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Abstract—We present a novel method for predicting the
evolution of a student’s grade in Massive Open Online Courses
(MOOCs). Performance prediction is particularly challenging in
MOOC settings due to per-student assessment response sparsity
and the need for personalized models. Our method overcomes
these challenges by incorporating another, richer form of data
collected from each student – lecture video-watching clickstreams
– into the machine learning feature set, and using that to
train a time series neural network that learns from both prior
performance and clickstream data. Through evaluation on two
MOOC datasets, we find that our algorithm outperforms a
baseline of average past performance by more than 60% on
average, and a lasso regression baseline by more than 15%.
Moreover, the gains are higher when the student has answered
fewer questions, underscoring their ability to provide instructors
with early detection of struggling and/or advanced students. We
also show that despite these gains, when taken alone, none of the
behavioral features are particularly correlated with performance,
emphasizing the need to consider their combined effect and
nonlinear predictors. Finally, we discuss how course instructors
can use these predictive learning analytics to stage student
interventions.

Index Terms—Student performance prediction, clickstream
data analysis, learning analytics, MOOC.

I. INTRODUCTION

MASSIVE Open Online Courses (MOOCs) have ex-
ploded in popularity over the past five years. MOOC

delivery platforms such as Coursera, edX, and Udemy have
partnered with content providers to deliver hundreds of thou-
sands of courses to tens of millions of students around the
world, either for free or at very cheap prices. An estimated 35
million people signed up for at least one MOOC in 2015, an
increase of 50% from the year before [1]. Today, entire degree
programs are offered through MOOC, with the eventual goal
of providing global access to world class instruction [2].

For all their benefits, the quality of MOOCs has been
the target of criticism. Research has pointed to their low
completion rates – below 7% on average – as a property
preventing more widespread adoption of these courses among
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instructors and institutions [3]. These high dropoff rates are
often attributed to factors such as low teacher-to-student ratios,
the asynchronous nature of interaction, and heterogeneous ed-
ucational backgrounds and motivations, which make it difficult
to scale the efficacy of traditional teaching methods with the
size of the student body [4].

As a result, research on MOOCs is studying, and in turn
attempting to enhance, student engagement and knowledge
transfer in these online settings. The plethora of data that
contemporary MOOC platforms (and eLearning platforms
more generally) collect about users has ignited interest in
data mining approaches, i.e., surfacing analytics to instructors
that help them diagnose student needs. To see the value of
this approach, consider the three dominant modes of learning
in MOOCs: lecture videos, assessment questions, and social
discussion forums. For video content, clickstream events are
captured, with a record generated each time a student interacts
with a video specifying the particular action, position, and time
at which it occurred. For assessments, the specific responses to
individual questions are recorded. For the discussion forums,
all posts, comments, and votes made by learners and instruc-
tors are stored as well. This data has led to analytics both
about learners and about content [5], such as the identification
of Social Learning Networks (SLN) among students [6],
relationships between engagement and performance levels [4],
and segments of focus in lecture videos [7].

A. Predictive Learning Analytics

Within the field of MOOC analytics, predictive learning ana-
lytics (PLA) – methods that predict MOOC learning outcomes
at different points in a course, so that appropriate actions can
be taken in advance – is a relatively new area of exploration
[8]. A student’s course grade would be a particularly useful
quantity to forecast, because it is indicative of how well
the course is matched to the student’s needs: a student who
performs poorly needs attention from an instructor, while a
student who performs exceedingly well may not be challenged
enough by the material. It has been observed that both of
these extreme cases will cause dropoffs [9]. If instructors were
given an indication early on about which learners were likely
to perform poorly before course completion, and at which
points these falloffs were likely to occur, they could e.g., stage
interventions or change content as preventative actions. The
fact that students begin dropping off even during the first week
underscores the utility of algorithms that can provide early
detection of poor or exceptional user performance [4].
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Fig. 1: Summary of the different components of the learning outcome prediction method we develop in this paper.

Fig. 2: Sequence of average CFA predictions made online as a student moves through the course. Each train, retrain, and prediction step
involves the components in Figure 1.

Grade prediction for MOOC has two unique challenges.
The first is assessment response sparsity [10]: many students
choose to only answer a few assessment questions, making it
difficult to learn from this data alone. Second, our prediction
models need to be personalized to different students, since
learners have different motivations for taking MOOCs, which
affects their behavior [11]. In this paper, we present and eval-
uate a time series neural network method that overcomes these
challenges. Our algorithm predicts a MOOC student’s overall
course grade as he/she progresses through the course material,
taking as input his/her prior (i) assessment performance and
(ii) video-watching behavior. For the video-watching aspect,
certain behavioral quantities (e.g., number of rewinds, average
playback rate, fraction completed) that have been found to be
correlated with quiz success are computed from the student’s
clickstream measurements [10].

