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Abstract—The growing volume of mobile data traffic has
led many Internet service providers (ISPs) to cap their users’
monthly data usage, with steep overage fees for exceeding their
caps. In this work, we examine a secondary data market in which
users can buy and sell leftover data caps from each other. China
Mobile Hong Kong recently introduced such a market. While
similar to an auction in that users submit bids to buy and sell
data, it differs from traditional double auctions in that the ISP
serves as the middleman between buyers and sellers. We derive
the optimal prices and amount of data that different buyers and
sellers are willing to bid in this market and then propose an
algorithm for ISPs to match buyers and sellers. We compare
the resulting matching for different ISP objectives and derive
conditions under which an ISP can obtain higher revenue with
the secondary market: while the ISP loses revenue from overage
fees, it can assess administration fees and pocket the differences
between the buyer and seller prices. Finally, we use one year
of usage data from 100 U.S. mobile users to illustrate that the
conditions for a revenue increase can hold in practice.

I. INTRODUCTION

Most Internet service providers (ISPs), facing large growth
in their network traffic, have attempted to limit excessive data
usage by charging users a fixed fee for a maximum amount
of data usage in a month, i.e., a monthly data cap [1]. Usage
over the cap requires paying steep overage fees, and cannot
generally be rolled over into subsequent months [2], [3]. Yet
consumers are heterogeneous in the amount of data that they
use over a month: some users may use relatively little data,
always remaining under their data cap, while others may often
purchase additional data as they exceed their data caps [4].

A. Traded Data Plans

The discrepancy between heterogeneous data usage and
fixed data caps has been somewhat mitigated by shared data
plans [5]–[8]. Such plans allow data caps to be shared across
multiple users and devices; thus, heavy users can reduce the
probability of exceeding their data caps by sharing a cap with
light users, who effectively give away some of their data caps
to heavier users. Yet most users only share data plans with their
immediate family. If all family members use similar amounts
of data, they may still use significantly less or significantly
more data than their shared data cap [5].

While most users will not give away their leftover data caps
to strangers, they might sell their leftover data. Heavy users

could then purchase additional data directly from other users,
avoiding ISPs’ high overage fees. However, ISPs would still
need to be involved in this secondary market for data, both to
enforce the traded data caps in users’ bills (e.g., ensuring that
buyers are not charged overage fees for their purchased data),
and to help buyers and sellers find each other (e.g., through
an exchange platform). China Mobile Hong Kong (CMHK)
recently introduced such a secondary market [9]. CMHK’s
2cm (2nd exchange market) data exchange platform allows
users to submit bids to buy and sell data, with CMHK acting
as a middleman both to match buyers and sellers and to ensure
that the sellers’ trading revenue and buyers’ purchased data are
reflected on customers’ monthly bills.

To the best of our knowledge, no research paper has yet
studied traded data plans. Thus, several important research
questions remain unanswered: how do users choose the bids
to submit, and how would an ISP match buyers to sellers?
More fundamentally, why would ISPs offer such data plans?

At first glance, we would expect ISPs to lose revenue with
the secondary market: instead of purchasing overage data from
the ISP, users can buy data directly from other users, who may
offer lower prices.1 However, the ISP’s status as a middleman
between buyers and sellers allows it to extract revenue from
buyer-seller transactions. In this work, we derive the optimal
buyer, seller, and ISP behavior. We show that all three parties
can benefit from the option of a secondary market, both
analytically and with simulations over a one-year dataset of
100 users’ monthly usage from a U.S. ISP.

B. Related Work

Most previously studied data auctions aim to mitigate net-
work congestion. For example, [10] considers a scheme in
which users place bids on each transmitted data packet and the
ISP admits packets in order of decreasing bids. The authors in
[11] consider a similar ”transport auction” to distribute uplink
capacity among users with delay-tolerant traffic. The work in

1Eventually, some users may buy lower data caps from the ISP since they
can buy data from other users; conversely, others may buy high data caps and
resell them to other users. There may be long-term branding and marketing
benefits, rather than just monetary reasons, for an ISP in offering a secondary
market. We do not consider these long-term effects in this paper, instead
focusing on user and ISP behavior within one month.
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Fig. 1. Buyer-seller interaction in the traded data plan.

[12] allocates different bandwidth to users based on quality
of service requirements specified in their bids, while [13]
supposes that users send demand functions to an auctioneer
who calculates users’ prices and their capacity allocation.

Secondary markets can also occur in spectrum auctions,
with secondary spectrum holders purchasing temporary spec-
trum from the primary holders [14]. The spectrum capacity,
however, is only held on a temporary basis, introducing
different buyer and seller incentives than those for data trading.
Moreover, spectrum auctions do not have a third-party mid-
dleman, a trait shared by more generic double auction works
for electronic commerce and electrical power [15]–[17].

C. Modeling User and ISP Behavior

We suppose that each seller (resp. buyer) can submit a bid
to the secondary market consisting of the volume of data he or
she wishes to sell (buy) and the unit price he or she is willing
to accept (pay) for the data. The ISP then matches buyers and
sellers to each other. While the ISP determines the amount
of data that users can buy or sell, a buyer always pays her
bid price for any data bought, and similarly a seller always
receives his bid price (any differences between the amounts
paid and received go to the ISP). Thus, users have no incentive
to lie about the prices they are willing to accept (sellers) or
pay (buyers). Figure 1 shows this buyer-seller interaction.

Choosing optimal bids (Section II): When choosing how
much data to bid, users must account for its effect on their
usage in the rest of the month, which also depends on their
unknown future usage preferences. For instance, buyers may
use more data if they can buy data in the secondary market.
However, users might not be able to trade their entire bid
amount; thus, if they benefit more from trading a very small
amount of data rather than an amount near the optimum, they
may bid a smaller amount of data. We show that it is optimal
for users to assume they can trade their entire bid and derive
the resulting amount of data to bid as a function of the bid
price, accounting for its effect on future usage.

The prices that users bid affect whether their bid can be
fully matched: for instance, some buyers may not pay the high
price set by a seller. However, users do not know how much of
their bid can be matched without knowing the ISP’s matching
algorithm and other users’ bids. The user must therefore guess
his or her chance at being matched if he or she bids a certain
price. We first examine ISPs’ matching policies before giving
an algorithm for users to estimate.

Matching buyers and sellers (Section III): The ISP
matches users so as to optimize its revenue, including volume-
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Fig. 2. Buyer-seller matching with their bids and ISP revenue.

based administration fees and “bid” revenue, or the price
difference between buyers who pay high and sellers willing
to accept low prices. Since buyers will buy more data in the
secondary market due to its low prices compared to ISP over-
age fees, the ISP can collect substantial administration fees,
which can exceed its primary market revenue. We compare
the users matched when the ISP optimizes its different types
of revenue and derive conditions under which the ISP can gain
revenue compared to the primary market.

Market dynamics (Section IV): As they participate in more
matchings, users form an estimate of the amount of data
they can buy or sell at different prices. Some users, however,
might not use these estimates to choose their bid prices,
e.g., optimistic sellers may always try to sell data at high
prices, even if they are unlikely to be matched. We propose
an algorithm for users to adjust their expectations of being
matched and change their bid prices accordingly.

We finally simulate the day-to-day market interactions over
a one-year dataset of monthly usage for 100 U.S. ISP cus-
tomers in Section V. We show that buyers, sellers, and the
ISP can all benefit from the secondary market, depending on
how much data buyers are willing to purchase. We conclude
the paper in Section VI.

