
SVC-TChain: Incentivizing Good Behavior in
Layered P2P Video Streaming

Abstract—Video streaming applications based on Peer-to-Peer
(P2P) systems are popular for their scalability, which is hard to
achieve with traditional client-server approaches. In particular,
layered video streaming has been much-studied due to its ability
to differentiate users’ streaming qualities in heterogeneous user
environments. Previous work, however, has shown that user
misbehavior (e.g., free-riding and protocol deviation) poses a
serious threat to P2P systems that are not equipped with proper
incentive mechanisms. We propose a method to disincentivize
such misbehavior in this paper. Our SVC-TChain is a layered P2P
video streaming method based on scalable video coding (SVC),
which uses the recently proposed T-Chain incentive mechanism
to discourage free-riding. After introducing T-Chain, we present
the first analytical framework to study SVC piece selection with
multiple video layers, using it to efficiently choose SVC-TChain’s
optimal piece selection parameters and thus discourage deviations
from the piece selection policy. Extensive experimental results
show that SVC-TChain outperforms layered extensions of BiTos
and Give-to-Get, two popular P2P video streaming approaches,
both in the absence of user misbehavior and when some users
misbehave.

I. INTRODUCTION

A recent study [1] showed that IP video traffic made up 70%
of all consumer Internet traffic in 2015, a fraction that was
predicted to grow to 82% in 2020. Part of this demand is due
to commercial peer-to-peer (P2P) live streaming services [2]–
[5], which attract hundreds of thousands of daily users. As
on-demand and live video streaming become more popular,
diverse types of P2P video streaming applications are being
developed to support the resulting increase in demand [6], [7].

In the initial stages of P2P video streaming adoption, many
content providers preferred to use single layer video coding (in
which all participants experience the same video bitrates) such
as BiTos [8], Give-to-Get [9], PPStream [3], and PPTV [4].
This approach, however, can only offer users one streaming
quality regardless of different users’ demands and resource
constraints (e.g., different upload and download bandwidth,
storage space, or computational power). Layered video coding
has been proposed to overcome this disadvantage [10]–[12].
Under layered video coding, individual participants experience
different qualities-of-service depending on their available re-
sources. In particular, scalable video coding (SVC [13]), an
extension of the H.264/AVC standard [14], is regarded as the
de facto standard for layered video coding and has received
much attention from researchers [15]–[19].

Under SVC, a video is encoded into one base layer and
one or more enhancement layers with nested dependency. The
base layer provides a base level of quality, while enhancement
layers are decoded if and only if the base layer and all lower

layers have been received (and decoded). Users’ perceived
video quality increases with the number of decoded enhance-
ment layers, and they can request and fetch different numbers
of layers based on their resource availability. The layers are
then split into pieces of equal playback length, which can be
used as the units of exchange in a P2P system.

While SVC’s flexibility allows it to accommodate different
users’ needs, it also makes SVC-based P2P streaming heavily
dependent on participants’ behavior. P2P systems in general
are vulnerable to strategic users: if users act so as to maximize
their own benefits [20], improperly designed systems may
allow them to engage in free-riding, or receiving services
with little or no contribution to the system. Many free-riding
techniques have proven highly disruptive to BitTorrent-based
P2P systems [21], [22], including exploiting altruism [23],
cheating [24], the large-view-exploit [25], whitewashing [26],
the Sybil attack [27], and collusion [28], and they can also
disrupt P2P streaming systems.

To eliminate the destructive effect of free-riding, we propose
SVC-TChain, an SVC-based P2P video streaming scheme that
provides high immunity to user misbehavior and differentiates
users’ services depending on their resource demands and con-
straints. SVC-TChain prevents free-riding by adopting a newly
proposed incentive mechanism called T-Chain [29]. T-Chain
combines Tit-for-Tat direct reciprocity (as used in BitTorrent)
with symmetric encryption and indirect reciprocity to nearly
eliminate the potential gains from free-riding behaviors.

Eliminating free-riding, however, does not protect against
other types of user misbehavior. SVC-based P2P streaming
also depends on users’ following specified piece selection
policies in deciding which pieces to exchange with each other.
These policies help to ensure that users receive enough pieces
to play back the video on time, which we call piece sequential-
ity–if users cannot obtain the base layer pieces before the given
playback time, they will not be able to successfully play back
the video. On the other hand, in order for users to successfully
exchange pieces with each other, different users must possess
different pieces, which may not occur if they all download the
video pieces in order of playback.

A poor balance between piece sequentiality and diversity
might induce users to deviate from the prescribed policy in
order to improve their playback quality, forcing them to find
optimal parameter values by trial-and-error and potentially
harming compliant users. For instance, if the chosen parame-
ters unduly emphasize piece diversity over sequentiality, users
preferring higher video quality may deviate by downloading
more higher-layer pieces that are close to being played back.

However, their subsequent lack of piece diversity then prevents
other, compliant, users from exchanging pieces with them,
limiting the range of pieces that compliant users can download.
In order to prevent such misbehavior, we introduce the first
analytical work to model sequentiality and diversity in multi-
layer SVC piece selection. Using our framework, SVC systems
can efficiently find the optimal piece selection parameters for
different system configurations, relieving users of this burden.

We make two main contributions in this paper: in Section II,
we propose SVC-TChain, an SVC-based P2P streaming sys-
tem that nearly eliminates free-riding; and in Section III we
introduce the first analytical framework for choosing the SVC
piece selection parameters. We then evaluate SVC-TChain
experimentally in Section IV, demonstrating its benefits com-
pared with other representative P2P streaming applications
(i.e., layered extensions of BiTos [8] and Give-to-Get [9]).
Section V summarizes related work, and Section VI concludes
the paper.

II. SVC-TCHAIN DESIGN AND ANALYSIS

In this section, we present the design and analysis of SVC-
TChain. We first give an overview of SVC’s piece layers in
Section II-A before describing the mechanics of users’ piece
exchanges with T-Chain in Section II-B. We finally outline our
piece selection policy in Section II-C.

A. SVC Piece Layers

Scalable Video Coding, or SVC [13], extends the H.264/
AVC standard [14] by supporting the encoding of a video file
at different spatial (picture resolution), temporal (frame rate),
and quality (fidelity or signal-to-noise ratio) scales within one
layered bit stream. A video file is encoded at different qualities
with one base layer and enhancement layers with nested
dependency. Each layer is then partitioned into pieces with
equal playback length across the time dimension (Figure 1).
Each piece generally takes hundreds of milliseconds to a few
seconds to play back [16].