We evaluate the quality of two algorithms, one learning
from quiz (i.e., assessment) features only (FTSNN) and one
from both behavioral features and quiz features (IFTSNN),
against two baselines, one based on averaged past performance
and one based on lasso regression, on two MOOC datasets.
Overall, we find that:
• Both algorithms consistently outperform both baselines,

with average RMSE improvements of >61% for IFTSNN
and >49% for FTSNN over the naive baseline.

• IFTSNN outperforms FTSNN overall as well, with an
average improvement of >10%, underscoring the impor-
tance of clickstream data to MOOC grade prediction.

• In the case where only a few assessment results are
available, however, FTSNN has the highest performance,
indicating that performance-only algorithms may be suf-
ficient for earliest detection.

• Taken alone, none of the video-watching behavior quanti-
ties are particularly predictive of average grades, demon-
strating the importance of considering their combined
effect to predict student performance.

• Personalized prediction models are exceedingly impor-
tant, as applying parameters tuned to other students is
less accurate than even the naive baseline algorithm.

We note that the overall purpose of our work is to assess the
feasibility of a neural network-based algorithm for MOOC
performance prediction. We make no claim that either the
IFTSNN or FTSNN models developed here are the “optimal”
predictors, i.e., higher quality may be possible with alternate
network configurations tuned to specific courses. The above
insights should instead be taken as lower bounds on the
potential for behavior-based grade prediction via the family
of neural network algorithms.

B. Related Work
The proliferation of MOOCs has led to several analytical

studies on their datasets. Some research has focused on under-
standing student motivation and engagement across learning
modes, e.g., [12], [13]. Other works have analyzed student be-
havior on specific modes, e.g., [6], [14] quantified participation
on MOOC forums and [15], [16] studied interaction patterns
in lecture videos. There has also been work on identifying
taxonomies of student motivation for enrolling in MOOCs
[11]. Our work is fundamentally different from these in that
it focuses on algorithms for predictive analytics.

Methods for student performance prediction have been
proposed and evaluated, mainly for traditional online and
brick-and-mortar education settings. These include predicting
how students will perform on assessments they have not
yet taken [2], [17], [18] and what their final grades will
be [19], [20], typically using their past assessment scores.
Most recently, [19] proposed an algorithm to optimize the
timing of grade predictions, and [2] proposed a deep learning
version of student knowledge tracing. We instead consider
performance prediction for MOOC settings, in which per-
student performance data is sparse, necessitating the use of
behavioral modeling.
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Fig. 3: General sequence of lecture videos and in-video quizzes in a MOOC.

In this regard, there have been a few recent works on pre-
dictive analytics for MOOC, proposing algorithms to predict
dropoff rates [21], [22] and assessment scores [4], [10], [22],
[23]. Among these, [4], [10] studied the relationship between
video-watching behavior and in-video quiz performance and
used the results as features for prediction; unlike these works,
we consider the time series aspect of assessment responses
and develop a personalized model for each student. Some
works have studied prediction of average grades over time.
[23] proposes a linear multi-regression model for assessment
performance, using video, assessment, and time-related fea-
tures; we apply neural networks on a similar set of features to
increase prediction quality (with RMSEs as low as 0.06, com-
pared to 0.16 to 0.23 in [23]). Finally, [22] uses demographic,
discussion forum, and chapter access data as features in a
probabilistic graphical model framework; our work focuses
on a more specific set of video-watching features.

C. Our Methodology

Figure 1 summarizes the main components of the grade
prediction methodology we develop in this paper. At a given
point in time, each student’s video-watching clickstream data
and assessment grades are processed to compute a set of
prediction features for that student (Secs. II-A, III-A). These
features are subsequently used to train time series neural
networks that account for the sparsity of the data (Sec. II-C),
after partitioning the data for training and testing accordingly
(Sec. II-B). Model quality is determined through RMSE,
comparing against two baselines, one of averaged historical
performance and one of linear regression, to give a relative
gain (Sec. IV).

These personalized models are then used to predict how
the student’s grade will evolve as he/she progresses through
more material. Figure 2 summarizes the sequence of online
predictions as the student moves through the course. After the
student takes a quiz j − 1 > d, where d is the memory of the
time series, we split the student’s past video watching behavior
and quiz performance into training and testing datasets and
retrain our prediction model. We then use the retrained model
to predict the average CFA after the student takes quiz j, based
on quizzes 1, 2, ..., j − 1. Each time a student takes another
quiz, new data is used to refine the model parameters, and the
predictions are updated accordingly. Finally, the predictions,
model quality, and feature distributions will be provided to the
instructor through an appropriate dashboard interface so that
the instructor can take necessary action (Sec. V).
Contribution. The key contributions of this paper are sum-
marized as follows:
• We propose a method for predicting course grades from

behavioral data in MOOCs using a novel set of features
in a time-series neural network, overcoming the challenge
of assessment data sparsity.

• We show that personalized prediction models are essen-
tial for predictive analytics in MOOCs, since different
students’ behavior differs significantly.

• We demonstrate the benefit that different forms of data
– prior grades and prior clickstream behavior – offer for
grade prediction in MOOCs.