II. USER TRADING BEHAVIOR

We consider L buyers who purchase data from other users
and J sellers who sell their leftover data. In this section,
we discuss how sellers (Section II-A) and buyers (Section
II-B) choose their bids to maximize their utilities,2 and then
consider how users choose whether to become a buyer or
seller in Section II-C. Since users can choose whether or not
to participate in the secondary market, they can benefit from
having the option of participating. We now introduce notation
and behaviorial considerations common to buyers and sellers.

Since different users can purchase different data caps from
their ISPs [2], we denote a buyer l and seller j’s data caps
before trading as dbl and dsj respectively. Each buyer and seller
has a maximum amount of leftover data, denoted as obl and
osj ; thus, each user consumes at least dbl − obl (buyers) or
dsj−osj (sellers) amount of data. For instance, users will likely
have some predictable usage over a month, e.g., for habitual
browsing and checking email. Note that this leftover data must
be less than the data cap: obl ≤ dbl and osj ≤ dsj .

2The utility maximization may be performed by a third-party agent working
on behalf of buyers and sellers.
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We define a buyer l’s bid by an amount of data bl and a
price πl that she is willing to pay. Similarly, each seller j
bids a price σj for an amount of data sj . Figure 2 shows
how buyers’ bids are matched to sellers’ bids and how the
ISP receives revenue in the secondary market. In this case,
the buyer purchases her entire bid. The seller’s income is split
between the administration revenue paid to the ISP and the
revenue kept by the seller. The ISP pockets bid revenue from
the difference between buyer and seller prices. The bid prices
are lower bounded by an administration fee ρ per unit data sold
that the ISP imposes on the sellers, as in CMHK’s traded data
plan [9]. Sellers will not accept a buyer l’s price πl < ρ, since
πl does not cover the administration fee and the seller loses
money. The prices are upper-bounded by the ISP’s overage
fee p per unit data: buyers prefer to buy data from the ISP at
price p rather than accept seller j’s price if σj > p.

Absent the cost or revenue from trading data, users gain
utility from consuming data. We use α-fair utility functions to
model the usage utility from consuming c amount of data:

V (c) =
θc1−α

1− α
, (1)

where θ is a positive constant representing the scale of the
usage utility and we take α ∈ [0, 1). We use

(
θsj , α

s
j

)
to denote

the parameters for seller j and
(
θbl , α

b
l

)
for buyer l.

A. Sellers’ Optimal Bids

Since sellers can submit bids before the end of the month,
they do not exactly know their future monthly usage. Thus, we
suppose that each seller j’s realized usage csj for the month is a
random variable with distribution f . This distribution depends
not only on the amount of data sold sj , but also on the user’s
maximum leftover data osj and data cap before trading dsj .

Figure 3 shows that the seller consumes at least dsj − osj
amount of data, i.e., his minimum usage, and at most dsj − sj
amount of data, i.e., the data cap after selling data.3 The jth
seller’s expected usage utility from selling sj amount of data is
then

∫ ds
j−sj

ds
j−osj

V s
j (c

s
j)f(c

s
j)dc

s
j . The seller’s revenue term equals

3Users constrain their usage below dsj − sj so as to avoid having to buy
more data later in the month.
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Fig. 4. Illustration of the seller’s maximum utility. Price ($/GB) and data
parameters are αs

j = 0.4, θsj = 1, dsj = 5, osj = 3, and ρ = 15.

(σj − ρ)sj (Figure 2), so the expected utility of the jth seller
when selling sj data is given by:

E(Us
j | sj) =

∫ ds
j−sj

ds
j−osj

V s
j (c

s
j)f(c

s
j)dc

s
j + (σj − ρ)sj . (2)

We note that (2) is always increasing in the price σj . Thus,
sellers always bid high prices, subject to their ability to be
matched to buyers (Section IV). Given σj and the distribution
f , the seller chooses s⋆j (σj) ∈ [0, osj ] so as to maximize the
utility (2). Though it is possible that the seller will not be
able to sell all of his data, it is still optimal for the seller to
bid the utility-maximizing s⋆j : If E(Us

j | sj) is concave, then
E(Us

j | sj) is increasing in sj for sj ∈ [0, s⋆j ]. Thus, the seller
always bids the maximum amount of data up to the optimum
amount.4 We now show some example distributions for which
E(Us

j | sj) is concave.
Example Distributions. Some sellers may only use the

minimum data (i.e., f is a delta distribution centered at
dsj − osj .) In this case, E(Us

j | sj) is linear in sj and the seller
bids s⋆j = osj amount of data.

Other sellers may use up their entire data caps in the month,
i.e., f is the delta distribution centered at dsj −sj . In this case,
the utility function in (2) can be written as:

Eδ(U
s
j | sj) = V s

j (d
s
j − sj) + (σj − ρ)sj . (3)

Thus, we compute the optimal bid as s⋆j =

max
{
0,min

{
osj , d

s
j −

(
(σj − ρ)/θsj

)−1/αs
j

}}
.

In most cases, the seller’s usage will fall somewhere be-
tween these two extremes. We thus follow [5] in supposing
that it follows a uniform distribution f(csj) = (osj − sj)

−1

between dsj − osj and dsj − sj . In this case, we first show that
E(Us

j | sj) is a concave function:

Proposition 1: The utility function of the jth seller
E(Us

j | sj) in (2) is concave in sj if f(csj) is a uniform

4We show in Section III-A that bidding an amount sj > s⋆j does not
increase the seller’s probability of matching exactly s⋆j amount of data.
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distribution. Then, the optimal bid s⋆j satisfies

(osj − s⋆j )(σj − ρ) = V s
j (d

s
j − s⋆j )−

∫ ds
j−s⋆j

ds
j−osj

V s
j (c

s
j)f(c

s
j)dc

s
j .

(4)

Figure 4 shows the value of the utility corresponding to all
the possible σj and sj ; (4) is satisfied along the black curve.
We now observe that s⋆j is decreasing in σj :

Corollary 1: The optimal amount sold s⋆j (σj) for each
seller j increases as σj increases if E(Us

j | sj) is concave.
To solve for s⋆j using (4), we use the nonlinear Perron-

Frobenius theory [18] (cf. Appendix A):

Algorithm 1 Sellers’ Utility Maximization
Initialize s(0) ∈ (0,os).
1) The jth seller updates the data caps to be sold:

sj(k + 1) = osj −
1

σj − ρ
V s
j (d

s
j − sj(k))

+
1

σj − ρ

∫ dsj−sj(k)

dsj−osj

V s
j (c

s
j)f(c

s
j)dc

s
j .

2) Normalize sj(k + 1):

sj(k + 1)← min

sj(k + 1), dsj −

(
θsj
(
dsj + αs

jo
s
j

)
2dsj(σ − ρ)

) 1
αs
j

 .

Lemma 1: Algorithm 1 converges geometrically fast to the
fixed point s⋆j in (4) from any initial point sj(0) if s⋆j ≤
dsj −

(
θsj (1 + αs

jo
s
j/d

s
j)/(2(σj − ρ))

)1/αs
j .

Since the right-hand side of Lemma 1’s condition is decreas-
ing in the utility scaling factor θsj , we expect it to be satisfied
for relatively low values of θsj . For such θsj , the user will have
relatively low utility from usage, as we would expect from a
seller. We formalize this intuition in Section II-C.

B. Buyers’ Optimal Bids

Like the sellers, buyers do not exactly know their future
usage. Thus, we take the buyer’s monthly usage cbl to be a
random variable with distribution f(cbl ) between the minimum
usage dbl − obl and data cap after trading dbl + bl (Figure 3).
Hence, the expected data usage utility of the lth buyer pur-
chasing bl amount of data is given by

∫ db
l+bl

db
l−obl

V b
l (c

b
l )f(c

b
l )dc

b
l .

