ

- preliminary results $32^3 \times 256$, $m_\pi \approx 240$ MeV
- additional collaborator: Ben Hoerz (Dublin)

$\tan(\delta_1) = \frac{\Gamma/2}{m_r - E} + A$ and $\Gamma = \frac{g^2}{48\pi m_r^2} (m_r^2 - 4m_\pi^2)^{3/2}$

Conclusion

- goal: comprehensive survey of energy spectrum of QCD stationary states in a finite volume
- stochastic LapH method works very well
 - allows evaluation of all needed quark-line diagrams
 - source-sink factorization facilitates large number of operators
 - last_laph software completed for evaluating correlators
- analysis software sigmond urgently being developed
- analysis of 20 channels $I = 1, S = 0$ for $(24^3|390)$ and $(32^3|240)$ ensembles nearing completion
- can evaluate and analyze correlator matrices of unprecedented size 100×100 due to XSEDE resources
- study various scattering phase shifts also planned
- infinite-volume resonance parameters from finite-volume energies need new effective field theory techniques