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Abstract—A cloud computing cluster equipped with a deadline-
aware job scheduler faces fairness and efficiency challenges when
greedy users falsely advertise the urgency of their jobs. Penalizing
such untruthfulness without demotivating users from using the
cloud service calls for advanced mechanism design techniques
that work together with deadline-aware job scheduling. We
propose a Bayesian incentive compatible pricing mechanism
based on matching by replica-surrogate valuation functions.
User valuations can be discovered by the mechanism, even
when the users themselves do not fully understand their own
valuations. Furthermore, users who are charged a Bayesian
incentive compatible price have no reason to lie about the urgency
of their jobs. The proposed mechanism achieves multiple desired
truthful properties such as Bayesian incentive compatibility and
ex-post individual rationality. We implement the proposed pricing
mechanism. Through experiments in a Hadoop cluster with
real-world datasets, we show that our prototype is capable of
suppressing untruthful behavior from users.

I. INTRODUCTION

Cloud computing has become popular by providing inex-
pensive computing services to users through shared computing
clusters. Users can pay more to improve their quality of service
(QoS), e.g., lower job completion times. Therefore, it is crucial
to automate the prioritization of user jobs with different QoS
requirements. Recently, several deadline-aware job schedulers
have been proposed for shared computing clusters that allocate
resources among jobs according to the jobs’ urgency and
valuations as a function of delay and deadline [1]–[3]. These
schedulers consider not just the total social welfare of the
system, but also objectives like fairness across different users.
However, all of them suffer from the fundamental problem of
greedy users cheating the system by falsely advertising the
importance and urgency of their jobs.

Simply enforcing usage budget limits on users (e.g., by
forcing users to spend a limited amount of virtual currency
to receive cloud resources) is not a complete solution to this
user disincentive. Charging users more for better QoS can
discourage them from lying about their jobs’ importance, but
these prices must take into account how much the user values
the service received. Otherwise, users will still overstate the
urgency of the jobs which have cheaper prices compared to the
users’ valuations, simply because they can afford it. Therefore,
a pricing mechanism that penalizes greedily untruthful users is
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key to guaranteeing the fairness and efficiency of schedulers,
especially for those in cloud computing.

Vickrey-Clarke-Groves (VCG) auctions [4]–[6] have been
used to derive many well-known truthful pricing schemes for
resource allocations that maximize social welfare [7]–[11].
However, these schemes may not incentivize truthfulness when
resources are not allocated so as to maximize social welfare
(e.g., scheduling jobs according to their deadlines). In particular,
it can be proven that there does not exist a dominant truthful
strategy for any pricing scheme for resource allocation based
on job completion times [1], [2] as presented in this work.
Therefore, to accommodate these resource allocation objectives,
we must design an incentive compatible mechanism for
deadline-aware scheduling that does not directly price the
resource allocation but still motivates user truthfulness.

Incentive compatible pricing schemes generally induce QoS
requirements from user-submitted valuations that precisely
quantify the values of completing jobs at different times. In
practice, assistance should be provided to untrained users to
guide them in quantifying their valuations. A more desirable
pricing scheme should generate multiple service options with
clearly defined outcomes (e.g., expected job completion time)
and prices from which the users can choose, yet incentive
compatible pricing mechanisms do not necessarily yield pricing-
service options that can be easily understood. To the best of
our knowledge, our paper is the first work that meets these
mechanism design and practicality challenges.

The recent advancement of deadline-aware schedulers that
can estimate the completion times of submitted jobs (e.g., [2])
has enabled more advanced pricing techniques that meet the
above challenges. We propose a universal Bayesian incentive
compatible (BIC) pricing mechanism for an arbitrary deadline-
aware scheduling algorithm. Our pricing scheme precisely
determines the price for each job according to its declared
urgency and valuation, so that it is in each user’s best interest
to truthfully declare the valuation of the service received by
each job. We accommodate generic deadline-aware schedulers
by decoupling the resource allocation scheme from the pricing
scheme, introducing a valuation translation process that we
call “replica-surrogate matching.” Intuitively, replica-surrogate
matching replaces users’ declared job valuations with surrogate
valuations that lead to different scheduling outcomes. Thus,
instead of bidding for resource allocation opportunities, users
bid for chances to declare alternative valuations that may have
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better scheduling performance and hence increase their QoS.
We ensure Bayesian incentive compatibility by extending a
well-known truthful pricing scheme on the auction game that
models the valuation translation. Our proposed mechanism has
the following desired properties:

1) Truthfulness Guarantee. [Section II, Experiment IV-A]
The proposed pricing mechanism can be implemented as
a generic incentive compatible framework that determines
the prices for completion-time-aware cloud services for
various applications and resource allocation schemes.

2) Service Option Visualization. [Sections II-D and III-D,
Experiment IV-A] Given some initial parameters, users
can choose from multiple alternative QoS levels that
clearly show the expected completion times of jobs and
the associated prices that users must pay.

3) Ex-Post Individual Rationality. [Section II-E] Users are
guaranteed to have a positive utility (i.e., the valuation
of their jobs minus the price), ensuring that they do not
lose interest in utilizing the cloud services.

4) Light-Weight Implementation. [Sections III and IV]
Computations in the proposed mechanism have very low
time complexity. We build a prototype system for an
in-house Hadoop v2.6 cluster equipped with a deadline-
aware scheduler and show that it can generate pricing
information in a real-time manner.