Each buyer l’s cost of purchasing bl amount of data is blπl,
so the expected utility of the lth buyer is

E(U b
l | bl) =

∫ db
l+bl

db
l−obl

V b
l (c

b
l )f(c

b
l )dc

b
l − blπl. (5)

Since (5) is decreasing in πl, buyers wish to bid at lower
prices, subject to their ability to be matched to sellers (Sec-
tion IV). As with the seller, the buyer will always bid her
utility-maximizing b⋆l if E(U b

l | bl) is concave.
Example Distributions. As in Section II-A, some buyers

will use only their minimum usage dbl − obl ; these buyers will
therefore not purchase any data in the market. Other buyers
will use up their entire data cap, i.e., their distribution f will
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Fig. 5. Illustration of the buyer’s maximum utility. Price ($/GB) and
valuations are αb

l = 0.4, θbl = 1, dbl = 1, and obl = 0.2.

be the delta distribution centered at dbl+bl. The utility function
under this delta distribution is given by

Eδ(U
b
l | bl) = V b

l (d
b
l + bl)− πlbl, (6)

yielding the optimal data bid b⋆l (πl) =
(
πl/θ

b
l

)−1/αb
l .

In most cases, however, the buyer’s usage will lie between
the two extremes. We thus consider the case where f is the
uniform distribution f(cbl ) = 1/(obl + bl). We first show that
the utility in (5) is concave:

Proposition 2: The utility function of the lth buyer
E(U b

l | bl) in (5) is concave in bl if f(cbl ) is a uniform
distribution. Then, the optimal bid b⋆l satisfies:

(obl + b⋆l )πl = V b
l (d

b
l + b⋆l )−

∫ db
l+b⋆l

db
l−osl

V b
l (c

b
l )f(c

b
l )dc

b
l . (7)

Figure 5 shows the value of the utility corresponding to all
the possible πl and bl, where (7) is satisfied along the black
curve. We also note that b⋆l is a decreasing function of the
price:

Corollary 2: The optimal bid b⋆l (σj) for each buyer l de-
creases as σj increases if E(U b

l | bl) is concave.
We again use the Perron-Frobenius theory to solve for b⋆l :

Algorithm 2 Buyers’ Utility Maximization
Initialize b(0) ∈ RL

+.
1) The lth buyer updates the amount of data to be purchased:

bl(k + 1) =
1

πl
V b
l (d

b
l + bl(k))

− 1

πl

∫ dbl+bl(k)

db
l
−ob

l

V b
l (c

b
l )f(c

b
l )dc

b
l − obl .

2) Normalize bl(k + 1):

bl(k + 1)← min

{
bl(k + 1),

(
θbl (d

b
l + αb

l o
b
l )

2dblπl

) 1

αb
l − dbl

}
.

Lemma 2: Algorithm 2 converges geometrically fast to the
fixed point b⋆l in (7) from any initial point bl(0) if b⋆l ≤(
θbl (1 + αb

l o
b
l/d

b
l )/(2πl)

)1/αb
l − dbl .

We thus observe that the algorithm converges for buyers
with high utility scaling factors θbl . We show in the next section
that buyers will likely satisfy this condition.
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Fig. 6. Illustration of the process of matching sellers and buyers.

C. Selling or Buying Data

Users choose to become a buyer or seller based on the utility
they can achieve from buying or selling data. Thus, if

E(Us
j | s⋆j (p)) ≥ E(U b

l | b⋆l (ρ)), (8)

the user becomes a seller: The user’s maximum utility from
selling data (assuming all data is sold at the maximum price)
must be higher than the maximum utility from purchasing data
(assuming all data is bought at the minimum price).5 If (8) is
reversed, the user buys data.

To illustrate this decision, we suppose that the user’s usage
follows the delta distribution, as in Sections II-A and II-B’s
examples. We then derive the following condition on users’
utility scaling factor θ in in the usage utility function (1):

Corollary 3: The user sells data when the scale θ satisfies
θ ≤ θ̂ and buys data when θ ≥ θ̂, where

θ̂ =

((
1− α

α

)(
(p− ρ)dsj − ρdbl

ρ
α−1
α − (p− ρ)

α−1
α

))α

. (9)

Thus, users with high utility scaling θ become buyers, while
those with low θ become sellers.

III. ISP TRADING POLICIES

The ISP will match buyers and sellers so as to optimize
its revenue, subject to constraints imposed by the buyer and
seller bids (Section III-A). We analyze the optimal matching in
Section III-B before considering whether the resulting revenue
exceeds that of the primary data market in Section III-C.

A. ISP Optimization

The ISP will often encounter sellers’ and buyers’ bids that
are not exactly aligned: for instance, if a seller offers more data
than any single buyer is willing to purchase. To help match
such bids, we suppose that the ISP can match multiple buyers
to multiple sellers. Since the ISP acts as a middleman between

5Here we assume the user can always sell or buy all the bid data. More
generally, the user could estimate the maximum amount of data he or she could
sell or buy at a given price using past experience (Section IV); the amount of
data sold is the minimum of this quantity and the optimal bid amount. Users
buy (sell) data if the resulting utility is higher for selling (buying) data at the
prices maximizing these utilities.

all buyers and all sellers, this flexibility is transparent to users.
All required accounting can be done internally by the ISP.

We denote the matching between buyers and sellers with a
matrix Ω = [Ωlj ]

L,J
l,j=1 ≥ 0. Each (l, j) entry of Ω represents

the percentage of the lth buyer’s demand (i.e., amount of data
bid) bl that is satisfied by the jth seller’s data supply sj ; thus,
Ωljbl represents the amount of data that buyer l purchases from
seller j.6 Note that the ISP can take any bids from users (e.g.,
sj = s⋆j (σj) and bl = b⋆l (πl)) in the matching optimization.
Figure 6 shows a schematic of the buyer and seller interaction.

1) Matching Constraints: The ISP’s matching is primarily
constrained by the buyer and seller bids. Buyer l’s bid of a
price πl and amount of data bl constrains the ISP matching in
two ways: first, the buyer will buy at most bl amount of data,
leading to the feasible set

B =
{
Ω
∣∣∣ J∑
j=1

Ωlj ≤ 1, l = 1, . . . , L
}
. (10)

We thus suppose that the buyer will accept matchings in which
her bid is only partially matched (Section II).

Second, the buyer’s price πl gives an upper bound to the
average purchase price of her data. We assume that the buyer
will pay this bid price πl for all data purchased; the resulting
amount paid, πl

∑
j Ωljbl, must be at least as much as the

data cost specified by sellers’ bid prices (i.e., a cost σjΩljbl
for each seller j). Mathematically, we have the feasible set

Π =
{
Ω
∣∣∣ J∑
j=1

Ωljσj ≤ πl

J∑
j=1

Ωlj , l = 1, . . . , L
}
. (11)

If the total amount paid by the buyer exceeds the data cost,
the ISP keeps the excess as part of its bid revenue.

Similarly, seller j’s bid of a price σj and amount of data
sj implies that he will sell at most sj amount of data:

S =
{
Ω
∣∣∣ L∑

l=1

Ωljbl ≤ sj , j = 1, . . . , J
}
. (12)

In return, the total money paid by all buyers for seller j’s data∑
l Ωljblπl must be at least the cost of the data σj

∑
l Ωljbl:

Σ =
{
Ω
∣∣∣πl

L∑
l=1

Ωljbl ≥ σj

L∑
l=1

Ωljbl, j = 1, . . . , J
}
. (13)

Thus, the ISP must choose Ω ∈ B ∩Π∩S ∩Σ, which can be
written as a set of linear constraints as in (10)-(13).