II. GRADE PREDICTION ALGORITHM

In this section, we first introduce the input and output
variables of our algorithms, and then describe our algorithm
design and evaluation method.

A. Input Features and Course Grade

Figure 3 shows the general structure of a MOOC with
lecture videos and quizzes. The course is delivered as a se-
quence of videos, with in-video quizzes interspersed at points
designated by the instructor. With quizzes indexed sequentially
as j = 1, 2, . . ., the Kj videos occurring between quizzes j−1
and j are denoted (j, 1), ..., (j, k), ..., (j,Kj).

The datasets we use in this paper come from two of our
MOOCs on Coursera. The first one is called “Networks:
Friends, Money, and Bytes” (NFMB) [24], and the second one
is called “Networks Illustrated: Principles without Calculus”
(NI) [25]. Both are networking courses that cover similar
topics, but the material in NFMB is more advanced than that
in NI. NFMB has 92 videos with exactly one quiz after each
video (i.e., Kj = 1 ∀j), while NI has 69 quizzes, some of
which are preceded by multiple videos. We obtained two types
of data from each MOOC: clickstream data and quiz answers.
Clickstream data for video (j, k). When a student watches
a video, he/she may play, pause, slow down or speed up, or
jump to another place in the video. MOOC providers store
these events along with their video positions, UNIX timestamp
of occurrence, and student/video identifiers. Analyzing them
gives insight into learning behavior [4]: for example, when
the contents of the video confuse a student, he/she may pause
and re-watch the confusing part of the video. On the other
hand, when a student is familiar with the concepts in a video,
he/she may skip the video or watch only selected portions and
quickly move to the next video. These clickstream data thus
reflect the learning behavior of each specific student, creating
a unique, personalized learning pattern.
Answer to quiz j. In both the NFMB and NI datasets, each
quiz consists of a single multiple choice question with exactly
one correct answer. We gauge success on a quiz as whether the
student successfully answers the question Correctly on his/her
First Attempt (CFA) or not (non-CFA) [4].

Our prediction algorithm uses both clickstream data and
quiz responses to forecast students’ course performance. In
order to do so, we first transform the raw clickstream data
to several algorithm input features, and use the students’ quiz
responses to define a performance measure.
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(a) NFMB (b) NI

Fig. 4: Examples of students’ average CFA grades throughout the
courses. (a) Four students take all of NFMB’s 92 quizzes. (b) Twenty-
nine students take all of NI’s 69 quizzes; for simplicity, we only plot
the first 10 students.

Input clickstream features. Following the clickstream pre-
processing methods outlined in [10], we compute eight input
features from each video for each student:

1) Fraction completed (F-Co): The percentage of the video
that the student played, not counting repeated intervals
more than once; hence, it must be between 0 and 1.

2) Fraction spent (F-Sp): The amount of (real) time the
student spent on the video (i.e., while playing or paused)
divided by its total playback time.1

3) Fraction played (F-Pl): The amount of the video that
the student played, including repetitions, divided by its
total playback time.

4) Fraction paused (F-Pa): The amount of time the student
spent paused on the video, divided by its total playback
time.

5) Number of pauses (N-Pa): The number of times the
student paused the video.

6) Average playback rate (A-PR): The time-average of
the playback rates selected by the student while in
the playing state. The player on Coursera allows rates
between 0.75x and 2.0x the default speed.

7) Standard deviation of playback rates (S-PR): The stan-
dard deviation of the playback rates selected over time.

8) Number of rewinds (N-R): The number of times the
student skipped backward in the video2.

In order to enforce a one-to-one correspondence between
videos and quizzes, we average each of the eight features over
all videos between consecutive quizzes for NI. Since each
quiz j covered material in videos (j, 1), ..., (j,Kj) between
quizzes j − 1 and j, our averaging ensures that we have a
comprehensive picture of students’ relevant video watching
behavior. For ease of exposition, we refer to these averaged
features as corresponding to “video j,” an aggregation of
videos (j, 1), . . . , (j,Kj).
Average CFA grade. We define a student’s performance in
the course at a given point in time as his or her average quiz
grade, i.e., the average number of CFA responses [23]. Since
students answer quizzes throughout the course, we are able to
track and predict their grades after each quiz answered. For a

1We define the playback time as the time it takes to play a video at the
default speed, e.g., a 3:30 video has a playback time of 210 seconds.

2We do not consider the number of fast forwards because it was found to
not be significantly correlated with CFA in [10].

given student i, we define ci(t) as the student’s response to
quiz t; ci(t) = 1 if the student was CFA, and 0 otherwise (i.e.,
if the student answered incorrectly or did not answer at all).
We let (ti(1), ti(2), . . . , ti (ni)) denote the sequence of quiz
indices that student i answers; importantly, students need not
answer any questions and the order in which they are answered
need not be sequential (we may have ti(j) > ti(j + 1)). Each
student’s average CFA after answering j questions is then:

yi(j) =

∑j
s=1 ci(ti(s))

j
.