Video sub-streams with different qualities can be derived
from a single SVC encoding by dropping some enhancement
layers. For example, if a participant B has downloaded l
consecutive layer pieces (from the base to the lth layer) at
time t, then B’s streaming rate at time t is

∑l
i=1R(i), where

R(i) is the streaming rate of the ith layer. Thus, different users
can use different numbers of enhancement layers according
to their resources (e.g., upload bandwidth, display resolution,
computational power, storage space, etc.), guaranteeing ef-
ficient dynamic on-the-fly quality adaptation. For example,
a smartphone user with a limited screen resolution and 3G
Internet connection may prefer a 15 Hz CIF video stream,
while a user with a full HD smart TV and broadband cable
connection may prefer a 60Hz HD stream. Users subscribe to a
specific target layer out of the total number of available layers
of the stream, preferentially downloading pieces belonging
to layers below this target. Since a user’s subscription level
represents the hardware resources of his or her device, we

…
…

…

…

…

…

…

Time

La
ye
rs

…
…

Fig. 1: SVC layers for a streaming application.

A B

C

1)
2)

3)

4)
⇥

(i1,A
)|K

i2B
,C [p

i2]|D ⇤

⇥
(i1,A

)|K
i2B

,C [p
i2]|D ⇤

⇥
(i1,A

)|K
i2B

,C [p
i2]|D ⇤

⇥
null|Ki1

A,B [pi1]|C
⇤⇥

null|Ki1
A,B [pi1]|C

⇤⇥
null|Ki1

A,B [pi1]|C
⇤

r C
=
⇥ B|

i1
⇤

r C
=
⇥ B|

i1
⇤

r C
=
⇥ B|

i1
⇤

Ki1
A,BKi1
A,BKi1
A,B

(a) First transaction.

B C

D

2)

5)

6)

7)

⇥
(i2,B

)|K
i3C

,D [p
i3]|E ⇤

⇥
(i2,B

)|K
i3C

,D [p
i3]|E ⇤

⇥
(i2,B

)|K
i3C

,D [p
i3]|E ⇤

r D
=
⇥ C|

i2
⇤

r D
=
⇥ C|

i2
⇤

r D
=
⇥ C|

i2
⇤

Ki2
C,DKi2
C,DKi2
C,D

⇥
(i1, A)|Ki2

B,C [pi2]|D
⇤⇥

(i1, A)|Ki2
B,C [pi2]|D

⇤⇥
(i1, A)|Ki2

B,C [pi2]|D
⇤

(b) Second transaction.

X Y
⇥
(i(n � 1), W)|pin|null

⇤⇥
(i(n � 1), W)|pin|null

⇤⇥
(i(n � 1), W)|pin|null

⇤

(c) Termination.

Fig. 2: Overview of T-Chain.

suppose that it is chosen on joining the system and does not
change during the streaming.

B. Triangle Chaining (T-Chain)

In SVC-TChain, users exchange pieces of SVC layers via
an incentive scheme for cooperative computing called T-Chain,
which has previously been applied to file sharing applications
as an extension of BitTorrent [30]. T-Chain enforces reci-
procity between participants, maximizing resource utilization
and limiting user misbehavior even under demanding condi-
tions. Figure 2 summarizes T-Chain’s operations.

The seeder (A in Figure 2(a)) begins a chain of transactions
by encrypting a file piece with key Ki1

A,B and uploading it
to a randomly selected requestor B. At the same time, A
informs B that it must reciprocate by uploading a file piece
to a payee user C, who is selected by A from among A’s
neighbors. Requestor B reciprocates by uploading to payee C
another file piece encrypted with its own key, Ki2

B,C, which
begins the second transaction in the chain. If (and only if) C
notifies A that B has reciprocated as requested, A will release
the encryption key Ki1

A,B to B, allowing B to decrypt the piece
it received from A and completing the first transaction.

In the second transaction, B in Figure 2(b) acts as did A in
the first transaction. Along with uploading an encrypted file
piece to C, B selects a user D and designates it to C as the
payee to whom C must reciprocate. If C is in possession of
at least one file piece that B needs, B will designate itself
as the payee for reciprocation (D ≡ B), which we call direct
reciprocity. Otherwise, B randomly chooses a payee user D
from among its neighbors who need at least one file piece
(including the about-to-be-uploaded piece) held by C. This
indirect reciprocity thus expands the definition of reciprocation
to include (almost) any participant. In the rare case that a
sender X has no neighbor (including itself) who needs to

download at least one piece from Y (Figure 2(c)), X will
upload an un-encrypted file piece to Y, releasing Y from the
responsibility to reciprocate and terminating the chain.

More details about T-Chain (e.g., its improvement in new-
comer bootstrapping, adaptive receiver selection, and oppor-
tunistic seeding) may be found in [29].

C. Piece Selection Policy

Users’ piece selection policy defines which pieces recipients
request from each other using T-Chain. Since SVC-TChain
is designed to support video streaming, the selection policy
should (1) ensure seamless video playback and (2) assure a
high level of piece diversity for data distribution efficiency.
Piece diversity is particularly necessary in a flash crowd
scenario when many users arrive at once: if all users download
pieces sequentially, they will eventually find it difficult to find
neighbors with the pieces they wish to download, as no users
will have downloaded those pieces in previous time intervals.

While sequential piece selection based on playback dead-
lines (i.e., downloading pieces earlier if they have sooner
playback deadlines) ensures piece sequentiality, it may hurt
overall system performance due to a low level of piece
diversity. Conversely, a local rarest first (LRF)-like policy
can guarantee a high level of piece diversity but may cause
intermittent playback pauses. SVC-TChain therefore employs
a hybrid of these two piece selection policies, with design pa-
rameters that can be chosen to tune the balance between piece
sequentiality and diversity. We describe the basic policy here
before discussing optimal parameter selection for adjusting the
sequentiality-diversity tradeoff in Section III.

Each user in SVC-TChain maintains three different priority
windows (high-, mid-, and low-priority) of pieces based on
its current playback position, as seen in Figure 3. The high-
priority window includes pieces whose playback times are im-
minent. Thus, the pieces in this window need to be downloaded
as quickly as possible, and we use sequential piece selection
in this window.1 The mid-priority window has pieces whose
playback is not imminent, but will arrive in the near future. The
low-priority window holds all other pieces. Within the mid-
priority and low-priority windows, we use LRF piece selection
to improve piece diversity in the system.

We define two parameters, α and β, to determine users’
relative emphasis on downloading pieces sequentially or down-
loading a diverse set of pieces. Users download a piece from
the high-priority window with probability α, a piece from the
mid-priority window with probability β, and a piece from the
low-priority window with probability 1− α− β. While using
multiple priority windows is not new [8], [9], no previous
work has provided an analytical method to choose α and β,
especially with multiple layers. While the general effect of
α and β is clear–a higher α or β indicates more sequential
downloading at the expense of piece diversity–it is not clear
which α and β values are optimal. In Section III, we develop

1If the user subscribes to multiple layers, some pieces will have the same
playback deadline. We consider this case in Section III-B.

High Priority Middle Priority Low Priority

Sequential LRF LRF

� � 1 − (� + �)

Fig. 3: SVC-TChain piece selection.

the first theoretical framework to evaluate the expected system
performance in terms of α and β and find their optimal values.