Intuitively, if sellers bid sufficiently low and buyers suffi-
ciently high prices, they can be matched to at least one other
user. We derive these price thresholds using (11) and (13):

Proposition 3 (Price feasibility): If seller j sells data to at
least one buyer (

∑
l Ωljbl > 0), then his selling price σj is

lower than at least one buyer’s purchasing price: σj ≤ maxl πl.

6Equivalently, we can define Ωlj as the percentage of user j’s supply sold
to buyer l, which has the effect of transposing the matching constraints.
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Analogously, if buyer l purchases data from at least one
seller (i.e.,

∑
j Ωlj > 0), then her purchasing price is higher

than at least one seller’s selling price, i.e., πl ≥ minj σj .

2) ISP Objective: The ISP’s objective in choosing a match-
ing Ω is to maximize its revenue from the secondary market.
We identify two sources of ISP revenue: “administration
revenue” and “bid revenue” (Figure 2).

The ISP’s revenue from the administration fee is pro-
portional to the volume of data traded, i.e., ρ

∑
l,j Ωljbl.

To calculate the bid revenue, we sum the gaps be-
tween each buyer’s payment and each seller’s income:∑

l

(
πl

∑
j Ωljbl −

∑
j σjΩljbl

)
. From (11), this gap is al-

ways positive. The ISP thus maximizes its revenue by solving
the linear program

maximize
Ω

ωρ
J∑

j=1

L∑
l=1

Ωljbl

+(1− ω)
L∑

l=1

J∑
j=1

(Ωljblπl − Ωljblσj)

subject to Ω ∈ B ∩ S ∩Π ∩ Σ;Ω ≥ 0.

(14)

The parameter ω trades off between administration revenue
and bid revenue; its effect is our next subject of discussion.
We use Ω⋆ to denote the optimal solution to (14).

We note that, if a seller bids s̃j > s⋆j , it does not improve
his chance of having

∑
l Ω

⋆
ljb

⋆
l = s⋆j at the optimality of (14),

but he may have s⋆j <
∑

l Ω
⋆
ljb

⋆
l = s̃j , yielding suboptimal

utility for the seller. Similarly, buyers do not bid more than
their optimal amount b⋆l .

B. Matching Buyers and Sellers

The ISP can maximize its total revenue by choosing ω =
0.5, i.e., weighting the bid and administration revenue equally.
However, while both types of revenue generally increase
with the amount of data traded, changing ω can lead to
different matching solutions. The ISP can thus incorporate
other considerations into its matching objective.

Taking ω < 0.5, i.e., preferentially weighting the bid
revenue, is equivalent to reducing the administration fee ρ. For
instance, if we assume that the ISP incurs a constant marginal
cost of supporting

∑
l,j Ωljbl amount of traffic on its network,

it can subtract this cost from ρ; the ISP thus maximizes its
profit instead of its revenue.

When the ISP preferentially weights its bid revenue, it
attempts to match buyers with high prices to sellers with low
prices, increasing the difference in the amount paid by buyers
and sellers. In contrast, when maximizing its administration
revenue, the ISP wishes to maximize the total amount of
data traded. Thus, for higher ω (i.e., preferential weight to
administration revenue) the ISP might match a seller to buyers
with both higher and lower prices; buyers’ prices πl would
then average out to equal the seller’s price σj , and the seller
would be able to trade more data than if he had only been
matched to buyers with higher πl. Indeed, we can derive a
specific condition on ω for which such matchings occur:

Proposition 4 (Matching feasibility): If πl < σj and

ω <
maxj σj −minl πl

ρ+ (maxj σj −minl πl)
, (15)

then the ISP will not match buyer l to seller j.

We note that if ω = 1, then ω never satisfies (15), and low
price buyers can be matched to sellers with higher prices. The
amount matched of a user’s bid can thus depend on not only
others’ bids, but also the ISP’s matching objective.

Figure 7 illustrates the effect of varying ω with the matching
results for five users. When the ISP preferentially weights
bid revenue, i.e., ω is small, the seller with the lowest price
(Seller 1) and the buyer with highest price (Buyer 3) are
the only users matched. However, as ω increases, more users
are matched; in fact, for ω > 0.44, buyers 1 and 4 both
purchase data, even though their bid prices are lower than
all the sellers’ bid prices. Furthermore, as ω increases, the
administration revenue ρ

∑
j

∑
l Ωljbl increases, but the bid

revenue
∑

l

∑
j(Ωljblπl − Ωljblσj) decreases.

Even for ω = 1, some buyers and sellers may not be
matched to any users. We can in fact derive price thresholds
for buyers and sellers above (resp. below) which all buyers
(sellers) can trade some data, and below (above) which no
buyer (seller) trades any data:

Proposition 5 (Price competition): Suppose that sellers are
sorted with price ascending (σj+1 ≥ σj) and buyers sorted
with price descending (πl+1 ≤ πl). Then Ω⋆ is a block matrix
with all the non-zero entries in the northwest corner:

1) If the mth buyer is not matched with any seller
(
∑

j Ωmj = 0), then all buyers l > m (i.e., whose bid
prices are lower than that of buyer m) are also unmatched:
all the entries below an all-zero row in Ω⋆ are zero.

2) If the nth seller is not matched with any buyer (
∑

l Ωln =
0), then all sellers j > n (i.e., whose bid prices are higher
than that of seller n) are also unmatched: all the entries
to the right of an all-zero column in Ω⋆ are zero.

Thus, buyers and sellers compete with each other on the ba-
sis of price. Buyers paying higher prices and sellers accepting
lower prices are rewarded by the ability to trade some data.

C. Comparison to the Primary Market

In the absence of a secondary market, buyers would be
forced to buy overage data at price p from the ISP instead
of from other users. Thus, in the secondary market, buyers
purchase more data due to lower prices. Since the ISP receives
administration revenue in proportion to the amount of data
sold in the secondary market, its revenue can be larger than
the revenue earned in the primary market. Table I compares
users’ utilities and ISP revenue in both markets.

Figure 8 illustrates ISP and user behavior in the primary and
secondary markets for the simplified case of one buyer and one
seller. In the primary market, buyers purchase data from the
ISP at the maximum price p. The lth buyer thus maximizes
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Fig. 7. ISP revenue and user matching with ρ = 15, p = 60, s = (3, 2, 3, 2, 2)⊤, σ = (35, 45, 48, 48, 42)⊤, b = (2, 1, 3, 2, 2)⊤ and
π = (35, 45, 50, 35, 40)⊤. Seller 1 and Buyer 3 offer the lowest and highest prices respectively, and can always trade all their data. Users with the
highest selling price (Seller 3 and 4) and the lowest purchasing price (Buyer 4) can trade data when ω is sufficiently large (Proposition 4).TABLE I

COMPARISON OF USER UTILITY AND ISP REVENUE IN THE PRIMARY MARKET AND THE SECONDARY MARKET

Primary market Secondary market

Buyer l E(Ub
l | b⋆l (p)) =

∫ dbl+b⋆l (p)

db
l
−ob

l

V b
l (c

b
l )f(c

b
l )dc

b
l − πlb

⋆
l (p) E(Ub

l | b⋆l (πl)) =

∫ dbl+b⋆l (πl)

db
l
−ob

l

V b
l (c

b
l )f(c

b
l )dc

b
l − πlb

⋆
l (πl)

Seller j E(Us
j | s⋆j = 0) =

∫ dsj

dsj−osj

V s
j (csj)f(c

s
j)dc

s
j E(Us

j | s⋆j (σj)) =

∫ dsj−s⋆j (σj)

dsj−osj

V s
j (csj)f(c

s
j)dc

s
j + (σj − ρ)s⋆j (σj)

ISP p
L∑

l=1

b⋆l (p) ρ
J∑

j=1

s⋆j (σj) +

 L∑
l=1

πlb
⋆
l (πl)−

J∑
j=1

σjs
⋆
j (σj)
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Fig. 8. As illustrated here for one seller and one buyer, users always increase
their utilities and the ISP can earn more revenue in the secondary market.

her utility by purchasing b⋆l (p) data from the ISP. Hence, the
revenue of the ISP in the primary market is p

∑L
l=1 b

⋆
l (p).