Figure 4 shows the evolution of average CFA grades for several
students from the NFMB and NI courses who answered all
questions in the course. Each student’s CFA score oscillates
at the beginning of the course but eventually stabilizes after
around 10 or 20 responses; after a student has answered several
questions, a single quiz response will not significantly change
his or her average CFA grade. Thus, we would expect the
average CFA prediction to become easier as students answer
more questions.

B. Algorithm Setup

Training. Our algorithm uses each student j’s video-watching
clickstream features and the previous average CFA grades as
inputs to predict each average CFA grade yi(j) for j up to ni,
the number of questions that student i answers. We train the
algorithm separately on each individual student’s data; thus,
letting ~yi =

[
yi(1) . . . yi(ni)

]
denote the vector of student

i’s average CFA grades throughout the course, we choose
a subset ~ytraini of ~yi on which to train the algorithm. The
algorithm training is validated on a separate subset ~yvalidi and
then tested on yet another subset of student i’s average CFA
grades, ~ytesti , which does not intersect with ~ytraini or ~yvalidi .
Evaluation. We use the Root Mean Square Error (RMSE) to
evaluate the performance of our algorithm, which is developed
in Section II-C, on each student’s data. We exclude the training
and validation data points, and instead calculate the RMSE for
each student i over that student’s testing data ~ytesti . Letting
zi(n) denote the predicted value of student i’s nth average
CFA grade yi(n),

RMSEi =

√√√√ 1

|~ytesti |
∑

yi(n)∈~ytest
i

(yi(n)− zi(n))
2

where |y| denotes the length of the vector y. We can then
average different students’ RMSEs to evaluate the algorithms’
performance over a given set of students.
Naive Baseline. We compare our algorithm’s performance to a
naive baseline of simply averaging a given student’s previous
CFA grades:

zi(j) =

∑j−1
s=1 ci(ti(s))

j − 1
.

with zi(j), j > 1, again denoting student i’s estimated
average CFA grade after answering j quizzes. Note that as
j increases, i.e., the student answers more quiz questions, the
naive baseline will likely perform better; the jth CFA response
will not significantly change the student’s average CFA grade.
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Fig. 5: Graphical representation of IFTSNN.

Fig. 6: Graphical representation of FTSNN.

Linear Regression Baseline. We also compare our algo-
rithm’s performance with linear regression, in which we
optimize the coefficients of our linear predictor. To enhance
the prediction accuracy, we use the lasso method to perform
variable selection and regularization [26]. Comparing these
results to those of the IFTSNN and FTSNN algorithms thus
provides an idea of the additional accuracy achieved by includ-
ing nonlinearity in the prediction algorithm at the expense of
model interpretability [27].

We note that both the naive and lasso regression baselines
are linear predictors, while the algorithm we develop in
Section II-C is nonlinear. Thus, a comparison of the baseline
to our algorithm also serves to compare (non-optimized)
linear prediction algorithms, as used in [23], with a nonlinear
predictor for average CFA grades.

C. Our Prediction Algorithm

Using the data processing from Section II-A, we define a
features-CFA grade pair as follows:

1) xi (j): The vector of clickstream input features for
student i in video ti(j).

2) yi (j): Student i’s average CFA grade after video ti(j)
(i.e., answering j quizzes).

We use the input features xi and the previous average CFA
grade yi to predict each student i’s average CFA grades yi.

While many different algorithms can be used for this predic-
tion (including the naive baseline in Section II-B), we use a
time series neural network predictor due to their popularity
in many research fields [28], including student knowledge
tracing [2]. Time series neural networks are recurrent neural
networks, with feedback connections enclosing several layers
of the network. Long Short Term Memory (LSTM) [29] and
Gated Recurrent Unit (GRU) [30] networks are two examples
of recurrent neural networks. They are good at solving prob-
lems that require learning long-term temporal dependencies.
However, most of the students in our dataset do not generate
a long time series of data, as they skip many quizzes in the

course. We also find little dependence between the behavior
features of different quizzes. Therefore, standard recurrent
neural networks are sufficient for our prediction. Moreover,
neural networks are more robust to data sparsity than other
nonlinear predictors, e.g., collaborative filtering methods rely
on performance comparisons with similar students, and per-
formance data in MOOC is too sparse to accurately assess
student-to-student similarity [10]. While they may not be the
optimal type of predictor for MOOC performance, our results
demonstrate the feasibility of using time series neural network
predictors on MOOC data.
Dealing with sparsity. Before introducing our neural network
models, we first discuss our method for addressing data
sparsity, as dealing with sparse data is one of the challenges
of doing predictions in MOOCs [4]. As discussed previously,
most students do not answer all of the quiz questions in a
given MOOC, leading to a sparse set of quiz responses for
any individual student. To handle this missing data, we simply
“skip” the missing quiz data and consider the previous d
quizzes that the student answered, instead of the previous d
quizzes in the course. This logic is reflected in our definition
of yi(j) in Sec. II-A.