We outline our pricing mechanism in Section II before
discussing our implementation in Section III and presenting its
performance results in Section IV. Section V gives an overview
of related work, and Section VI concludes the paper.

II. INCENTIVE COMPATIBLE PRICING FOR
DEADLINE-AWARE SCHEDULING

We develop and implement a BIC mechanism based on a
replica-surrogate matching technique [12], [13]. This technique
treats the deadline-aware scheduling algorithm as a black box,
putting no constraints on the algorithm used but requiring
the scheduler to output jobs’ expected completion times
when they are submitted. Such schedulers have been only
proposed recently [2], enabling our novel mechanism design.
The replica-surrogate matching technique can achieve incentive
compatibility because it avoids modeling the scheduling events
directly as auction games of resource allocation. Instead, it
observes possible scheduling outcomes from the scheduler and
prices them according to the opportunity cost of choosing
one. Since the deadline-aware scheduler will trigger scheduling
events repeatedly due to the dynamic arrivals and departures
of user jobs, we focus our discussion on the scheduling logic
in a single scheduling event.

Our incentive compatible mechanism starts with users
describing their valuations for their jobs being completed
at different times. Such valuations may not necessarily be
truthful or accurate. We suppose that the user valuations can be
categorized according to valuation templates that we refer to as
job profile classes. (Section II-A). The idea of replica-surrogate
matching is to replace the submitted valuation of the job by
a surrogate valuation that preserves the distribution of users’

valuation types in the same job profile class, a process we
describe in Section II-B. An incentive compatible price is then
calculated for each replica-surrogate match using the famous
VCG auction scheme [4]–[6]. The replica-surrogate matching
technique essentially translates the submitted valuation type
to an appropriate type so that the VCG pricing will return a
price that reflects the user’s true valuation (Section II-C). We
transform these prices into a menu of contracts from which the
user chooses a service level and the associated price, which
may be distinct from the price and service level corresponding
to the declared valuation (Section II-D).

Once the jobs complete, our mechanism computes the
final prices that users must pay for the completed jobs
(Section II-E). While we show that the final prices ensure
incentive compatibility, our mechanism may lead to a lower
social surplus (i.e., summation of the values received by the
users), since the scheduler uses surrogate instead of users’
submitted valuation types. However, we can prove that the loss
in social surplus is arbitrarily small (Section II-F). Important
symbols used in our formulation are summarized in Table I.

A. Job Valuation

Consider a computing cluster equipped with a deadline-aware
job scheduler that attempts to finish N active jobs before their
deadlines, indexed by i = 1, 2, . . . , N . To capture the jobs’
sensitivity to their completion times, each user i submits a
job valuation function vi(xi) that describes the sensitivity of
their satisfactory level to the job completion time xi, implicitly
defining a “soft” deadline requirement. Jobs can be said to meet
their deadlines if they complete before their valuations drop to
zero. Instead of requiring the users to draw the curve of the
valuation, we assume that users submit vectors of parameters
that can completely describe the valuation shape; thus, vi (xi)
can be written as v (ti, xi) where ti is user i’s parameter vector.
Since the jobs’ valuations directly determine their completion
times, our goal is to design a pricing mechanism to dis-
incentivize greedy users from submitting untruthful valuations.

We refer to the distinct parameter vector ti as the type of a
user i’s valuation. We assume that the types of the valuations are
private information known only to the users and let t∗i denote
user i’s true valuation type. The incentive compatible mecha-
nism penalizes the users who submit untruthful valuation types.
Due to the private nature of the valuation type information, the
only practical way for the incentive compatible mechanism to
evaluate the truthfulness of the submitted valuation is through
monitoring and learning the statistics of the valuation types. We
divide users’ job valuation functions into different job profile
classes and suppose that each class corresponds to a set of
valuation types–for instance, one class of jobs might consist of
those with sigmoidal valuation functions, with types determined
by the sigmoid function parameters. The estimated distribution
di of the valuation types for each user i’s job profile class
will be used to calculate user i’s price; we discuss estimating
di in Section III-B. Since the incentive compatible pricing
mechanism penalizes valuation types that do not agree with the
estimated distribution, users are encouraged to help improve
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the estimation accuracy by submitting truthful valuations. We
suppose that users do not collude with each other to induce a
false valuation distribution, since in practice they likely do not
know the other users who are submitting jobs.

We assume that every user declares her type ti when she
submits job i. Note that ti may not be truthful. Later in Section
II-D, we show that the user can later amend an incorrectly
declared type. Denote the vector of valuation types by t =
(t1, ..., tN ). Let t−i = (t1, ..., ti−1, ti+1, ..., tN ) be the vector
of submitted valuation types except the type of job i. We
assume that the proposed mechanism has access to the deadline-
aware scheduler as a black-box system. By submitting the
valuations of all active jobs, the deadline-aware scheduler
is able to estimate the completion time of each job. Please
note that our mechanism only requires the completion time
estimation to be accurate enough in the aggregate. We later
show how prices are adjusted to compensate the inaccuracy in
completion time estimation in Section II-E. Let Xi(t) denote
the expected finishing time of job i estimated by the deadline-
aware scheduler given the type vector t. With these definitions,
we now discuss the replica-surrogate matching.