Sellers do not participate in the primary market, which is
equivalent to taking σj = ρ in the secondary market: at this
price, the seller does not earn any revenue from selling data
and loses utility if he sells data; therefore s⋆j = 0.

In Figure 8, the sellers and buyers are matched when their
prices align (σj = πl). Thus, in the secondary market, the
lth buyer purchases b⋆l (πl) amount of data, where πl < p.
Since b⋆l (·) monotonically decreases with respect to the price
(Corollary 2), b⋆l (p) < b⋆l (πl) and the buyer purchases more
data in the secondary than in the primary market. However,
this increase in data may not allow the ISP to recover the
revenue lost from the primary market:

Proposition 6 (Revenue benefit): A necessary condition for
the ISP to earn more revenue in the secondary market than in
the primary market is

p

ρ
≤ min

l,...,L

b⋆l (ρ)

b⋆l (p)
. (16)

For instance, if the buyers’ future usage distributions are delta
distributions as in Section II-B, b⋆l (πl) = (πl/θ

b
l )

−1/αb
l . Thus,

b⋆l (ρ)/b
⋆
l (p) = (p/ρ)1/α

b
l > p/ρ, and the ISP can earn more

revenue in the secondary market.

IV. DYNAMIC DATA TRADING

In practice, buyers and sellers can submit new bids at any
time, so the ISP must run many matchings over a month. Note
that the number of matchings can vary from month to month
depending on how frequently users submit bids. Moreover,
buyers and sellers can learn from the results of each matching:
for instance, if the jth seller is not matched to any buyers, he
can lower the price of his next bid to attract more buyers.

Optimistic buyers (resp. sellers) might choose their initial
prices πl(0) = ρ or σj(0) = p, though buyers would likely
have to raise and sellers lower their prices before they could
be matched. Risk-averse sellers and buyers, on the other
hand, would respectively choose close to the minimum and
maximum prices to ensure that they will be matched.

Other users would leverage their past experience. For in-
stance, the buyer estimates the expected amount of data gbl (πl)
that she could buy as a function of the bid price πl and then
computes her optimal data bid b⋆l (πl). The buyer would then
expect to be able to purchase min{gbl (πl), b

⋆
l (πl)} amount

of data, yielding a utility E
(
U b
l |min{gbl (πl), b

⋆
l (πl)}

)
. The

buyer then chooses her initial price πl(0) ≥ ρ so as to
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maximize this utility. The function gbl (πl) can depend on the
time of the month at which the bid is submitted, e.g., there are
likely to be more buyers at the end of the month as users run
out of their data caps, and can be updated at the end of each
month. Sellers can choose their prices σj(0) analogously.

In each iteration k, we assume that the buyers and sellers
increase and decrease their prices by ϵbl (k) and ϵsj(k) respec-
tively, subject to the constraints that πl(k), σj(k) ∈ [ρ, p].
Users can set ϵ based on their transaction history, e.g., as de-
scribed above for the initial price, and/or their risk preferences:
a larger ϵ changes the price more, increasing the likelihood of
being matched but lowering their utilities.

We incorporate these initial prices and price adjustment in
the following dynamics, which are formalized in Algorithm 3:

1) Initially, users choose πl(0) and σj(0) as above. They
then calculate the optimal amounts of data to bid bl(0) =
b⋆l (πl) and sj(0) = s⋆j (σj) as in Algorithms 1 and 2.

2) Upon receiving bids from at least one seller and one
buyer, the ISP runs the matching optimization (14).

3) Users respond to the matching result from the ISP. If
only a portion of the bid is matched, each buyer l
increases her price by an amount ϵbl and each seller
l decreases her price by an amount ϵsj . They then
recompute the amount of data to bid with this new price
and submit the new bids to the ISP.

V. NUMERICAL EVALUATION

A. Trading Dynamics

We now analyze the data trading dynamics in Algorithm 3
with a five-user example. Figure 9 shows the fraction of their
total bids that each seller and buyer trades in each iteration.
In Figures 9(a) and 9(b), ω = 0 (i.e., the ISP optimizes its bid
revenue), while in Figures 9(c) and 9(d), ω = 1 (optimizing
the administration revenue). The sellers and buyers are ordered
respectively in increasing and decreasing order of price.

As shown in Figures 9(b) and 9(d), the matching optimiza-
tion always matches the sellers with lower prices first; the
sellers finish selling their bids in increasing order of their
prices. Conversely, as shown in Figures 9(a) and 9(c), the
matching optimization always matches the buyers with higher
prices first, and the buyers finish purchasing their bids in
decreasing order of their prices. Thus, buyers with higher price
bids and sellers with lower price bids are more likely to be
matched. Moreover, the users in Figures 9(c) and 9(d) (ω = 1)
are all matched one iteration earlier than those in Figures 9(a)
and 9(b) (ω = 0): the ISP matches more users when optimizing
administration revenue rather than bid revenue.

In Figure 10, we suppose that new users enter the market
at the third time slot. One new seller submits a 2GB bid
with a price higher than the other sellers’ highest price; at the
same time, one new buyer submits a 2GB bid, with a price
lower than the other buyers’ lowest price. These prices reflect
the fact that new participants do not have the experience to
realistically estimate the amount of data they can buy or sell at
different prices. However, by adjusting their prices the users

Algorithm 3 Data Trading Dynamics
At k = 0, each seller and buyer initializes σj(0), s⋆j (σj(0)) and
πl(0), b⋆l (πl(0)) respectively.
while L(k) > 0 and J(k) > 0 do

1) Upon receiving bids
(
bl(k), πl(k)

)
and

(
sj(k), σj(k)

)
from

L(k) buyers and J(k) sellers, the ISP updates the constraint
sets B ≡ B(k), Π ≡ Π(k), S ≡ S(k) and Σ ≡ Σ(k).
2) The ISP computes Ω(k+1) by solving (14) with L(k), J(k),
sj(k), σj(k), bl(k), πl(k) as L, J , sj , σj , bl, πl.
3) Each seller j updates the bid price and amount of data:
if
∑

l Ωlj(k + 1)bl(k) < sj(k) then
dsj(k + 1) = dsj(k)−

∑
l Ωlj(k + 1)bl(k),

osj(k + 1) = osj(k)−
∑

l Ωlj(k + 1)bl(k),
σj(k + 1) = max{σj(k)− ϵsj(k), ρ},
Run Algorithm 1 to obtain sj(k + 1).

end if
J(k + 1) = J(k).
if
∑

l Ωlj(k + 1)bl(k) = sj(k) then
Transaction is successful: J(k + 1) = J(k + 1)− 1.

end if
4) Each buyer l updates the bid price and amount of data:
if
∑

j bl(k)Ωlj(k + 1) < bl(k) then
dbl (k + 1) = dbl (k) +

∑
j bl(k)Ωlj(k + 1),

obl (k + 1) = obl (k) +
∑

j bl(k)Ωlj(k + 1),
πl(k + 1) = min{πl(k) + ϵbl (k), p},
Run Algorithm 2 to obtain bl(k + 1).

end if
L(k + 1) = L(k).
if
∑

j bl(k)Ωlj(k + 1) = bl(k) then
Transaction is successful: L(k + 1) = L(k + 1)− 1.

end if
5) New sellers and buyers submit bids to the ISP.
A new seller submits bid: J(k + 1) = J(k + 1) + 1,
A new buyer submits bid: L(k + 1) = L(k + 1) + 1.
6) k = k + 1.

end while

Fig. 11. Mobile usage measurement via in-network RADIUS records.

adapt quickly: the new seller and buyer finish their trading
within three time slots.