III. DISCOURAGING USER MISBEHAVIOR

SVC-TChain effectively prevents two possible misbehav-
iors: free-riding and deviating from the piece selection policy
by using different α and β values. Incorporating T-Chain
(Section II-B) allows us to inherit T-Chain’s prevention of
free-riding by encrypting downloaded pieces and releasing the
encryption key only after reciprocation. This protocol can be
shown to dis-incentivize and sharply reduce free-riding, or
downloading pieces without reciprocation, both analytically
and in simulation [29].

In this section we focus on choosing the optimal α and
β parameters in Section II-C’s piece selection algorithm. By
developing an analytical framework to choose α and β, we
allow an SVC system to choose these parameters without
expensive simulations or user trials. We also show that users
will have little incentive to deviate from the chosen parameters,
preventing a costly trial-and-error period of deviating users
searching for their optimal α and β values. We first consider
a single-layer video before generalizing the framework to
incorporate multiple layers.

A. Piece Selection for a Single-Layer Video

We consider a single-layer video divided into P equal-
size pieces, and normalize the units of playback speed so
that the video plays for P timeslots. Pieces are indexed by
i = 1, 2, . . . , P , and R users arrive in a flash crowd, with one
seeder who possesses all of the pieces. We use tb to denote
the buffering time, with high- and mid-priority windows of
H and M timeslots respectively. We assume that each user
participates in N chains per timeslot and model LRF piece
selection within a window as uniform random selection. For
each chain, users choose to download from the high-, mid-,
or low-priority windows with probabilities α ≥ 0, β ≥ 0, or
1− α− β respectively.

Users’ objective is to ensure that all pieces are downloaded
in time for playback (i.e., sequentiality); thus, we let xi denote
the probability that each piece i will be downloaded by time i+
tb. We wish to choose α and β so as to maximize R

∑
i U(xi),

where U is an increasing function. For instance, U(xi) =
log(xi) penalizes low probabilities xi ≈ 0. However, α and β
must also satisfy constraints on piece diversity.

Sequentiality objective. We compute R
∑P
i=1 U(xi) by

finding the probabilities xi in terms of α and β.
We first consider pieces in the high-priority window. At time

j, the probability that piece j−tb+m is chosen for download is
the probability that m or more chains download high-priority
pieces: P

[∑N
k=1 ζk ≥ m

]
, where each ζk is an i.i.d. random

variable that is 1 with probability α and 0 otherwise. Thus,
the total probability that a piece will be downloaded during
its H high-priority timeslots is

pH = 1−
H∏

h=1

P

[
N∑

k=1

ζk < h

]
. (1)

Here we assume a worst-case scenario where no other high-
priority pieces have already been downloaded; if others have
been downloaded, then pH is higher than (1).

The probability that a mid-priority piece is downloaded at
time j in a given chain is β/M , assuming no mid-priority
pieces have already been downloaded. The overall probability
that a piece is downloaded while in the mid-priority window
is then

pM = 1−
(
1− β

M

)NM
(2)

Finally, the probability that a low-priority piece is downloaded
at time j is (1 − α − β)/(P − H −M − N(j − 1)), where
P−H−M−N(j−1) represents the number of un-downloaded
low-priority pieces at time j. The overall probability a piece
is downloaded while low-priority is then

pL = 1−
i+tb−H−M−1∏

k=1

(
1− 1− α− β

P −H −M −N(k − 1)

)N
.

(3)
We now use (1–3) to solve for the objective function:

R

H∑

i=1

U

(
1−

(
1− α

H

)N(tb−1) H∏

m=H−i+1

P

[
N∑

k=1

ζk < m

])

+R

H+M∑

i=H+1

U

(
1− pH

(
1− β

M

)N(i+tb−H−1)
)

+R

P/N−tb∑

i=H+M+1

U (1− pHpMpL) +R

(
P − P

N
+ tb

)
U(1),

(4)

where pX = 1−pX . We assume that in the buffering window,
pieces 1 to H and H + 1 to H +M were always designated
as high- and mid-priority respectively, with LRF selection.

The maximum value of (4) is RPU(1), which is uniquely
achieved at α = 1, i.e., purely sequential downloading. In fact,
under reasonable conditions, (4) always increases with α:

Proposition 1: For a sufficiently small number of pieces
P and M ≥ 2, (4) is increasing in α for any fixed β and
increasing in β for any fixed α. It is minimized when α = β =
0, corresponding to uniform random selection on all pieces.

Proof: It suffices to show that the probability of each
piece being downloaded on time is increasing with α. We can
see by inspection that

(
1− αN

H

)s−1 H∏

m=H−i+1

P

[
N∑

k=1

ζk < m

]

is increasing with α. Similarly,

1− pH
(
1− β(1− α)N

M

)i+s−H−1

is increasing with α, since pH is decreasing with α.
We now show that 1 − pHpMpL is increasing with α. It

suffices to show that pHpL is decreasing with α, since pM is
not a function of α. Taking the derivative of log(pHpL) with
respect to α, we obtain the condition

i+s−H−M−1∑

j=1

N

P −N(j − 1)−H −M − 1 + α+ β

≤ N

1− α +
NαN−1

1− αN

+

N−1∑

m=2

(
N

m− 1

)
(N −m+ 1)

(1− α)N−mαm−1∫ 1−α
0

tN−m(1− t)m−1 dt
.

We now observe that the integral denominators on the RHS
are ≤ 1−α, which allows us to derive the equivalent condition

i+s−H−M−1∑

j=1

N

P −N(j − 1)−H −M − 1 + α+ β

≤ N

1− α +
NαN−1

1− αN +

N−2∑

m=1

(
N

m

)
(N −m)(1− α)N−2−mαm

≤ N
(
2− αN−1 − (1− α)N−1

)

1− α +
NαN−1

1− αN ≤
N

1− α,

which is the case for sufficiently small P .
To show that (4) is increasing with β, it suffices to show

that pMpL is decreasing as β increases. Taking the derivative
of log (pMpL), we find the condition

M

M − β

>

i+s−H−M−1∑

j=1

1

P −N(j − 1)−H −M − 1 + α+ β)
,

which holds for P sufficiently small and M sufficiently large.