B. Replica-Surrogate Matching

The replica-surrogate matching process starts by generating
a maximum weighted matching for each job. Without loss of
generality, we consider job i in the following. We first generate
M−1 i.i.d. random replica types and M i.i.d. random surrogate
types from distribution di. Let rij and sij be the jth replica and
surrogate types generated for job i, respectively.1 The declared
valuation type ti, the replica types, and the surrogate types
are then used to construct a bipartite graph. The left-hand
side of this graph comprises replica types rij with the declared
valuation type ti inserted uniformly at random. Let i∗ be the
index of ti (i.e., rii∗ = ti). The right-hand side consists of the
surrogate types sij . A weight of v(rij , Xi(s

i
k, t−i)) is assigned

to the edge between nodes rij and sik where Xi(s
i
k, t−i) is the

expected completion time of job i when sik is submitted to
the deadline-aware scheduler instead of ti. The weight value
represents the valuation of job i evaluated using the replica
valuation type, but with the completion time achieved if the
surrogate type is submitted. With the bipartite graph constructed,
we then compute a maximum weighted bipartite matching.
This matching locates the type translations that maximize the
valuation received by the users. Later in Section II-D, user
will be allowed to select one replica-surrogate pair from the
maximum weighted matching according to her true valuation.
The selected surrogate type will be sent to the deadline-aware
scheduling algorithm. Figure 1 shows the constructed bipartite
graph and the corresponding maximum weighted matching.

C. Price Calculation

The replica-surrogate matching is designed so that the
function type translation is distribution-preserving: the surrogate
type matched to the submitted valuation type ti also has a

1We discuss the selection of M in Section III-D.
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Figure 1. The maximum weighted matching is computed upon a bipartite
graph constructed with randomly generated replica types and surrogate types.
The submitted valuation type ti is randomly inserted into the replica side.

distribution of di. Therefore, from the other users’ points of
view, the type translation does not alter the statistical behavior
of user i’s valuation function declaration. No extra information
can be gathered that might be used to produce a more preferable
outcome for the other users. This implies that an incentive-
compatible pricing for the replica-surrogate matching process
can motivate user i to submit a truthful valuation function
type, regardless of how the other jobs are priced. As a result,
we focus on designing incentive compatible pricing for the
replica-surrogate matching process.

We define pi (ti, t−i) to be the price that user i pays
as a function of user’s valuation type ti. Recall that
Xi (ti, t−i) is the expected completion time of job i given
valuation type ti and other users’ valuation types t−i.

Definition 1. A pricing mechanism is Bayesian incentive
compatible (BIC) if, when all users except i truthfully report
their valuation types (i.e., the t−i are truthful), user i’s expected
utility is maximized by truthfully reporting as well, i.e.,

v (t∗i , Xi (t∗i , t−i))− pi (t∗i , t−i)

≥ v (t∗i , Xi (ti, t−i))− pi (ti, t−i) ,∀ti.

In this definition, and in the rest of the paper, we take a user’s
utility ui to be her valuation minus the price paid. Such
utilities are called quasi-linear.

To find a BIC mechanism, we note that the maximum
weighted matching in the replica-surrogate matching process
can be considered as an auction game. In this game, the players
are the replica types, who bid on the “items” represented by
the surrogate types. Each player submits a bid equivalent to
the edge weight of the bipartite graph and only wants one item.
The auction game’s social choice function assigns items to
the players so that the social surplus (i.e., summation of the
bids for the assignment) is maximized. This auction game is a
typical example of VCG auction. It is a well-known result that
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Table I
TABLE OF NOTATION

Symbol Definition Symbol Definition
ti valuation type of job i t−i vector of valuation type of all jobs except i
t∗i truthful valuation type of job i M number of replica-surrogate pairs in the matching

Xi(ti, t−i) expected completion time of job i given (ti, t−i) sij jth surrogate valuation type of job i
v(ti, Xi(ti, t−i)) value of job i evaluated with ti at Xi(ti, t−i) rij jth replica valuation type of job i

MRS total weight sum of matching with replica set R and surrogate set S pij,k price associated with match (rij , s
i
k)

an incentive compatible pricing scheme exists for the VCG
auction. Denote by R the set of generated replica types and S
the set of surrogate types. We define MRS as the summation
of the edge weights in the maximum weighted matching. For
every replica-surrogate pair (rij , s

i
k), the incentive compatible

prices, denoted as pij,k, can be computed as

pij,k = M
R\{rij}
S −MR\{r

i
j}

S\{sik}
, (1)

where A \ B = {x ∈ A|x 6∈ B}. The price calculated above
represents the marginal harm caused to other participants (i.e.,
other replica types) by rij . User i is then charged a price pii∗,k
corresponding to the replica rii∗ and its matched surrogate.

Theorem 1. The replica-surrogate matching with pricing
calculated using Equation (1) forms a BIC mechanism.

The proof is analogous to that of Theorem 3.1 in [13].

D. Menu of Contracts
The replica-surrogate matching scheme assumes that each

user declares a valuation type ti with her job. However,
in reality, quantifying a valuation function that accurately
describes the users’ requirements is not a trivial task. To relieve
the user of this burden, we construct a menu of contracts
that shows the user the different choices of service and their
associated auction prices. Recall that there are M replica-
surrogate matchings in the maximum weighted matching of
the bipartite graph. For each matching between replica rij and
surrogate sik, a contract of (Xi(s

i
k, t−i), p

i
j,k) is added to the

menu. If the user selects this contract, the corresponding job
will receive an expected completion time of Xi(s

i
k, t−i),a and

the user should expect a payment of pij,k. The user can thus
explicitly declare her job requirements by choosing her desired
contract from the menu.