B. Experiments with User Data

We finally simulate Algorithm 3 on real user usage. Our data
comes from 100 mobile users of a U.S. ISP from January to
December 2013. We measured their usage at a session level via
in-network RADIUS records (Figure 11) and use it together
with monthly data plans to compute their optimal bids. We
classify the users as sellers and buyers using (9). Each user is
assumed to have a uniform usage distribution of future usage.
Figure 12(a) shows the distribution of buyer and seller bids
over all twelve months; we see that sellers’ bids are generally
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Fig. 9. Illustration of the data trading framework in Algorithm 3 with five sellers and five buyers. The parameter setting is as follows: ρ = 15, ϵ = 5,
p = 60, s(0) = (2, 2, 2, 2, 2)⊤, σ(0) = (52, 54, 56, 58, 60)⊤, b(0) = (1, 1, 2, 3, 3)⊤ and π(0) = (42, 39, 36, 33, 30)⊤. We plot the percentage of each
buyer/seller’s total amount of data bid that has been successfully matched at each iteration. In (a) and (b), ω = 0; while in (c) and (d), ω = 1.
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(d)
Fig. 10. Matching in successive timeslots (Algorithm 3) with parameters as in Figure 9. One new buyer and one new seller join the data market at the third
time slot. In (a) and (b), ω = 0; while in (c) and (d), ω = 1.

much smaller than buyers’, as some buyers bid an enormous
amount of data (e.g., users accustomed to regular HD video
streaming). However, there are fewer buyers than sellers. Over
each month, the users keep trading as described in Algorithm 3
until either sellers’ or buyers’ bids are all met.

We calculate the total bid and administration revenue for
each month and compare this revenue to that of the primary
market in Figure 12. In most months, the ISP’s administration
revenue alone is larger than the revenue from the primary data
market due to a large increase in buyers’ data purchased. In
a few months, e.g., June to September, the primary market
yields more revenue: the sellers do not bid enough data to
completely satisfy buyers’ demand. We can also observe from
Figure 12(b) that the gap between the total revenue and
administration revenue (i.e., the bid revenue) in the secondary
market is slightly larger when ω = 0 than when ω = 1 as in
Figure 12(c): at ω = 0, the ISP explicitly maximizes its bid
revenue.

Figure 13 shows the total utilities, the utilities of the buyers
and the utilities of the sellers in the primary market and
secondary market. As we would expect, the utilities of the
sellers and buyers in the secondary market are always larger
than those in the primary market. The amount of increase,
however, varies from month to month.

VI. CONCLUSION

Since traded data plans have only recently been introduced,
the seller, buyer and ISP behaviors are still unknown. We first
derive the optimal prices and amount of data that the sellers
and the buyers bid to participate in the secondary market,
taking into account uncertainty in users’ usage and thus the
amount of data caps that they need. We then give a condition
under which a user will choose to buy or sell data.

The ISP matches buyers and sellers by solving a linear
program that maximizes ISP revenue subject to users’ bid
constraints. We contrast the optimal matchings when bid or
administration revenue is emphasized and derive a necessary
condition under which the ISP gains revenue in the secondary
compared to the primary market. Since the ISP runs this
matching many times over the month, we examine how users
adjust their bids over time to increase their chances of being
matched. Finally, we simulate these dynamics over one year
of usage data from a U.S. ISP, demonstrating that the ISP,
buyers, and sellers can all benefit from the secondary market.

Much research remains to be done on traded data plans,
not only in developing more detailed models of user and
ISP behavior, but also in examining how such data plans
work in practice (e.g., in CMHK’s deployment). Our work
takes an initial step towards modeling traded data plans and
understanding their benefits for users and ISPs.

APPENDIX

A. Nonlinear Perron-Frobenius Theory [18]

Let ∥ · ∥ be a monotone norm on RL. For a concave
mapping f : RL

+ → RL
+ with f(z) > 0 for z ≥ 0, the

following statements hold. The conditional eigenvalue problem
f(z) = λz, λ ∈ R, z ≥ 0, ∥z∥ = 1 has a unique
solution (λ∗, z∗), where λ∗ > 0, z∗ > 0. Furthermore,
limk→∞ f̃(z(k)) converges geometrically fast to z∗, where
f̃(z) = f(z)/∥f(z)∥.

B. Proof of Proposition 1

Proof: Taking the second-order derivative of E(Us
j | sj)

in (2) with respect to sj , we have:

d2E(Us
j | sj)/ds2j =

(dsj − sj)
2−αs

j

(1− αs
j)(2− αs

j)(o
s
j − sj)3

Ψ(osj),
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Fig. 12. The ISP usually but not always gains revenue in the secondary compared to the primary market (ρ = 2, p = 4, αs
j = αb

l = 0.6, θsj = 3.3, θbl = 9).
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(a) Comparison of the utility (ω = 0).
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(b) Comparison of the utility (ω = 1).

Fig. 13. Buyers and sellers always increase the utility in the secondary market (parameters as in Figure 12).

where

Ψ(osj) =
2(dsj − sj)

2

(dsj − sj)2
−

2(2− αs
j)(o

s
j − sj)(d

s
j − sj)

(dsj − sj)2

+
(1− αs

j)(2− αs
j)(o

s
j − sj)

2

(dsj − sj)2
− 2

(
dsj − osj
dsj − sj

)2−αs
j

.

Next, we show that Ψ(osj) decreases with osj by taking the
first-order derivative of Ψ(osj), given by:

dΨ(osj)/do
s
j =

2(2− αs
j)

(dsj − sj)2

(
− (dsj − sj) + (1− αs

j)(o
s
j − sj)

+(dsj − osj)
1−αs

j (dsj − sj)
αs

j

)
=

2(2− αs
j)

(dsj − sj)2

(
− αs

j(d
s
j − sj)− (1− αs

j)(d
s
j − osj)

+(dsj − osj)
1−αs

j (dsj − sj)
αs

j

)
≤ 0,

where the inequality holds due to the inequality of arithmetic-
geometric means that αs

j(d
s
j−sj)+(1−αs

j)(d
s
j−osj) ≥ (dsj−

osj)
1−αs

j (dsj −sj)
αs

j for all αs
j ∈ (0, 1). Since osj ∈ [sj , d

s
j ], we

have
Ψ(osj) ≤ Ψ(osj = sj) = 0,

which also means d2E(Us
j | sj)/ds2j ≤ 0. Thus, E(Us

j | sj) is
concave.