Piece diversity constraints. Piece diversity requirements
prevent us from simply taking α = 1 to maximize (4). We
express these constraints as follows: the probability that user m
requests piece i from user n should not exceed the probability
that n has previously downloaded piece i. We derive three
expressions for this constraint, depending on if piece i is high-,
mid-, or low-priority for user m. We consider only H +M +
tb + 1 < j < (P − H −M)/N ; similar expressions can be
derived at the beginning and end of the time interval. If piece
i is low-priority at time j < (P −H −M)/N , we constrain

1− α− β
P −N(j − 1)−H −M ≤

1−
j−1∏

j1=1

(
1− 1− α− β

P −H −M −N(j1 − 1)

)N
. (5)

If piece i is mid-priority at time j, we have the constraints

β

M
≤ 1−

(
1− β

M

)N(j−(i+tb−H−M))

pL, (6)

using (2) and (3) to represent the probability that piece i has
been downloaded while in the low- or mid-priority windows.
Finally, if piece i is high-priority at time j, we have

P

[
N∑

k=1

ζk ≥ i+ tb − j
]

≤ 1−
H∏

m=i+tb−j+1

P

[
N∑

k=1

ζk < m

]
pMpL. (7)

Proposition 2: The constraints (5) always hold if (P −H−
M)/N ≥ 5 and N ≥ 2. If (6) holds for j = i+ tb −H −M ,
then it holds for all i+ tb −H > j ≥ i+ tb −H −M .

Proof: We first consider (5). We let X = P −N(j−1)−
H −M ≥ N for notational simplicity and see that (5) holds
if

1− α− β
X

≤ 1−
(
1− 1− α− β

X +N

)(
1− 1− α− β

X + 2N

)

≤ 2X + 3N − 1

(X +N)(X + 2N)
.

Equivalently, we need to show that 2N2 ≤ X2−X , which is
the case if X ≥ 2N . Thus, it remains for us to consider the
case X = N , i.e., j = (P −H−M)/N . In this case we must
show that

1− 1− α− β
N

≥
(P−H−M)/N−1∏

j=2

(
1− 1− α− β

jN

)
;

approximating the product on the RHS by the first 4 terms,
we obtain the condition
17

60
+

14(1− α− β)2
120N2

≥ 71(1− α− β)
120N

+
(1− α− β)3

120N3
,

which clearly holds for N ≥ 3. If N = 2, we obtain

17

60
+

13(1− α− β)2
480

≥ 71(1− α− β)
240

,

which holds for all 1− α− β.
The RHS of (6) is increasing with j, so (6) holds for all

values of j if it holds when j = i+ s−H −M .
Thus, the piece diversity constraints are most stringent for

high- and mid-priority pieces: these are more likely to be
requested at time j, so diversity in the piece selection at earlier
times is essential to their successful download at time j.

Preventing deviations. We can use the framework above
to formally show that users do not benefit by deviating from
the specified α and β parameters to obtain more sequentiality.
Suppose that a user m downloads all pieces sequentially,
i.e., α = 1, and that user n downloads pieces according to
parameters α, β ∈ (0, 1). Then for j < H/N during the
buffering interval, m is likely unable to reciprocate to n:

Proposition 3: Suppose that time j < H/N < s and that
user m downloads pieces sequentially. The probability that
user n requires a given piece possessed by user m is

α

j−2∏

m=0

(
1− αN

H −mN

)
. (8)

Proof: The probability that compliant peer n will need
one of peer m’s pieces equals α, the probability that peer m
will request a high-priority piece, multiplied by the probability
that this piece has not been downloaded in the previous j − 1
timeslots, where j < H/N . This probability can in turn be
calculated as the product of the probabilities that the piece
has not been downloaded at any time m < j, i.e.,

N∑

k=0

(
N

k

)
αk(1− α)N−kH − k

H

= 1− N

H −mN

(
αN +

N−1∑

k=1

(
N − 1

k − 1

)
αk(1− α)N−k

)

= 1− αN

H −mN .

Thus, the probability that a given piece is needed is

α

j−2∏

m=0

(
1− αN

H −mN

)
,

as in (8).
For reasonable values of H = 10, N = 5, and α ≥ 0.5, (8)

is ≤ 0.18 at j = 3: user m is unlikely to be able to exchange
this piece with another (compliant) user n.

Choosing α and β. Since we have only two optimization
variables, we can use line searches to find the optimal values
of α and β, leveraging our objective function’s monotonicity
(Proposition 1) to reduce the search space. We use Proposi-
tion 2 to reduce the number of constraints that we must check
to verify the feasibility of given α and β values.

We illustrate the optimal α and β selection by considering
100 users downloading a 2400-piece file. We use a buffering
window of tb = 30, e.g., 30 seconds if each piece represents
1 second of playback, and high- and mid-priority windows of
H = 10 and M = 40, as in previous P2P video streaming
studies [9], with N = 4. We use U(x) = log(x) and compute
R
∑
i U(xi) as in (4) for a range of α and β values. The

optimal values satisfying (5–7) are (α, β) = (0.55, 0.25), for
which R

∑
i U(xi) = −550, a 98.7% improvement over the

worst case of α = β = 0 (Proposition 1).
We verify these optimal α and β values by simulating the

actions of individual users in a real system with the same H
and M values. In this experiment, 100 homogeneous users
with 800 Kbps join the system within 10 seconds. One seeder
with 2,000 Kbps upload bandwidth stays in the system, while
users exit after finishing their video playback. The video file
is SVC-encoded with one layer, of 2400 128kb pieces.

Figure 4 shows that the continuity index, defined as the per-
centage of pieces downloaded in time for playback, increases

 70

 75

 80

 85

 90

 95

 100

 0 0.2 0.4 0.6 0.8 1

C
o
n
ti
n
u
it
y
 I
n
d
e
x
 (

%
)

Mid Window Selection Probability (β)

α = 0.1
α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6
α = 0.7
α = 0.8
α = 0.9

(a) Continuity Index

 385

 390

 395

 400

 405

 410

 415

 0 0.2 0.4 0.6 0.8 1

D
o
w

n
lo

a
d
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Mid Window Selection Probability (β)

α = 0.1
α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6
α = 0.7
α = 0.8
α = 0.9

(b) Average Streaming Quality

Fig. 4: The continuity indices (a) and the average streaming
quality (b) under different α and β values.

for each α as the β increase, as expected from Proposition 1.
However users’ average download completion times increase
for each α as the β values increase, reflecting a lack of
piece diversity. We therefore wish to find α and β values
that maximize the continuity index and minimize the average
download completion time. A good choice of (α, β) is (around
0.5, around 0.2), which agrees with our analytical results of
(α, β) = (0.55, 0.25).

B. Piece Selection with Multiple Layers

If an SVC-encoded video has multiple enhancement layers,
we can continue to use LRF in the mid- and low-priority
windows to increase piece diversity. However, we must modify
our sequential piece selection in the high-priority window to
account for the relative importance of the base and enhance-
ment layers. We let l denote the number of enhancement layers
that a user tries to download, which we constrain to be ≤ E,
the number of subscribed layers (cf. Section II-A). If all H
base layer pieces have been downloaded, the user attempts to
download pieces up to layer l = E, while if no base layer
pieces have been downloaded, the user simply downloads the
base layer pieces (l = 0) to ensure that the video can be played
back. Interpolating between these extremes, we set l = Eh/H ,
where h ≤ H denotes the number of high-priority base layer
pieces that have already been downloaded.