The menu of contracts method preserves Theorem 1’s
Bayesian incentive compatibility because of the well-known
taxation principle in mechanism design. Since every incentive
compatible mechanism results in a unique matching between the
possible valuation type declarations (i.e., the replicas) and the
algorithm results (i.e., the surrogate), choosing the preferable
outcome from the menu is equivalent to a user choosing her
true valuation and its associated algorithm outcome from the
menu. Asking the user to pick her preferred contract from the
menu is then equivalent to declaring her true valuation type.

E. Ex-Post Price Adjustment
The price in Equation (1) is calculated based on the job’s

expected completion time, as estimated by the deadline-aware

scheduler at the time when the job is submitted. However, the
actual completion time may deviate from the estimation due to
unforeseen uncertainties in the system. Since the completion
times of the jobs directly affect the valuations received by
the users, users who experience delays suffer from a utility
loss because they do not receive the desired service quality
promised by the prices they paid. Therefore, it is only fair to
the users if their prices are adjusted according to the actual
completion times of their jobs. We propose a price adjustment
method that preserves Bayesian incentive compatibility (The-
orem 1) and ensures that users are motivated to participate
in the system, which we call ex-post individual rationality:

Definition 2. A pricing mechanism satisfies ex-post individual
rationality if it yields a nonnegative utility for each user with
probability 1.

Let x∗i be the actual completion time of user i’s job, and let
rij and sik be the replica and surrogate types in the selected
contract, respectively. Let pi be the price chosen by user i in the
menu of contracts. Recalling that Xi(s

i
k, t−i) is the expected

completion time returned by the deadline-aware scheduler given
the surrogate type sik, we propose an ex-post price adjustment

p∗i = pi
v(rij , x

∗
i )

v(rij , Xi(sik, t−i))
. (2)

We discount the price by the ratio between the actual valuation
received and the expected valuation estimated when job is
submitted. This p∗i is the final price to charge the user given
that sik is the surrogate type in the selected contract. Users
must obtain nonnegative utilities with the price adjustment:

Theorem 2. Equation (2)’s ex-post price adjustment achieves
ex-post individual rationality as defined in Definition 2.

Proof. At the completion of the job i the user receives v(rij , x
∗
i )

value. The utility of user i is then

ui = v(rij , x
∗
i )− pi

v(rij , x
∗
i )

v(rij , Xi(sik, t−i))

=
v(rij , x

∗
i )

v(rij , Xi(sik, t−i))
(v(rij , Xi(s

i
k, t−i))− pi).

Since pij,k is determined by VCG auction, we have
v(rij , Xi(s

i
k, t−i)) ≥ pij,k because VCG achieves ex-post

individual rationality. Therefore, we can easily see that ui ≥ 0
since v(rij , x

∗
i )/v(rij , Xi(s

i
k, t−i)) ≥ 0 as well.



5

Theorem 2 shows that users always value the services
received more than the prices they pay.

Theorem 3. The ex-post price adjustment preserves Bayesian
incentive comparability.

Proof. Note that v(rij , x
∗
i ) is the value achieved with an actual

completion time of x∗i after surrogate type sik in the selected
contract is submitted to the deadline-aware scheduler. On
average the expected valuation user i receives is E[v(rij , x

∗
i )].

Recall that by definition, v(rij , Xi(s
i
k, t−i)) is the expected

valuation received by user i when submitting sik. We then have
E[v(rij , x

∗
i )] = v(rij , Xi(s

i
k, t−i)). Therefore,

E[p∗i ] = E

[
pi

v(rij , x
∗
i )

v(rij , Xi(sik, t−i))

]

= pi
E[v(rij , x

∗
i )]

v(rij , Xi(sik, t−i))
= pi.

With or without the ex-post price adjustment, the user expects
to receive a valuation v(rij , Xi(s

i
k, t−i)) and a price pi.

F. Social Surplus Bound

On average, each user suffers from a reduction in her
achieved valuation (i.e., the value of v(ti, xi) due to the use of
surrogate instead of submitted valuation types in the deadline-
aware scheduler, we can prove that the value reduction is
minimal when we generate a sufficiently large number of
replica and surrogate types for the matching process. Denote
by D = d1 × d2 × ...dN the joint distribution of valuation
function types for all active jobs. We define Et∼D[v(ti, Xi(t))]
to be the expected surplus contributed by job i when submitting
type ti and Et∼D[v(ti, Xi(s

i
k, t−i))] to be the expected surplus

contributed by job i by submitting type ti and mapping to a
surrogate type sik. The difference between these two values
represents the cost of introducing the replica-surrogate matching
to job i. Let L be the dimension of the valuation function type
distribution (i.e., number of parameters submitted by the user
to the job profile class). We then bound the reduction in social
surplus:

Theorem 4. For any 0 < ε < 1, the BIC mechanism with
M = Ω(

√
L

L

2L
ε−L−2) achieves

Et∼D[v(ti, Xi(s
i
k, t−i))] ≤ (1−O(ε))Et∼D[v(ti, Xi(t))].