C. Proof of Corollary 1
Proof: Consider two prices for seller j, σ1

j and σ2
j , with

σ1
j < σ2

j . Then from (4), the optimal amounts sold s⋆j satisfy

d

dsj

(∫ ds
j−sj

ds
j−osj

V s
j (c

s
j)f(c

s
j)dc

s
j

)∣∣∣∣∣
s⋆j (σ

i
j)

= ρ− σi
j .

for i = 1, 2. Since ρ− σ1
j > ρ− σ2

j , we have

d

dsj

(∫ ds
j−sj

ds
j−osj

V s
j (c

s
j)f(c

s
j)dc

s
j

)∣∣∣∣∣
s⋆j (σ

1
j )

>
d

dsj

(∫ ds
j−sj

ds
j−osj

V s
j (c

s
j)f(c

s
j)dc

s
j

)∣∣∣∣∣
s⋆j (σ

2
j )

.

Since
∫ ds

j−sj
ds
j−osj

V s
j (c

s
j)f(c

s
j)dc

s
j is a concave function by Propo-

sition 1, its first derivative is a decreasing function of sj . Thus,
s⋆j
(
σ2
j

)
> s⋆j

(
σ1
j

)
as desired.

D. Proof of Lemma 1

Proof: We first prove below that the self-mapping func-
tion at Step 1 of Algorithm 1 is concave when sj ≤

dsj −
(

1+αs
jo

s
j/d

s
j

2(σ−ρ)

)1/αs
j

. From (4), we have the following self-
mapping function:

sj = g(sj)

= osj +
1

σj − ρ

(∫ ds
j−sj

ds
j−osj

V s
j (c

s
j)f(c

s
j)dc

s
j − V s

j (d
s
j − sj)

)
,

i.e., the self-mapping function at Step 1 of Algorithm 1. Hence,
g(sj) is a concave self-mapping function if the following
function h(sj) is concave:

h(sj) =

∫ ds
j−sj

ds
j−osj

V s
j (c

s
j)f(c

s
j)dc

s
j − V s

j (d
s
j − sj).
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Taking the second-order derivative of h(sj) with respect to sj ,
we have:

h′′(sj) = 2(osj − sj)
−2

∫ ds
j−sj

ds
j−osj

V s
j (c

s
j)f(c

s
j)dc

s
j

−2(osj − sj)
−2V s

j (d
s
j − sj) + (osj − sj)

−1V s
j
′(dsj − sj)

−V s
j
′′(dsj − sj).

(17)
Combining (7) with (17), we can obtain:

h′′(sj) = −2(osj − sj)
−1(σj − ρ)

+(osj − sj)
−1V s

j
′(dsj − sj)− V ′′(dsj − sj)

=
(osj − sj)

−1

(dsj − sj)
αs

j

(
− 2(σj − ρ)(dsj − sj)

αs
j

+θsj + θsjα
s
j

osj − sj

dsj − sj

)
.

Due to that sj ≤ dsj −
(

θs
j (1+αs

jo
s
j/d

s
j)

2(σ−ρ)

)1/αs
j

, we have

(σ − ρ)(dsj − sj)
αs

j ≥
θsj
2

(
1 + αs

j

osj
dsj

)1/αs
j

⇒ (σ − ρ)(dsj − sj)
αs

j ≥
θsj
2

(
1 + αs

j

osj − sj

dsj − sj

)1/αs
j

,

which implies that h′′(sj) ≤ 0. Therefore, h(sj) is concave
so that g(sj) is a concave self-mapping. Furthermore, the
normalization at Step 2 of Algorithm 1 is a monotone norm
constraint of sj . Then, the nonlinear Perron-Frobenius theory
(cf. Appendix A) can be leveraged for the algorithm design.

E. Proof of Proposition 2

Proof: Taking the second-order derivative of E(U b
l | bl)

in (5) with respect to bl, we have:

dE2(U b
l | bl)/db2l =

(dbl + bl)
2−αb

l

(1− αb
l )(2− αb

l )(o
b
l + bl)

Ψ(obl ),

where

Ψ(obl ) =
2(dbl + bl)

2

(dbl + bl)2
− 2(2− αb

l )(o
b
l + bl)(d

b
l + bl)

(dbl + bl)2

+
(1− αb

l )(2− αb
l )(o

b
l + bl)

2

(dbl + bl)2
− 2

(
dbl − obl
dbl + bl

)2−αb
l

.

Next, we show that Ψ(obl ) decreases with obl by taking the
first-order derivative of Ψ(obl ), given by:

dΨ(obl )/do
b
l =

2(2− αb
l )

(dbl + bl)2

(
− (dbl + bl) + (1− αb

l )(o
b
l + bl)

+(dbl − obl )
1−αb

l (dbl + bl)
αb

l

)
=

2(2− αb
l )

(dbl + bl)2

(
− (1− αb

l )(d
b
l − obl )− αb

l (d
b
l + bl)

+(dbl − obl )
1−αb

l (dbl + bl)
αb

l

)
,

where the inequality holds due to the inequality of arithmetic-
geometric means that (1−αb

l )(d
b
l −obl )+αb

l (d
b
l + bl) ≥ (dbl −

obl )
1−αb

l (dbl + bl)
αb

l for all αb
l ∈ (0, 1). Since obl ∈ [0, dsj ], we

have
Ψ(obl ) ≤ Ψ(obl = 0) ≤ Ψ(obl = −bl) = 0,

which also means dE2(U b
l | bl)/db2l ≤ 0. Thus, E(U b

l | bl) is
concave.

F. Proof of Corollary 2
Proof: Consider two prices for buyer l, π1

l and π2
l , with

π1
l < π2

l . Then from (4), the optimal amounts sold b⋆l satisfy

d

dbl

(∫ db
l+bl

db
l−obl

V b
l (c

b
l )f(c

b
l )dc

b
l

)∣∣∣∣∣
b⋆l (π

i
l )

= πi
l .

for i = 1, 2. Since π1
l < π2

l , we have

d

dbl

(∫ db
l+bl

db
l−obl

V b
l (c

b
l )f(c

b
l )dc

b
l

)∣∣∣∣∣
b⋆l (π

1
l )

<
d

dbl

(∫ db
l+bl

db
l−obl

V b
l (c

b
l )f(c

b
l )dc

b
l

)∣∣∣∣∣
b⋆l (π

2
l )

.

Since
∫ db

l+bl
db
l−obl

V b
l (c

b
l )f(c

b
l )dc

b
l is a concave function by Propo-

sition 1, its first derivative is a decreasing function of bl. Thus,
b⋆l
(
π1
l

)
> b⋆l

(
π2
l

)
as desired.

G. Proof of Lemma 2
Proof: Similar to the proof in Appendix D, we first prove

below that the self-mapping function at Step in of Algorithm 2

is concave when bl ≤
(

1+αb
l o

b
l /d

b
l

2πl

)1/αb
l

. From (7), we have
the following self-mapping function:

bl = g(bl)

=
1

πl

(
V b
l (d

b
l + bl)−

∫ db
l+bl

db
l−obl

V b
l (c

b
l )f(c

b
l )dc

b
l

)
− obl ,

i.e., the self-mapping function at Step of Algorithm 2. Hence,
g(bl) is a concave self-mapping function if the following
function h(bl) is concave:

h(bl) = V b
l (d

b
l + bl)−

∫ db
l+bl

db
l−obl

V b
l (c

b
l )f(c

b
l )dc

b
l .

Taking the second-order derivative of h(bl) with respect to bl,
we have:

h′′(bl) = −2(obl + bl)
−2

∫ db
l+bl

db
l−obl

V b
l (c

b
l )f(c

b
l )dc

b
l

+2(obl + bl)
−2V b

l (d
b
l + bl)− (obl + bl)

−1V b
l

′
(dbl + bl)

+V b
l

′′
(dbl + bl).