Sequentiality-diversity analysis. We suppose that α and β
are chosen to maximize the time-average of the downloaded
video quality (i.e., sequentiality), subject to piece diversity
constraints. To formalize this problem, we find the probability
that each piece will be downloaded by its playback deadline.
Without loss of generality, we assume tb = 0 and consider a
user m that participates in N chains.

We index each piece by (i, k), where i ≤ P represents
the time slot and k ≤ E the quality layer, for a total
of PE pieces. Letting p(i, k, j) denote the probability that
piece (i, k) is downloaded at time j, we have p(i, k, j) =
pd(i, k, j)pu(i, k, j), where pd(i, k, j) is the probability that
piece (i, k) is downloaded in time j if it is not downloaded
already and pu(i, k, j) is the probability that piece (i, k) is
not downloaded until time j. Obviously, p(i, k, j) = 0,∀j > i
and pu(i, k, j) = 1 − ∑j−1

t=1 p(i, k, j). We now calculate
pd(i, k, j) when piece (i, k) is in the high-, mid-, and low-
priority windows at time j.

If piece (i, k) is in the high priority window at time slot
j, it will be downloaded if all previous pieces are already
downloaded at time j. Let U j denote a matrix with random
variable elements such that U j(i, k) = 1 if piece (i, k) is
not downloaded before time j, and 0 otherwise; uj denotes
a realization of U j . Given such a realization, piece (i, k)
is downloaded in time j if k ≤ lj(uj), the number of
downloadable enhancement layers at time j, and all previous
pieces in the high-priority window have been downloaded:

pd(i, k, j) =
∑

u:k≤lj(u)

P

(
N∑

n=1

ξn > x

)
P(U j = uj), (9)

where each ξn is an i.i.d. random variable that is 1 with prob-
ability α and 0 otherwise and x =

∑i−1
s=j

∑l
s′=1 u

j(s, s′) +∑k−1
s′=1 u

j(i, s′) is the number of un-downloaded pieces
before piece (i, k) at time j. For the sake of simplic-
ity, we have assumed that U j(i, k) = 1 with proba-
bility pu(i, k, j) and 0 otherwise. The number of down-
loadable enhancement layers at time j is lj(u) =

E
(∑min(j+H−1,P)

t=j (1− U j(t, 1))
)
/min(H,P − j + 1).

If piece (i, k) is in the mid-priority window, the probability

that piece (i, k) will not be downloaded equals
(
1− β

y

)N
,

where y is the number of un-downloaded pieces in the mid-
priority window. The unconditional probability pd(i, k, j) that
piece (i, k) is downloaded is then

Emin(M,P−j−H+1)∑

y=1

PY (y|y ≥ 1)

[
1−

(
1− β

y

)N]
,

where Y is the number of un-downloaded pieces in the middle
priority window at time j:

Y =

min(M−1,P−j−H)∑

s=0

E∑

s′=1

U j(j +H + s, s′),

which is the sum of independent Bernoulli random variables;
thus, Y has a Poisson Binomial distribution. If piece (i, k) is
in the low priority window at time j, we let

Z =

P−j−H−M∑

s=0

E∑

s′=1

U j(j +H +M + s, s′).

denote the number of un-downloaded pieces in the low-priority
window at time j. The unconditional probability that piece
(i, k) will be downloaded is then

E(P−j−H−M+1)∑

z=1

PZ(z|z ≥ 1)

[
1−

(
1− 1− α− β

z

)N]
,

Optimization formulation. We take users’ objective func-
tion to be the average number of downloaded video quality
layers at the time of playback, or equivalently the average
video resolution; objectives that penalize fluctuations in video
quality can also be used. We suppose that if a piece at layer
k is downloaded, then all lower layer pieces have also been

downloaded, which is ensured by our sequential piece selec-
tion for high-priority pieces. Letting ν(i, k) = 1 − pu(i, k, i)
denote the probability that piece (i, k) is downloaded at the
time of playback, we then choose α and β to maximize∑P
i=1

(
Eν(i, E) +

∑E−1
k=1 k (ν(i, k)− ν(i, k + 1))

)
/P .

We express our piece diversity constraint as follows: the
fraction of pieces for which the probability that user m
requests piece (i, k) from user n exceeds the probability that
n has previously downloaded piece (i, k) should be less than
a small value ε, i.e.,

∑
(i,j,k) P

(
p(i, k, j) ≥∑j−1

t=1 p(i, k, t)
)

EP (P + 1)/2
≤ ε, (10)

where EP (P + 1)/2 is the total number of piece pairs over
which we check the condition.

Choosing α and β. As in the single-layer case, since
α and β are our only optimization variables, we can use
line searches to find their optimal values. We compare the
analytically optimal α and β values to those obtained with
experimental simulations. Figure 5 shows the average number
of downloaded video layers (i.e., the value of our objective
function) for different values of α and β. We have assumed
P = 600, H = 4, M = 16, and E = 5. As can be seen
from Figure 5, our analytical results yield many candidate
α and β values that result in a high average number of
video layers (e.g., (α, β) ∈{(0.5,0.3), (0.5,0.4), (0.5,0.5),
(0.1,0.7),(0.1,0.8), (0.1,0.9)}); all of these satisfy the diversity
condition (10) for ε = 0.01. Though all of these choices
yield a continuity index over 98, we select the one with the
highest continuity index, which is (α, β) = (0.5, 0.3). The
experimental results confirm this selection.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

0

1

2

3

4

5

a
v
e
ra

g
e
 n

u
m

b
e
r

o
f

v
id

e
o

 l
a
y
e
rs

α=0.1,analytical

α=0.1,experimental

α=0.5,analytical

α=0.5,experimental

α=0.7,analytical

α=0.7,experimental

Fig. 5: Average number of quality layers for different values
of α and β.

IV. EVALUATION

We evaluate SVC-TChain in a wide range of scenarios by
modifying a BitTorrent simulator to incorporate SVC stream-
ing into BiTos [8], Give-to-Get (G2G) [9], and T-Chain [29].

Each experimental run begins with one seeder in the swarm.
Users arrive and start downloading the SVC-encoded video
file from the seeder and other users, exiting the swarm
immediately after finishing their video playback. The size of
the SVC-encoded video file is 96 MB, encoded in 1 base and 9
enhancement layers [12]. Each layer is encoded at a rate of 100
Kbps with 600 pieces of 128Kb. The aggregate streaming rate
is 1 Mbps, and the total video playback time is 768 seconds.

 80

 85

 90

 95

 100

 0 20 40 60 80 100 120 140

C
o

n
ti
n

u
it
y
 I

n
d

e
x
 (

%
)

Prebuffering (seconds)

SVC-TChain
SVC-Bitos
SVC-G2G

(a) Continuity Index.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140

S
tr

e
a

m
in

g
 R

a
te

 (
K

b
p

s
)

Prebuffering (seconds)

SVC-TChain
SVC-Bitos
SVC-G2G

(b) Average Streaming Rate.