Proof. The parameter vectors (i.e., valuation function type) in
the valuation function type distribution are drawn from τ ⊂ RL,
where RL is the L-dimension Euclidean space. Consider an L-
dimension hypercube that can be circumscribed by an L-sphere
with an arbitrary radius of ε. It is trivial to show that the edge of
the hypercube has a length of d = 2ε√

L
. Let τ have dimensions

of C1, . . . , CL, where Ci represents the constant bounded
range of parameter i in the valuation function type distribution

estimation. Therefore, τ can be covered by (
∏L
i=1 Ci)/d

L

hypercubes. Let τ ′ be the subset of τ that contains the centers
of the L-spheres that circumscribe the hypercubes. It is clear

that τ ′ is an ε-cover of τ with a cardinality of
∏L

i=1 Ci

√
L

L

(2ε)L
.

From Theorem 3.2 of [13], we have

Et∼D[v(ti, Xi(s
i
k, t−i))]

≤ (1−O(ε+

√√√√ ∏L
i=1 Ci

√
L

L

(2ε)L

M
))Et∼D[v(ti, Xi(t))]

= (1−O(ε+ ε

√√√√ L∏
i=1

Ci))Et∼D[v(ti, Xi(t))]

= (1−O(ε))Et∼D[v(ti, Xi(t))].

Theorem 4 shows that the gap between the expected surplus
value contributed by each user with and without the BIC
mechanism can be made arbitrarily small when the number of
replica-surrogate pairs M is large enough. Since M determines
the size of the bipartite graph and hence the algorithm runtime,
we find a trade-off between the computational workload and
the social surplus. Theorem 4 provides a guideline on how to
select M given a bound ε on the social surplus loss. Notably
the required value of M increases almost exponentially as L
increases, with the percentage loss ε serving as the exponent.

III. ARCHITECTURE AND IMPLEMENTATION

In this section, we explain how we implement the proposed
BIC mechanism and how the components interact with each
other. The BIC mechanism mainly interacts with three com-
ponents: (i) the owner of the job, (ii) valuation function type
estimator, and (iii) deadline-aware job scheduler. We assume
that the deadline-aware job scheduler is a black-box system. In
the following section, we propose one possible implementation
of the valuation function type distribution estimator. However,
our implementation allows other distribution estimation meth-
ods to be included as plug-in modules.

A. Interactions among the Components

Figure 2 summarizes the interactions of the implementation
components. When a new job is submitted to the computing
cluster, the user selects a job profile class that best fits the
behavior of the job. Users then input the profile parameters (e.g.,
deadline, completion time sensitivity, weight) using a template
that is tailor-made for this class. These parameters will be
submitted as training data to the corresponding valuation type
distribution estimator associated to the selected job profile
class as training data. The BIC mechanism then uses the
resulting distribution to generate surrogate types. By submitting
these surrogate types to the deadline-aware scheduler, the
corresponding expected completion time of each job can be
estimated by the deadline-aware scheduler black-box. This
expected completion time will be used to prepare a menu of
contracts, which will be presented to the user. After the user
has selected one of the contracts, the surrogate type of the
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selected contract is submitted to the deadline-aware scheduler
to be scheduled. When the job is finished, its actual completion
time will be fed back to the BIC mechanism to perform ex-
post price adjustment. The user will be charged the final price
when the job is completed. Figure 3 shows the time-line of
the message exchanges that realize this process.

Replica-Surrogate
Matching

VCG Pricing

Ex-Post Price
Adjustment

Menu of Contracts

Type
Distribution
Estimator

Deadline
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Scheduler
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Figure 2. Interactions among the user, the BIC mechanism, the valuation
function type distribution estimator and the deadline-aware scheduler.
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Job to Be 
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Figure 3. Time-line of the protocol message exchanges.

B. Valuation Function Type Estimation

Accurately estimating the distribution of users’ valuation
types is necessary to guarantee the incentive compatibility of
the replica-surrogate matching based pricing mechanism. To
improve the estimation accuracy, we propose to group jobs
into multiple job profile classes. Jobs in the same class are
homogeneous in terms of their valuation function type. One
advantage of grouping jobs into separated classes is that we
can develop a tailor-made distribution estimation method for
each of the classes.

Recall that a valuation function type is represented by a
vector of parameters. Thus, estimating the distribution of
the valuation function types is equivalent to estimating the
probability of a user submitting each parameter vector. We
propose to use multivariate kernel density estimation to learn

this distribution. We assume that users are rational and submit
truthful valuation function types, since the BIC mechanism
will penalize untruthful declarations. For each job profile class
r, a parameter template is provided to the user as an input
form to enter the parameters. We suppose that the parameter
vector for job profile class r has a dimension L, and that
there are in total n parameter vectors submitted to job profile
class r. Let drk be the kth parameter vector inputted. The
multivariate kernel density estimator for job profile class r
can be written as Pr = 1

n

∑n
k=1 |H|−

1
2K(|H|− 1

2 (x− drk))

where K(x) = (2π)−
d
2 e−

1
2x

Tx is the standard multivariate
normal kernel and |H| is the bandwidth matrix. The estimation
accuracy of the multivariate kernel density estimation method
heavily depends on the choice of the bandwidth matrix.
Previous works have proposed to select the optimal bandwidth
matrix by minimizing the asymptotic approximated mean
integrated squared error. The details of the multivariate kernel
density estimation method are out of the scope of this paper.
Please refer to [14] for the asymptotic approximated mean
integrated squared error analysis.