To validate this approach, we randomly shuffle the time
instances of the CFA inputs to our IFTSNN and FTSNN
prediction algorithms and find that there is no obvious perfor-
mance degradation. Thus, the particular relationship between
the topics covered by different quizzes has no bearing on the
predictive power of prior video watching behavior and quiz
responses. Since our goal is to predict the overall grade at any
point in the course, this grade depends not on the topic of
the next question but also on all the previous questions. Our
approach is thus general enough to study how behavior and
prior performance will impact future performance in a way
that is independent of the particular topics covered by each
quiz.
Neural network model. We use two hidden layers in each
network that we train, which can be seen as a Deep Neural
Network (DNN); thus, we have both a hidden layer and
an output layer. The overall neural network model can be
described as follows:

zi(n) = fi
(
yi(n− 1), yi(n− 2), ..., yi(n− d),

xi(n− 1), xi(n− 2), . . . , xi(n− d)
)
,

where zi(n) is again the predicted average CFA grade for stu-
dent i after answering n quizzes, and d indicates the feedback
delay, or the number of previous quiz responses considered.
d in our model can also be understood as the minimum
number of questions a student must answer before predictions
on future average CFA will be made.3 We use fi to denote
the model to emphasize that we train the model separately
for each student i; thus, each student’s neural network will
have different parameters. We discuss the importance of model
personalization in Sec. III-B. Figure 5 summarizes the overall
network structure of this model.

3If a student has answered d0 < d questions at time n and predictions at
this time are desired, it is certainly possible for the neural network to use just
these d0 for model training, as long as d0 > 1.



6

N IFTSNN FTSNN
[2 1] 0.0561 0.0675
[5 5] 0.0597 0.0618
[5 2] 0.0557 0.0652
[10 5] 0.0553 0.0593
[20 10] 0.0580 0.0553
[15 5] 0.0586 0.0568
[20 5] 0.0573 0.0583

(a) N

d 2 4 5 6
IFTSNN 0.0763 0.0630 0.0553 0.0539
FTSNN 0.0795 0.0629 0.0593 0.0524

(b) d

Fig. 7: Average RMSE obtained (a) for different network configu-
rations (N ) and (b) for different input lengths (d) on the NFMB
dataset.

We will additionally use another type of neural network
to evaluate the value of including the clickstream features xi

in our predictions. We call this type of network a Feedback
Time Series Neural Network (FTSNN) model; compared
to the previous model – which we call Input FTSNN
(IFTSNN) since it has the clickstream input xi – FTSNN
does not use the clickstream features. Thus, it relies only
on feedback data, i.e., past average CFA grades from student i:

zi(n) = gi (yi(n− 1), yi(n− 2), ..., yi(n− d)) .

Figure 6 shows the overall structure of the FTSNN model.
We use Bayesian regularization with back-propagation to

train both types of model. Bayesian regularization minimizes
a linear combination of squared errors and weights. The
training algorithm first finds the parameters that minimize
a weighed sum of errors, and then adjusts the weights and
trained parameters to minimize a different weighted sum of
errors, in order to make sure that all errors are minimized.
This Bayesian regularization takes place within the Levenberg-
Marquardt algorithm [31].

In addition to the neural network parameters, there are
several configuration parameters that we can tune for a time
series neural network:
• The number of feedback delays d: How much feedback

and clickstream history should be used in the prediction.
• The number of hidden layers H .
• The number of neurons in each hidden layer N .

To select parameter values, we tested several configurations
of the network a priori. In the end, we chose d = 5, H = 2,
and N = [2 1] since these values tended to yield consistently
high quality results across both datasets; we will use these
sets of configuration parameters for every model that we
train. For completeness, Fig. 7 show the RMSEs achieved
on the NFMB dataset by (a) different configurations N of
a two-layer network and (b) different feedback delays d. We
see that each setting of N yields qualitatively similar results
for both algorithms, and the performance improvement in
d becomes marginal after d = 5, constituting a reasonable
tradeoff between model complexity and quality enhancement.

Feature Mean S.D.

F-Co 0.772 0.336
0.759 0.350

F-Sp 21.912 264.260
28.360 380.510

F-Pl 1.022 4.563
0.915 0.413

F-Pa 37.263 393.070
34.562 339.320

N-Pa 3.113 72.504
2.261 4.570

A-PR 1.112 0.313
1.088 0.319

S-PR 0.016 0.052
0.012 0.046

N-R 2.350 9.125
2.018 23.576

(a) NFMB

Feature Mean S.D.

F-Co 0.756 0.362
0.737 0.544

F-Sp 18.041 231.280
17.855 244.750

F-Pl 0.846 0.552
0.878 5.167

F-Pa 63.620 529.870
63.410 459.420

N-Pa 1.997 5.410
2.239 18.283

A-PR 1.051 0.301
1.036 0.318

S-PR 0.002 0.0153
0.002 0.0135

N-R 1.684 16.063
1.772 17.137
(b) NI

Fig. 8: Tabulated statistics – mean and standard deviation (S.D.) –
for the clickstream features corresponding to videos for different
quiz responses. The top row for each feature corresponds to CFA
responses, and the bottom to non-CFA responses.