Fig. 6: Performance of compliant users under flash crowd
arrivals with no misbehavior.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

C
o
n
ti
n
u
it
y
 I
n
d
e
x
 (

%
)

Prebuffering (seconds)

SVC-TChain
SVC-Bitos
SVC-G2G

(a) Continuity Index.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140

S
tr

e
a
m

in
g
 R

a
te

 (
K

b
p
s
)

Prebuffering (seconds)

SVC-TChain
SVC-Bitos
SVC-G2G

(b) Average Streaming Rate.

Fig. 7: Performance of compliant users under flash crowd
arrivals with 20% free-riding.

We use α = 0.5, β = 0.3 for the piece selection, as found
using Section III-B’s optimization framework.

We assume that each user joining the system waits for a
fixed amount of pre-buffering time tb before starting its video
playback. We use two peer arrival models: a flash crowd
model in which 400 users join the swarm within the first
10 seconds, similar to a live stream, and a real trace model
based on a five-month RedHat 9 Torrent tracker trace [31]. In
the flash crowd model, we evaluate the average performance
of all 400 peers, while in the real trace model, we exclude
the first 500 of 1000 compliant users to focus on the steady
state performance. We compare SVC-TChain’s performance to
that of SVC-BiTos and SVC-G2G in terms of the continuity
index, average uplink utilization, average streaming rate, and
normalized fairness factor, which we define as the ratio of the
bandwidth contributed to that received.

A. Discouraging Free-Riders

Figure 6 shows the continuity index and average streaming
rate of compliant users under the flash crowd model without
misbehavior. Both quantities are proportional to the pre-
buffering time tb: with larger tb, users have more time to down-
load pieces before the playback deadlines. Downloading more
base and enhancement layer pieces improves the continuity
index and average streaming rate respectively. SVC-TChain
significantly outperforms both SVC-BiTos and SVC-G2G in
terms of the continuity index and average streaming rate: users
in SVC-TChain utilize both direct and indirect reciprocity at
the same time, while users in the other two methods use only
direct (SCV-BiTos) or only indirect reciprocity (SVC-G2G).

We now repeat the same experiment, but with 20% of
the users attempting to free-ride. The amount of available
resources for each method therefore decreases, since free-
riders do not offer their resources to the system. Figures 7

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

C
o
n
ti
n
u
it
y
 I
n
d
e
x
 (

%
)

Prebuffering (seconds)

SVC-TChain
SVC-Bitos
SVC-G2G

(a) Continuity Index.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140

S
tr

e
a
m

in
g
 R

a
te

 (
K

b
p
s
)

Prebuffering (seconds)

SVC-TChain
SVC-Bitos
SVC-G2G

(b) Average Streaming Rate.

Fig. 8: Performance of free-riders under flash crowd arrivals
with 20% free-riding.

and 8 show the continuity indices and average streaming rate
of compliant users and free-riders respectively. Compared to
Figure 6, the compliant users in SVC-BiTos and SVC-G2G
experience a sharp decrease in the continuity index and aver-
age streaming rate, while free-riders can enjoy high continuity
indices and rates of hundreds of kbps. Since these methods are
not equipped with mechanisms to prevent strategic free-riding,
system resources are easily allotted to free-riders, decreasing
compliant users’ access to system resources. Compliant users’
performance in SVC-TChain, however, is virtually unaffected,
due to T-Chain’s discouragement of free-riding. In fact, it is
nearly impossible to free-ride under SVC-TChain: as seen in
Figure 8, both the continuity index and the average streaming
rate of free-riders in SVC-TChain are almost zero.

B. Discouraging Deviators

We next consider the effect of SVC-TChain users who
misbehave not by free-riding, but by deviating from the piece
selection policy. For instance, greedy users may prefer to
download only pieces in their high priority windows (i.e.,
α = 1) in order to improve their continuity index and stream-
ing rate compared to the policy described in Section II-C.

We compare deviators’ performance to that of compliant
users under the experimental conditions of Figure 6, with
10% of users deviating by using sequential piece selection
(α = 1) instead of (α, β) = (0.5, 0.3). Figure 9 shows the
continuity index and streaming rate for deviators and com-
pliant users. Deviators visibly suffer compared to compliant
users: they have less piece diversity, preventing them from the
reciprocation that is required for users to download pieces in
SVC-TChain. Compliant users, however, maintain continuity
indices and streaming rates comparable to those in Figure 6.
Their α and β values balance piece sequentiality and diversity,
protecting their performance from deviators’ misbehavior.

C. Real Swarm Performance

We next investigate the performance of each method under
the real trace arrival model. Figure 10(a) shows users’ con-
tinuity indices without user misbehavior. All three methods
perform well, providing users with nearly seamless video play-
back. SVC-BiTos performs somewhat worse than SVC-TChain
and SVC-G2G due to its piece selection policy: after video
playback starts, SVC-BiTos applies LRF in the high priority
window while SVC-TChain and SVC-G2G prefer pieces with
imminent playback deadlines, sacrificing some piece diversity

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

C
o

n
ti
n

u
it
y
 I

n
d

e
x
 (

%
)

Prebuffering (seconds)

Compliants
Deviators

(a) Continuity Index.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140

S
tr

e
a
m

in
g
 R

a
te

 (
K

b
p
s
)

Prebuffering (seconds)

Compliants
Deviators

(b) Streaming Rate.

Fig. 9: Performance of deviators when 10% of the total users
use purely sequential piece selection.

for sequentiality. Yet Figure 10(b) shows that all three methods
have average uplink utilizations over 90%: SVC-G2G’s and
SVC-TChain’s piece diversity is still sufficient for users to ac-
tively exchange pieces. As with flash crowd arrivals (Figure 6),
SVC-TChain’s direct and indirect reciprocity yields a higher
uplink utilization and average streaming rate (Figure 10(c))
than SVC-BiTos or SVC-G2G.

Figure 11 shows our performance results with real trace
arrivals when 20% of the users are free-riders. Surprisingly,
compliant users with all three methods experience similar
performance as in Figure 10 without misbehavior. In the real
trace model, the system resources are plentiful, so 20% free-
riding does not significantly affect performance. Compliant
users’ average uplink bandwidth in the real trace model is
around 1,250 Kbps with an average uplink utilization around
90% for all methods (Figure 11(b)), yielding an average
upload rate above the maximum streaming rate of 1 Mbps
and providing a resource surplus that free-riders can exploit.

However, free-riding can still harm streaming applications.
Free-riders in SVC-BiTos and SVC-G2G can stream at a rate
of more than 300 Kbps without any resource contribution
(Figure 11(c)). More importantly, free-riders’ continuity index
in SVC-G2G is somewhat higher than that of compliant users,
even though compliant users contribute resources and free-
riders do not. Free-riders’ good performance may incentivize
others to free-ride, eventually resulting in system collapse.
Unlike SVC-BiTos and SVC-G2G, however, free-riding at-
tempts in SVC-TChain are effectively prevented, as seen in
Figures 11(a) and 11(c).