In our proposed system, the valuation function type estimator
is implemented as a plug-in module that attaches to each job
profile class. The following are some typical job classes that
we consider in this work.
• Hard Constant Deadline Class: Jobs belonging to this

class have a hard constant deadline requirement that
reduces the valuation function value to zero once the jobs’
completion times exceed their deadlines. The parameter
vector of this job profile class contains only the deadlines
of the submitted jobs.

• Recurrent Job Class: Jobs belonging to this class are
generated from the same job template but with different
workloads (e.g., raw data size). The deadlines of the jobs
are proportional to their workloads. The parameter vector
of this job profile class contains only the workload of the
submitted job.

• Sigmoidal Class: The valuation functions of jobs in
this class are defined by sigmoid functions that take
triples of (max value, dropping point, zero point) as
parameter input. The max value is the maximum value
of the sigmoid function. The valuation function starts to
decline when the jobs’ competion-times pass the dropping
point and it becomes zero when the jobs’ completion
times exceed the zero point. The multivariate kernel
density estimator learns the distribution of the triples
(max value, dropping point, zero point).

C. Implementation of the BIC Mechanism

Inside the proposed BIC mechanism, the price calculation
starts with constructing the replica-surrogate matching. We
randomly generate M replica and surrogate types from the
valuation function type distribution learned for the selected
job profile class. Among the M replica types, one of them
is randomly selected and replaced by the valuation function
type submitted by the user, so that the menu of contracts
will contain a contract associated with the valuation function
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parameters submitted by the user. The M surrogate types are
submitted to the deadline-aware scheduler in order for the
scheduler to estimate the expected completion times when
the valuation functions of the jobs vary. As described in
Section II, the edge weight between replica j and surrogate k is
calculated by v(rij , Xi(s

i
k, t−i)), using the valuation function

shape of the replica type rij but a job completion time achieved
by submitting the surrogate type sik to the deadline-aware
scheduler. Finally, a maximum weighted matching is generated
upon the bipartite graph using for example the Hungarian
algorithm, which has a time-complexity of O(M3).

With the maximum weighted matching constructed, the
VCG pricing mechanism calculates a price for each matched
replica-surrogate pair. For the price between replica type j and
surrogate type k, two new maximum weighted matchings will
be calculated (Equation (1)). The first is computed by removing
replica node j from the bipartite graph. The second maximum
weighted matching is computed by removing both replica node
j and surrogate node k from the bipartite graph. The price
is calculated as the difference between the weight-sums of
these two matchings. Since there are M replica-surrogate pairs
in the maximum weighted matching, the time-complexity of
calculating all the prices is O(M4).

In the menu of contracts, there are M contracts that are
associated with each of the M surrogate types. For each
surrogate type, the expected job completion time evaluated
and the price calculated together form a contract. The menu
of contracts will then be sent to the user so that the user can
select the one that she prefers. Let surrogate k be the surrogate
type associated with the user’s selected contract. The BIC
mechanism then records the replica type j that matched to
surrogate type k, as well as the weight of the edge between
replica j and surrogate k. Next, the job will be scheduled
using surrogate type k. If the job is completed by the cloud
computing cluster after the expected completion time in the
contract, the BIC mechanism adjusts the contract price by
multiplying it with the ratio between the actual valuation the
user received at the end (i.e., v(rij , x

∗
i ), where x∗i is the actual

completion time of the job) and the recorded edge weight.

D. Scale of the Computations and the Menu of Contracts

Theorem 4 shows that the percentage of valuation loss of
users is O(ε) given that the number of replica and surrogate
types in the replica-surrogate matching is M = Ω(

√
L

L

2L
ε−L−2)

where L is the number of user submitted parameters. For
example, when the job belongs to a job profile class that only
requires one parameter, if we wish to achieve 95% of the
user valuation, around 4000 replica and surrogate types should
be generated for the matching. However, please note that the
theoretical bound provided in Theorem 4 is conservative. A
more practical rule of thumb is to select M = Ω(ε−L−1),
as we do in Section IV-A. Note that M grows exponentially
along with the number of valuation function type parameters.
It is a good idea to focus on job profile classes with valuation
function types that can be described with a few parameters
(e.g., less than five, as we consider in Section III-B).

Any modern computer can easily handle the workload of
processing the replica-surrogate matching problem. However,
human users may have difficulty in selecting service contracts
from a long menu of contracts that contains M entries. A better
visual presentation can be introduced to assist the selection. For
example, we can sort the contracts according to the expected
job completion time, price, or marginal cost. Furthermore, we
can dramatically shorten the list by showing users a uniform
sample of the contracts and still maintain Bayesian incentive
compatibility because uniform sampling preserves the valuation
function type distribution.

IV. EVALUATION

We implemented a prototype BIC pricing mechanism module
for a Hadoop v2.6 cluster equipped with the RUSH deadline-
aware scheduler [2]. Heterogeneous jobs with different Hadoop
job templates and dataset sizes are generated from the PUMA
benchmark suite [15]. In the following experiments, jobs are
assigned to sigmoidal valuation functions v(t) = 100/(1 +
ea(t−b)) that are modeled using only two parameters: (1) µ,
the deadline after which the value of the job starts to decline,
(2) µ+ δ, the time at which the value becomes zero. From µ
and δ we can calculate a and b. The truthful valuation types
of these jobs are generated as pairs of (µ, δ) from a joint
normal distributions with mean (2000, 1000) and a covariance
matrix of [10002 0; 0 5002]. We set M = 100 according to
the guidelines in Section III-D.