We do expect, however, that a more extensive search for the
optimal choices of N and H (through e.g., cross validation)
will improve our prediction quality further. However, the
results for our chosen parameters are sufficient to demonstrate
the feasibility of using neural networks to predict MOOC
students’ performance. A simpler two-layer, three neuron
network has added advantages of efficient re-training in an
online manner (discussed in Sec. IV-E) and less overfitting in
the presence of sparse data.

III. DATASETS AND ANALYSIS

A. Feature Distributions and Performance

We perform some statistical analysis on the relationship
between the input features and CFA scores for each dataset,
in order to provide some intuition for the prediction results
in Section IV. These insights can be useful to instructors in
devising interventions to assist students as well. Many features
have large standard deviations, indicating that the data are not
only sparse but also noisy.
CFA vs. non-CFA. Figure 8 shows the means and standard
deviations (S.D.) of all eight clickstream input features for
both courses, considering the CFA and non-CFA responses
separately. Here, the clickstream features xi(j) for student i on
video ti(j) are tied to the binary CFA score ci (ti(j)) on quiz
ti(j). There are 19,432 CFA and 9,861 non-CFA responses in
NFMB, while there are 34,886 CFAs and 11,762 non-CFAs
in NI. We make some general observations for each feature:
Fraction completed (F-Co): CFA responses in both courses
have higher means than non-CFA responses. In other words,
students who completed more of a video are more likely to
be successful on the corresponding quiz.
Fraction spent (F-Sp): The mean for CFA responses is
18.041, compared to 17.855 for non-CFA responses, in NI.
Students who spend more time with the video may be more
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(a) F-Co (b) N-Pa (c) A-PR

Fig. 9: Two dimensional probability density distributions of NFMB students’ clickstream features and final CFA grades.

(a) F-Co (b) N-Pa (c) A-PR

Fig. 10: Probability density distributions of the features in Figure 9 for NI.

likely to answer questions correctly, as we would intuitively
expect. However, we note that the standard deviations for
F-Sp are quite large for both courses and CFA/non-CFA
responses, indicating that the difference in means may not
be significant. In fact, for the responses in NFMB, the mean
for CFA responses is 21.912 compared to 28.360 for non-CFA,
indicating a more complex relationship than one would expect
from the NFMB results.
Fraction played (F-Pl): Like F-Sp, the two courses show
different results. The CFA responses have a higher mean for
the NFMB course, but lower mean for the NI course. CFA
students may tend to watch more of the video, increasing the
amount played (including repetitions), but they may also repeat
fewer parts of the video, leading to a lower F-Sp.
Fraction paused (F-Pa): There is only a slight difference in
the means for CFA and non-CFA responses for either course,
but the CFA responses have slightly larger means. However,
the standard deviations are also large, indicating that these
differences are likely not significant, as for F-Sp.
Number of pauses (N-Pa): The mean for the CFA responses
in NFMB is higher than that for non-CFA responses; however,
the opposite is true for the NI responses. Students who pause
the video frequently may reflect more on the material covered,
making them more likely to be CFA, or they may be more
confused by the video, making them less likely to be CFA. The
difference in significance between N-Pa and F-Pa indicates
that it is more useful to consider pausing independent of video
playback length.
Average playback rate (A-PR): The means for the CFA
responses in both courses are higher than the non-CFA means,
but the differences are extremely small.
Standard deviation of playback rate (S-PR): In NI, the CFA

and non-CFA responses have the same means, but the mean
for NFMB CFA responses is higher than the mean for non-
CFA responses. The small overall means in both cases indicate
that students tend to keep the default playback speeds.
Number of rewinds (N-R): Like F-Pl, the mean for CFA
responses is higher than the mean for non-CFA responses in
FMB, but the mean for CFA responses is slightly lower than
the mean for non-CFA responses in NI.

In general, we observe that the two different courses exhibit
somewhat different means for CFA and non-CFA responses.
This observation may indicate that the difficulty of the course
affects students’ learning behaviors.
Average CFA grade. Figures 9 and 10 plot students’ average
CFA grades against selected features to see whether clear
correlations exist. Each student i appears as one datapoint in
each plot, as his/her average feature value and average CFA
grade yi(ni) over all ni quizzes the student took.4

Intuitively, one would expect each of these features to be
strongly correlated with quiz performance, e.g., as students
complete larger portions of the videos (higher F-Co), we
would expect them to have higher average quiz grades. As the
figures show, however, the correlations between CFA grades
and clickstream features are relatively weak. Our prediction
results in Section IV will demonstrate that there is indeed
a relationship when all features are considered together, but
it is highly non-linear. Neural networks can discover such
relationships, as they automatically learn their own internal
representations of the different input features, and can decide

4The selection of F-Co, N-Pa, and A-PR to show in the paper is arbitrary;
all clickstream features show a similarly nonlinear relationship with the
average CFA grades.
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(a) N = 10. (b) N = 69.