SVC-TChain not only discourages free-riding, but can ac-
tively encourage compliant users to join the system. Users in
a cooperative distributed system are more likely to contribute
resources to a fair system in which they receive benefits in
proportion to the contribution they make. We show that SVC-
TChain is more fair than SVC-BiToS or SVC-G2G both with-
out misbehavior and with 20% of users acting as free-riders.
Figures 12(a) and 12(b) show the Cumulative Distribution
Function (CDF) of the normalized fairness factor over 500
compliant users without and with free-riding respectively. In
a perfectly fair system, a user would receive exactly as much
bandwidth as it contributes, and the normalized fairness factor

 0

 20

 40

 60

 80

 100

SVC-TChain SVC-BiTos SVC-G2G

C
o

n
ti
n

u
it
y
 I

n
d

e
x
 (

%
)

(a) Continuity Index.

 0

 20

 40

 60

 80

 100

SVC-TChain SVC-BiTos SVC-G2G

U
p

lin
k
 U

ti
liz

a
ti
o

n
 (

%
)

(b) Average Uplink Utilization.

 0

 200

 400

 600

 800

 1000

SVC-TChain SVC-BiTos SVC-G2G

S
tr

e
a

m
in

g
 R

a
te

 (
K

b
p

s
)

(c) Average Streaming Rate.

Fig. 10: Performance of compliant users under the real trace arrival model with no misbehavior.

 0

 20

 40

 60

 80

 100

SVC-Tchain SVC-BiTos SVC-G2G

C
o

n
ti
n

u
it
y
 I

n
d

e
x
 (

%
)

Compliant Users
Free-riders

98.89

85.38

91.86

0.27

63.82

93.23

(a) Continuity Index.

 0

 20

 40

 60

 80

 100

SVC-TChain SVC-BiTos SVC-G2G

U
p

lin
k
 U

ti
liz

a
ti
o

n
 (

%
)

(b) Average Uplink Utilization.

 0

 100

 200

 300

 400

 500

 600

 700

 800

SVC-TChain SVC-BiTos SVC-G2G

S
tr

e
a

m
in

g
 R

a
te

 (
K

b
p

s
)

Compliant Users
Free-riders

737.6

614.7
592.9

0.8

302.2

350.8

(c) Average Streaming Rate.

Fig. 11: Performance of compliant users and free-riders under the real trace arrival model with 20% free-riding.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

C
D

F

Normalized Fairness Factor

SVC-TChain
SVC-Bitos
SVC-G2G

(a) No free-riders.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

C
D

F

Normalized Fairness Factor

SVC-TChain
SVC-Bitos
SVC-G2G

(b) 20% free-riders.

Fig. 12: Fairness enforced by each method.

would be 1.2 We see that SVC-TChain is fairer than SVC-
BiToS or SVC-G2G with or without free-riding, incentivizing
compliant users to contribute their resources.

V. RELATED WORK

The first video streaming systems using cooperative com-
puting relied on single layer video coding, giving all users
the same streaming quality. These videos have often been
distributed via P2P streaming architectures to take advantage
of their robustness to churn, high scalability, and simplicity
of management [12], [32]. Indeed, BitTorrent [30], [33], one
of the most popular P2P systems for content distribution,
has been widely adapted to video streaming in academic
(e.g. BiTos [8], Give-to-Get [9]) and commercial (e.g., PP-
Stream [3] and PPTV [4]) contexts. The piece and neighbor
selection mechanisms of BitTorrent should be modified to
support streaming, and much work has focused on how to

2The normalized fairness factor of compliant users for each method is less
than 1, which means that the users’ streaming rates are lower than their upload
rates in the systems. This is mainly due to pieces downloaded after their
playback deadlines or un-decodable enhancement layer pieces.

find the optimal modifications [34]–[36]. Little work, however,
has investigated how to deal with user misbehavior (e.g., free-
riders or deviators) in spite of the fact that these represent
significant weaknesses in BitTorrent [24], [29]. The authors
of [37] show that layered P2P video streaming provides
differentiated service and protection against free-riders in
BitTorrent-based P2P live streaming, but do not consider
strategic manipulation attacks [24], [29]. To the best of our
knowledge, SVC-TChain is the first method for SVC-based
layered video streaming that prevents both free-riding and
deviations from specified piece selection policies.

Many systems have proposed versions of layered video
coding in P2P systems [32]. The advent of H.264/SVC [13],
in particular, has drawn much interest from researchers [11],
[12], [16], [18], [37], [38]. LayerP2P [11] proposed a 3-stage
(Remedy, Decision, and Free stage) data scheduling scheme,
which is similar to our priority windows. Zigzag schedul-
ing [38] proposed to use a sliding window of pieces with
a zigzag style selection. LayeredP2P and Zigzag scheduling,
however, do not consider how to ensure piece diversity or
prevent user misbehavior. Moreover, our work focuses more on
choosing design parameters (i.e., probabilities for high, mid,
low priority windows) which trade off between sequentiality
and piece diversity for multiple layers.

The authors of [16] shed some light on the impact and
tradeoffs of quality adaptation in SVC-based layered video
streaming. Their quality adaptation is complementary to our
work and can be easily plugged into SVC-TChain to improve
its performance. Some possible piece segmentation and refer-
ence challenges for SVC specifically, which are beyond the
scope of this paper, are discussed in [18], [39] in detail.

VI. CONCLUSIONS

In this paper, we present SVC-TChain, an SVC-based
P2P video streaming scheme that offers immunity to mis-
behavior (e.g., free-riders and deviators) and differentiates
users’ services depending on their resource demands and
constraints. SVC-TChain prevents misbehaviors by adopting
a newly proposed incentive mechanism called T-Chain and
analytically choosing piece selection parameters that trade off
between sequentiality and piece diversity. Through extensive
simulations, we demonstrate the SVC-TChain outperforms
other representative P2P schemes (SVC-BiTos and SVC-G2G)
with and without user misbehavior (i.e., free-riders and devia-
tors). SVC-TChain represents a practical P2P-based streaming
protocol that can help address today’s ever-expanding demand
for video streaming.

REFERENCES

[1] Cisco, “The zettabyte era–Trends and analysis,” 2016, http:
//www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/vni-hyperconnectivity-wp.html.

[2] X. Zhang, J. Liut, B. Lis, and T.-S. P. Yum, “Coolstreaming/donet: a
data-driven overlay network for peer-to-peer live media streaming,” in
IEEE INFOCOM, 2005, pp. 2102–2111.