A. Pricing and Truthfulness
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Figure 4. Prices in the menu of contracts offered to users. The non-increasing
prices mean that the better the service, the higher the payment. Jobs
are always offered with free contracts. Low prices after passing the jobs’
deadlines (i.e., µ) indicate that the menu of contracts is tailored for each
job according to their truthful valuation function types and resource
competitions in the deadline-aware scheduling logic.

In this section, we describe how to offer users a menu of
contracts that helps them truthfully select the service levels
they want. To demonstrate that the proposed BIC mechanism
is able to tailor a menu of contracts to different jobs’ truthful
valuations, we sample four menus of contracts that belong to
jobs with different truthful valuation types generated from the
same distribution. We generate 500 random valuation types
from this distribution and submit them to the valuation function
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type estimators as training data (we consider the estimator
accuracy with and without training data in the next section).
Figure 4 shows the trade-offs between prices and the expected
job completion times that are offered to each of the four jobs.
Jobs receive different menus of contracts that reflect their
truthful deadlines. As we would expect, (1) users must pay
more to get better service, and (2) each user is offered a
contract with the earliest job completion time that is free.
The distinctive pricing range and magnitude indicate that (3)
the users’ pricing options are tailored according to both
the truthful valuation types and the resource competition
with other users. The menu of contracts represents the cost of
users’ QoS options determined by RUSH’s scheduling logic.
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Figure 5. User utilities defined as valuation minus price. The optimal strategy
for the users is to select a contract that agrees with their truthful valuation
types (i.e., select a completion time near the jobs’ truthful deadline).

To show that the pricing options are truthful, we show
that the best strategy (i.e., utility-maximizing) for the user
is to select the contract that best matches his or her truthful
valuation type, or in other words, the contract that has an
expected job completion time similar to the user’s true deadline.
Define user utility to be the difference between the user’s
truthful valuation and the price. Figure 5 shows that the
utilities of the four jobs are maximized at the contracts with an
expected job completion time around µ of the corresponding
jobs. Untruthfully selecting a contract with completion
time < µ will thus cost users more, while untruthfully
selecting a contract with completion time > µ will lead
to a lower valuation that cannot be overcome by its lower
price. Please note that there exist small levels of slackness
between the utility peaks and the deadlines of the jobs (e.g.,
the optimal utility of the blue curve appears slightly after the
jobs’ completion time passing the deadline). This is likely
caused by two factors: (1) statistical randomness and valuation
type estimation errors in the BIC model, and (2) resource
competition among jobs creating extra costs to complete jobs
exactly before the deadline.

B. Valuation Type Estimation Accuracy

In this section, we show the importance of an accurate
valuation function type estimation. In the following experiments,
1000 jobs belonging to the same sigmoidal job profile class are

submitted to the Hadoop cluster according to a Poisson arrival
process with mean arrival time of 130 seconds. We repeat the
experiments for three sets of training data to the valuation type
estimator (500 truthful type samples, 20 truthful type samples,
and 500 untruthful type samples), and compare the distributions
of the user utility values assuming that the users always select
the contracts that are truthful. The 500 untruthful types are
generated using a joint normal distributions with mean (1000,
500) and a covariance matrix of [5002 0; 0 2502]. Figure 6
shows the empirical cumulative distribution function of the
1000 jobs’ utilities for each training dataset. The well-trained
valuation type estimator has a higher probability of achieving
higher user utilities. More importantly, an undertrained type
estimator achieves an utility distribution even worse than the
utility distribution achieved by the untruthful estimator in
the extreme case. It shows that untruthful training data is
less damaging than insufficient training data, suggesting a
degree of robustness to inaccurate training data. Therefore,
at the beginning, some inaccurate training data (e.g.,
historical valuation types) is better than no training data
as reference.
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Figure 6. The cumulative distribution functions show that a truthful user will
receive a higher utility when the valuation function type estimator is trained
with more sample data. The result also shows that some inaccurate training
data is better than insufficient training data.

It is important to propose a guideline on training the type
estimator. We do so next by quantifying the accuracy of
our prototype’s multivariate kernel density estimator with
different numbers of truthful samples. For each number of
samples, we repeat the estimator training 1000 times. Figure 7
shows the mean and the variance values of the KL (Kullback-
Leibler)-divergence between the truthful type distribution and
the estimated distribution. The variance of the KL-divergence
converges to nearly zero quickly after 20 samples are provided.
This explains why 20 samples may not be sufficient to provide
a good distribution estimation for Figure 6. The mean KL-
divergence value decreases and converges after 50 samples are
available, showing that 50 samples are sufficient to construct
a good estimation. It suggests that after accumulating 50
samples, we should screen out the inaccurate training
samples.
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Figure 7. Mean and variance of the Kullback-Leibler-divergence between the
truthful type distribution and the estimated distribution. It suggests that the
estimation becomes accurate after accumulating 50 samples, and that we
should screen out the inaccurate training samples after this point.