Fig. 11: Using IFTSNN models trained on NI students who answered
N quizzes to predict average CFA grades for NI students who
answered a different number of quizzes. The dotted line is the naive
baseline. The x-axis shows the number of quizzes answered by the
students whose scores we predict, and the y-axis is the avg. RMSE.

dynamically which features to count and how effective they
are at predicting the output [32].

B. Model Personalization

In order to motivate training individual models for each
student, we consider the effect of using algorithms trained on
one NI student to predict another NI student’s average CFA
scores. In particular, we test two IFTSNN models trained on
students who answered 10 quizzes (Fig. 11a) and 69 quizzes
(Fig. 11b) on data from other students, and compare the result
with the naive baseline. The baseline algorithm performs better
in most cases, particularly as the number of quizzes answered
increases. As students answer more quizzes, we would expect
the baseline algorithm to perform better (cf. Section II), which
is consistent with these results.

Figure 12 shows the percentage of students for whom
the baseline algorithm’s average RMSE is larger than the
RMSE achieved by our IFTSNN algorithm trained on another
student’s data, grouped by the number of quiz questions that
the student answered. The baseline algorithm rarely performs
worse for either course. Thus, in order to measurably improve
on the naive baseline, it is necessary to train our algorithms
on individual students’ data.

Note also that the results for the naive baseline in Fig. 11 are
on the same order of magnitude as those for our individually
trained algorithms. This indicates that our algorithms do not
overfit to each individual student. Instead, they tend to reflect
individual students’ characteristics, which will allow them to
outperform the baseline substantially in Sec. IV.

C. Dataset Groupings

We divide our datasets into different partitions for evaluation
in Sec. IV. Let Ωs0,e0

A ∈ Ω denote the set of students in
the dataset ΩA who answered at least u0 and at most e0
questions, and let Ωs0

A ≡ Ωs0,s0 be those who answer exactly
s0 questions. We take the subscript A = F for NFMB students
and A = I for NI students; thus, ΩF denotes all data from
NFMB students, and ΩI all data from NI students. We then
spilt the students of both courses into four groupings:

1) Grouping A: NFMB students who answer exactly 10,
11, ..., 92 quizzes, i.e., ΩA = {Ωs0

F |s0 = 10, 11, ..., 92}.

(a) NI (b) NFMB

Fig. 12: The naive baseline nearly always performs worse than
predicting students’ average CFA score with an IFTSNN trained on
another student’s data. The y-axis shows the percentage of students
for whom the naive baseline yields a larger RMSE.

2) Grouping B: NFMB students who answer between 10 ∼
10, 10 ∼ 11, 10 ∼ 12, ..., 10 ∼ 92 quizzes, i.e., ΩB =
{Ωs0,e0

F |s0 = 10; e0 = 10, 11, ..., 92}.
3) Grouping C: NI students who answer exactly 10, 11, ...,

69 quizzes, i.e., ΩC = {Ωs0
I |s0 = 10, 11, ..., 69}.

4) Grouping D: NI students who answer between 10 ∼ 10,
10 ∼ 11, ..., 10 ∼ 69 quizzes, i.e., ΩD = {Ωs0,e0

I |s0 =
10; e0 = 10, 11, ..., 69}.

For example, in grouping A, Ω11
F is the subset of students in

FMB who answer exactly 11 questions. In grouping B, Ω10,12
F

is those who answer between 10 and 12 questions.
Figure 13 shows the distribution of the number of students

in each subset of groupings A, B, C and D; groupings B and
D are cumulative versions of A and C. We see that most
students answer fewer than 20 quiz questions, leading to a
sparse dataset.

IV. GRADE PREDICTION EVALUATION

In this section, we evaluate the performance of the model
presented in Sec. II on our course data. In Sec. V, we propose
some student interventions that use our prediction methods to
help vulnerable or struggling students.

A. Algorithm Implementation

As described in Sec. II-B, we train our neural network
prediction models separately on each individual student’s data.
For each student in both courses, we train two different
models: one FTSNN (i.e., a neural network with only feedback
data), and one IFTSNN. To ensure that we have enough data to
train and test a reliable model, we only consider students who
answered at least 10 quizzes. For each student, we randomly
select 70% of their quiz responses as training data; 10% is
used as validation data, and 20% of the data is used as testing
data. Throughout this section, we use RMSE on the testing
data to evaluate each prediction algorithm’s accuracy. Unless
stated otherwise, figures show the average RMSE, taken over
the specified set of students.

B. Overall Quality

Figure 14 shows a sample result of our IFTSNN predictions
for two students, one in each class. We can observe that the
predicted CFA grades track students’ realized average CFA
grades well throughout the course. While we would expect the
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(a) Grouping A (b) Grouping B (c) Grouping C (d) Grouping D

Fig. 13: Numbers of students in each subset of the groupings A, B, C and D.