[3] PPStream, “http://www.ppstream.com/,” 2016.
[4] PPTV, “http://www.pptv.com/,” 2016.
[5] J. Goldman, “BitTorrent looks to disrupt TV news starting

at RNC,” CNet, 2016, http://www.cnet.com/news/bittorrent-looks-to-
disrupt-traditional-tv-news-starting-at-republican-national-convention/.

[6] X. Su and S. Dhaliwal, “Incentive mechanisms in p2p media streaming
systems,” in IEEE Internet Computing, vol. 14, no. 5, 2010.

[7] X. Kang and Y. Wu, “Incentive mechanism design for heterogeneous
peer-to-peer networks: A stackelberg game approach,” IEEE Trans. on
Mobile Computing, August 2015.

[8] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “Bitos: Enhancing bittor-
rent for supporting streaming applications,” in IEEE INFOCOM, 2006.

[9] J. J. D. Mol, J. A. Pouwelse, M. Meulpolder, D. H. J. Epema, and
H. J. Sips, “Give-to-get: free-riding resilient video-on-demand in p2p
systems,” in Multimedia Computing and Networking, 2008.

[10] Z. Liu, Y. Shen, S. S. Panwar, K. W. Ross, and Y. Wang, “Using layered
video to provide incentives in p2p live streaming,” in Proc. of P2P-TV
Workshop, 2007, pp. 311–316.

[11] X. Xiao, Y. Shi, Y. Gao, and Q. Zhang, “Layerp2p: A new data
scheduling approach for layered streaming in heterogeneous networks,”
in IEEE INFOCOM, 2009.

[12] H. Hu, Y. Guo, and Y. Liu, “Peer-to-peer streaming of layered video:
Efficiency, fairness and incentive,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 21, no. 8, pp. 1013 – 1026, 2011.

[13] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the h.264/avc standard,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 17, no. 9, pp. 1103 – 1120, 2007.

[14] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, “Overview
of the h.264/avc video coding standard,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[15] P. Baccichet, T. Schierl, T. Wiegand, and bernd Girod, “Low-delay peer-
to-peer streaming using scalable video coding,” in Packet Video 2007,
2007, pp. 173 – 181.

[16] O. Abboud, T. Zinner, K. Pussep, S. Al-Sabea, and R. Steinmetz, “On
the impact of quality adaptation in svc-based p2p video-on-demand
systems,” in Proc. of ACM MMSys, 2011, pp. 223–232.

[17] R. Meier and R. Wattenhofer, “Peer-to-peer streaming in heterogeneous
environments,” Signal Processing: Image Communication, vol. 27, no. 5,
pp. 457–469, 2012.

[18] J. Song, X. Zhou, Y. Zhang, H. Tang, F. Bai, and S. Ci, “A playback
length changeable chunk scheduling algorithm for svc based p2p stream-
ing systems,” in Proc. of IEEE GLOBECOM, 2012.

[19] M. Eberhard, A. Palo, A. Kumar, R. Petrocco, L. Mapelli, and M. Uitto,
“Nextsharepc: an open-source bittorrent-based p2p client supporting
svc,” in the 3rd Multimedia Systems Conference, 2012, pp. 101–106.

[20] F. QIN, L. GE, Q. LIU, and J. LIU, “Free riding analysis of peer-to-peer
streaming systems,” Computational Information Systems, vol. 7(3), pp.
721–728, 2011.

[21] P. Shipley and V. Kumar, “Survey on incentive mechanism,” Global
Journal of Computer Science and Technology, vol. 13, no. 5, 2013.

[22] W. Wu, R. T. Ma, and J. C. Lui, “Distributed caching via rewarding: An
incentive scheme design in p2p-vod systems,” IEEE Trans. on Parallel
and Distributed Systems, vol. 25, no. 3, pp. 612–621, March 2014.

[23] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do incentives build robustness in bittorrent?” in USENIX NSDI,
May 2007.

[24] K. Shin, D. S. Reeves, and I. Rhee, “Treat-before-trick : Free-riding
prevention for bittorrent-like peer-to-peer networks,” in IEEE IPDPS,
Rome, Italy, May 2009.

[25] M. Sirivianos, J. H. Park, R. Chen, and X. Yang, “Free-riding in bittor-
rent networks with the large view exploit,” in International Workshop
on Peer-to-Peer Systems, 2007.

[26] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust incentive
techniques for peer-to-peer networks,” in ACM EC, May 2004.

[27] R. Landa, D. Griffin, R. G. Clegg, E. Mykoniati, and M. Rio, “A
sybilproof indirect reciprocity mechanism for peer-to-peer networks,”
in Proc. of IEEE INFOCOM, 2009.

[28] M. Feldman and J. Chuang, “Overcoming free-riding behavior in peer-
to-peer systems,” in ACM Sigecom Exchanges, vol. 5, July 2005.

[29] K. Shin, C. Joe-Wong, S. Ha, Y. Yi, I. Rhee, and D. Reeves, “T-chain: A
general incentive scheme for cooperative computing,” in IEEE ICDCS,
June 2015.

[30] B. Cohen, “Incentives build robustness in bittorrent,” in the 1st Workshop
on Economics of Peer-to-Peer Systems, 2003.

[31] M. Izal, G. Uroy-Keller, E. Biersack, P. A. Felber, A. A. Hamra,
and L. Garces-Erice, “Dissecting bittorrent: Five months in a torrent’s
lifetime,” Lecture Notes in CS, vol. 3015, pp. 1–11, 2004.

[32] B. Li, Z. Wang, J. Liu, and W. Zhu, “Two decades of Internet video
streaming: A retrospective view,” ACM Trans. on Multimedia Comput-
ing, Communications, and Applications, vol. 9, no. 33, October 2013.

[33] B. Cohen, “The bittorrent protocol specification,” Feburary 2012.
[Online]. Available: http://www.bittorrent.org/beps/bep 0003.html

[34] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson, “Analysis of
bittorrent-like protocols for on-demand stored media streaming,” in Proc.
of ACM SIGMETRICS, 2008, pp. 301–312.

[35] B. Fan, D. G. Andersen, M. Kaminsky, and K. Papagiannaki, “Balancing
throughput, robustness, and in-order delivery in p2p vod,” in Proc. of
ACM CoNEXT, 2010.

[36] Z. Ma, K. Xu, J. Liu, and H. Wang, “Measurement, modeling and en-
hancement of bittorrent-based vod system,” Computer Networks, vol. 56,
p. 11031117, 2012.

[37] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “Layerp2p:
Using layered video chunks in p2p live streaming,” IEEE Trans. on
Multimedia, vol. 11, no. 7, pp. 1340–1352, December 2009.

[38] Y. Ding, J. Liu, D. Wang, and H. Jiang, “Peer-to-peer video-on-demand
with scalable video coding,” Computer Communications, vol. 33, no. 14,
p. 15891597, 2010.

[39] O. Mokryn, A. Platner, I. David, and O. Amir, “H.264 svc extension for
peer to peer schemes,” in Proc. of IEEEI, 2012.