V. RELATED WORK

The authors in [1] and [2] propose the deadline-aware cloud
job scheduling that guarantees the fairness of achieved utilities
across all users. Other works have considered the role of pricing
as a way to shape user demands for cloud resources as well as
to make the cloud resources more efficient and profitable [16].
The authors of [17] leverage the tradeoff between the time-
elasticity of job completion and resource utilization to meet
users’ basic demands, constructing a dynamic auction where
users can bid for spare available resources. Users can benefit
from such a shared cloud environment by understanding their
own demands and optimizing their bidding strategies for cloud
resources [18]. However, greedy users could cheat on their
demands in order to prioritize themselves in grabbing more
resources. Our work allows the cloud provider to dis-incentivize
these actions.

Previous works [7]–[11] have applied VCG [4]–[6] to enable
truthfulness in cloud resource provisioning. All of these works
attempt to ensure truthfulness in a mechanism that maximizes
social welfare. However, their solutions rely on either a relax-
ation or an approximation of the resource allocation problem,
and then integrate the VCG mechanism into the pricing of
the resulting suboptimal resource allocation. Moreover, these
mechanisms assume that the resource allocation maximizes
social welfare, while we consider a general resource allocation
that can incorporate other objectives.

Other work [12], [13], [19] have treated resource bidding
as a game among users, and users reach a Bayesian-Nash
Equilibrium with Bayesian incentive compatibility. Some works
[20], [21] have charged the successful bidder at the price
submitted by the next unsuccessful bidder, while [22] requires
the price to be nondecreasing in terms of bid submission time.

Most of the above work merely consider truthfulness in
requesting fixed amounts of resources, with a few [9], [22]
additionally considering job completion times.

VI. CONCLUSION

We proposed a BIC pricing mechanism that determines
how much to charge cloud users when they submit jobs
with completion time requirements. The proposed mechanism
achieves desired truthfulness properties such as Bayesian
incentive compatibility and ex-post individual rationality. We
implement the proposed pricing mechanism. Through experi-
ments in a Hadoop cluster with real-world datasets, we show
that our prototype successfully dis-incentivizes untruthful user
behaviors.

REFERENCES

[1] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H.
Tsang, “Need for speed: Cora scheduler for optimizing completion-times
in the cloud,” in Proc. of IEEE INFOCOM, 2015.

[2] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H.
Tsang, “RUSH: A robust scheduler to manage uncertain completion-times
in shared clouds,” in Proc. of IEEE ICDCS, 2016.

[3] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing risk and reward in
a market-based task service,” in Proc. of IEEE HPDC, 2004.

[4] W. Vickrey, “Counterspeculation, auctions, and competitive sealed
tenders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37, 1961.

[5] E. H. Clarke, “Multipart pricing of public goods,” Public choice, vol. 11,
no. 1, pp. 17–33, 1971.

[6] T. Groves, “Incentives in teams,” Econometrica: Journal of the Econo-
metric Society, pp. 617–631, 1973.

[7] M. M. Nejad, L. Mashayekhy, and D. Grosu, “Truthful greedy mecha-
nisms for dynamic virtual machine provisioning and allocation in clouds,”
IEEE Trans. on Parallel and Distributed Systems, vol. 26, no. 2, pp. 594–
603, 2015.

[8] R. Lavi and C. Swamy, “Truthful and near-optimal mechanism design
via linear programming,” Journal of the ACM, vol. 58, no. 6, p. 25, 2011.

[9] N. Jain, I. Menache, J. S. Naor, and J. Yaniv, “A truthful mechanism
for value-based scheduling in cloud computing,” Theory of Computing
Systems, vol. 54, no. 3, pp. 388–406, 2014.

[10] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,” in
Proc. of ACM SIGMETRICS, 2014.

[11] X. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “A truthful (1-ε)-optimal
mechanism for on-demand cloud resource provisioning,” in Proc. of
IEEE INFOCOM, 2015.

[12] J. D. Hartline and B. Lucier, “Bayesian algorithmic mechanism design,”
in Proc. of ACM symposium on Theory of computing, 2010.

[13] J. D. Hartline, R. Kleinberg, and A. Malekian, “Bayesian incentive
compatibility via matchings,” in Proc. of ACM-SIAM Symposium on
Discrete Algorithms, 2011.

[14] M. Wand and M. Jones, Kernel Smoothing. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability, Taylor & Francis, 1994.

[15] “Puma: Purdue Mapreduce benchmarks suite.” https://sites.google.com/
site/farazahmad/pumabenchmarks.

[16] L. Zheng, C. Joe-Wong, C. G. Brinton, C. W. Tan, S. Ha, and M. Chiang,
“On the viability of a cloud virtual service provider,” in Proc. of ACM
SIGMETRICS, 2016.

[17] X. Yi, F. Liu, Z. Li, and H. Jin, “Flexible instance: Meeting deadlines
of delay tolerant jobs in the cloud with dynamic pricing,” in Proc. of
IEEE ICDCS, 2016.

[18] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How to
bid the cloud,” in Proc. of ACM SIGCOMM, 2015.

[19] X. Bei and Z. Huang, “Bayesian incentive compatibility via fractional
assignments,” in Proc. of ACM SODA, 2011.

[20] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards
effective pricing for cloud computing,” in Proc. of IEEE INFOCOM,
2012.

[21] S. Zaman and D. Grosu, “A combinatorial auction-based mechanism
for dynamic vm provisioning and allocation in clouds,” IEEE Trans. on
Cloud Computing, vol. 1, no. 2, pp. 129–141, 2013.

[22] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, and J. Liu,
“A framework for truthful online auctions in cloud computing with
heterogeneous user demands,” in Proc. of IEEE INFOCOM, 2016.