(18)
Combing (7) with (18), we can obtain:

h′′(bl) = 2(obl + bl)
−1πl − (obl + bl)

−1V b
l

′
(dbl + bl)

+V b
l

′′
(dbl + bl)

=
(obl + bl)

−1

(dbl + bl)α
b
l

(
2πl(d

b
l + bl)

αb
l

−θbl − θblα
b
l

obl + bl
dbl + bl

)
.
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Due to that bl ≤
(

θb
l (1+αb

l o
b
l /d

b
l )

2πl

)1/αb
l

− dbl , we have

2πl(d
b
l + bl)

αb
l ≤ θbl

(
1 + αb

l

obl
dbl

)
⇒ 2πl(d

b
l + bl)

αb
l ≤ θbl

(
1 + αb

l

obl + bl
dbl + bl

)
,

which implies that h′′(bl) ≤ 0. Therefore, h(bl) is concave
so that g(bl) is a concave self-mapping. Furthermore, the
normalization at Step 2 of Algorithm 2 is a monotone norm
constraint of bl. Then, the fixed-point algorithm converges
to the unique optimal solution by leveraging the nonlinear
Perron-Frobenius theory (cf. Appendix A).

H. Proof of Corollary 3

Proof: Considering the special case of delta distribution
for the usage utility, the optimality conditions in (4) and (7)
can be rewritten respectively as:

s⋆j = dsj −
(
1

θ
(σj − ρ)

)− 1
α

,

and

b⋆l =
(πl

θ

)− 1
α − dsl .

Then, we obtain the maximum utilities for the seller and the
buyer, given respectively by

Eδ(U
s
j | s⋆j (σj)) =

α

1− α
(σj − ρ)1−

1
α θ

1
α + (σj − ρ)dsj ,

and
Eδ(U

b
l | b⋆l (πl)) =

α

1− α
π
1− 1

α

l θ
1
α − πld

b
l .

Then, by substituting Eδ(U
s
j | s⋆j (p)) and Eδ(U

b
l | b⋆l (ρ)) back

into (8), we can obtain (9).

I. Proof of Proposition 3

Proof: Due to
∑J

j=1 Ωljbl ≥ 0 and
∑L

l=1 Ωljbl ≥ 0,
the inequality constraints in (11) and (13) can be rewritten
respectively, as:

ξ1σ1 + ξ2σ2 + · · ·+ ξJσJ ≤ πl,

where ξj = Ωljbl/
(∑J

j=1 Ωljbl

)
and we have ξ1 + ξ2 +

. . . , ξJ = 1, and,

η1π1 + η2π2 + · · ·+ ηLπL ≥ σj ,

where ηl = Ωljbl/
(∑L

l=1 Ωljbl

)
and we have η1+η2+ · · ·+

ηL = 1. In other words, πl should be higher than at least
one nonnegative linear combination of all the selling prices
σ1, . . . , σJ , and σj should be lower than at least one nonnega-
tive linear combination of all the purchasing prices πl, . . . , πL.
Since we also have min

1⊤ξ=1,ξ≥0
{ξ1σ1 + ξ2σ2 + · · ·+ ξJσJ} =

min
j=1,...,J

{σj} and max
1⊤η=1,η≥0

{η1π1 + η2π2 + · · · + ηLπL} =

max
l=1,...,L

{πl}, this completes the proof.

J. Proof of Proposition 4

Proof: If ∃l, j such that Ω⋆
lj > 0 and σj > πl, we have

Z⋆
lj = 0 and (21) can then be rewritten as:

ω =
(x⋆

l + y⋆j ) + (µ⋆
l + ν⋆j + 1)(σj − πl)

ρ+ (σj − πl)
,

which leads to the following inequality:

ω ≥ σj − πl

ρ+ (σj − πl)
, (19)

since the dual variables x⋆
l , y⋆j , µ⋆

l and ν⋆j are nonnegative.
Then, (15) is sufficient for (19).

K. Proof of Proposition 5

Proof: We form the Lagrangian for (14) by introduc-
ing the dual variables Z ∈ RL×J

+ , x ∈ RL
+, y ∈ RJ

+,
µ ∈ RL

+ and ν ∈ RJ
+ respectively for the constraints

Ωlj ≥ 0, l = 1, . . . , L, j = 1, . . . , J ,
∑J

j=1 Ωljbl ≤
bl, l = 1, . . . , L,

∑L
l=1 Ωljbl ≤ sj , j = 1, . . . , J ,∑J

j=1 Ωljblσj ≤ πl

(∑J
j=1 Ωljbl

)
, l = 1, . . . , L, and∑L

l=1 Ωljblπl ≥ σj

(∑L
l=1 Ωljbl

)
, j = 1, . . . , J . Then, we

can obtain the Lagrangian for (14), given by:

L(Ω,Z,x,y,µ,ν) = ωρ
J∑

j=1

L∑
l=1

Ωljbl

+(1− ω)

L∑
l=1

J∑
j=1

(Ωljblπl − Ωljblσj) +

L∑
l=1

J∑
j=1

ZljΩlj

−
L∑

l=1

J∑
j=1

xl(Ωljbl − bl)−
L∑

l=1

J∑
j=1

yj(Ωljbl − sj)

−
L∑

l=1

J∑
j=1

µl(Ωljblσj − Ωljblπl)

−
L∑

l=1

J∑
j=1

νj(Ωljblσj − Ωljblπl).

(20)
Taking first-order derivative of (20) with respect to Ωlj and
setting it to zero, we have the following equation at optimality:

Z⋆
lj = (x⋆

l + y⋆j − ωρ)bl +
(
µ⋆
l + ν⋆j + (1− ω)

)
(σj − πl)bl.

(21)
If the lth buyer is not matched with any seller, we have∑J

j=1 Ωljbl = 0. By using the complementary slackness
at optimality, we have Ω⋆

ljZ
⋆
lj = 0 and Ω⋆

lj = 0, j =
1, . . . , J ⇒ Z⋆

lj > 0, j = 1, . . . , J . We can also derive from
x⋆
l (bl−

∑J
j=1 Ω

⋆
ljbl) = 0 and µ⋆

l

∑J
j=1(Ω

⋆
ljblπl−Ω⋆

ljblσj) = 0
that x⋆

l = 0 and µ⋆
l > 0. For the mth buyer where πm < πl,

the price constraint
∑J

j=1 Ω
⋆
mjbmσj ≤ πm

(∑J
j=1 Ω

⋆
mjbm

)
is tighter than the price constraint for the lth buyer so we
have µ⋆

m > µ⋆
l . Since x⋆

m ≥ x⋆
l = 0 always holds for all the

dual variables, we can conclude from the above derivation that
Z⋆
mj/bm ≥ Z⋆

lj/bl > 0, j = 1, . . . , J (cf. (21)). Hence, we
have Z⋆

mj > 0, j = 1, . . . , J , i.e., the mth buyer, whose
purchasing price πm is lower than πl, is also unmatched.
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Similar proof can be applied to the second bullet point for
the sellers in Proposition 5

L. Proof of Proposition 6

Proof: Suppose we have the best matching result by solv-
ing (14), which means all the constraints (10)-(13) are tight,
then we have

∑J
j=1 s

⋆
j (σj) =

∑L
l=1 b

⋆
l (πl) ≤

∑L
l=1 b

⋆
l (ρ) and

no revenue from the buyer/seller price difference. If revenue
of the secondary market is higher than the revenue of the
primary market, we have ρ

∑J
j=1 s

⋆
j (σj) ≥ p

∑L
l=1 b

⋆
l (p).

Then, ρ
∑L

l=1 b
⋆
l (ρ) ≥ p

∑L
l=1 b

⋆
l (p) implies (16).
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