(a) NFMB (b) NI

Fig. 14: Sample result of predictions for one student in each course.
The solid line denotes the actual average CFA grade while the dashed
line is the predicted average grade.

average CFA grades to level off as the student answers more
questions–each individual CFA grade affects the average less
as we collect more student responses–the average CFA grades
for the students in Fig. 14 show some oscillation as the number
of questions increases. Our prediction algorithms track these
oscillations, particularly those for the NFMB student, as the
NFMB course included more quizzes than the NI course.

Figure 15 shows the overall performance of our algorithms
(i.e., the percentage improvement in RMSE), averaged over all
students. We see that both the IFTSNN and FTSNN predic-
tions significantly outperform both the naive baseline and the
linear regression baseline for both courses, and that including
input data (i.e., IFTSNN vs. FTSNN) further improves the
prediction. Also, the lasso regression algorithm performs better
than the naive baseline in each case, as expected. We note that,
since our clickstream features included a vector of eight inputs
at each timeslot, including clickstream data in the prediction
algorithm greatly increases the size of the input data and
thus the potential for model overfitting; however, the modest
performance gains indicate that our training algorithm avoided
overfitting for IFTSNN compared to FTSNN.

We next investigate how the two algorithms’ performance
on different students depends on the number of quizzes the
students answered, allowing us to evaluate the early detection
capability and compare the two courses in more detail. We
then consider the impact of individual clickstream features.

C. Quality by Number of Questions Answered

Figures 16 and 17 show the average RMSE improvement
when grouping students as in groupings A and C, i.e., by
number of questions answered. Analyzing Figs. 16(a) and Fig.
16(b), we observe that as the number of quizzes increases, the

Model Grouping A Grouping B
IFTSNN 0.0601 61.1% 0.0579 105.1%
FTSNN 0.0664 49.9% 0.0606 98.2%
Lasso 0.0724 26.8% 0.0832 42.3%
Naive 0.0918 – 0.1184 –

(a) NFMB students.

Model Grouping C Grouping D
IFTSNN 0.0702 92.5% 0.0683 144.1%
FTSNN 0.0754 79.6% 0.0724 138.1%
Lasso 0.0804 28.9% 0.0791 66.1 %
Naive 0.1036 – 0.1314 –

(b) NI students.

Fig. 15: Overall average RMSEs for the different algorithms, with
the percent improvement relative to the naive baseline indicated.

RMSE improvement compared to the naive baseline decreases,
yielding the 61.1% and 49.9% overall RMSE improvements
respectively for NFMB (Fig. 15). The IFTSNN’s and FTSNN’s
improvement in RMSE gets better with a smaller number of
quizzes answered, before the average CFA begins to stabi-
lize. This early detection capability, to work with data as
it becomes available at the beginning of the course, is one
of the advantages of our system. However, this decrease in
improvement does not imply that the IFTSNN and FTSNN
algorithms perform worse for students who answer many quiz
questions–it simply reflects the fact that the naive baseline
performs better. When students have answered only a few
quizzes, we expect the naive baseline to perform poorly: at this
point, each quiz answer will dramatically change the student’s
average CFA grade. Thus, the IFTSNN and FTSNN algorithms
realize a smaller improvement for students who answer many
quizzes: though the baseline algorithms may realize high errors
early in the course, they will likely exhibit smaller errors in
predicting these students’ performance later after they have
answered many quiz questions.

On students who answered fewer than 10 quizzes, the
IFTSNN and FTSNN algorithms achieve an average RMSE
of 0.0505, indicating that these algorithms perform well on
students with extremely small numbers of questions. However,
given that we need to 5 initial states to train the model,
the testing and training data for these students is very small,
leading to a large risk of overfitting. Incorporating data from
other students reduces this risk but significantly reduces the
model’s performance (cf. Fig. 12): we find that if we train the
model with 92 quizzes and apply it to students with answering
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(a) IFTSNN vs. naive. (b) FTSNN vs. naive. (c) IFTSNN vs. FTSNN.

Fig. 16: Performance of grouping A (NFMB students, grouped by the exact number of questions answered). The (a) IFTSNN and (b) FTSNN
algorithms improve the average RMSE more compared to the naive baseline for students who answered few questions, while (c) the IFTSNN
algorithm improved the average RMSE more compared to the FTSNN algorithm for students who answered more questions. Break points in
the lines at N = 56, 63, 67, 71 and 76 mean that no data were available for that number of questions, i.e., that no student answered exactly
that number of questions.

(a) IFTSNN vs. naive. (b) FTSNN vs. naive. (c) IFTSNN vs. FTSNN.

Fig. 17: Performance of grouping C (NI students, grouped by the exact number of questions answered). As for the NFMB students in
Figs. 16, the (a) IFTSNN and (b) FTSNN algorithms improve the average RMSE more compared to the naive baseline for students who
answered few questions, while (c) the IFTSNN algorithm improved the average RMSE more compared to the FTSNN algorithm for students
who answered more questions.

from 10 to 15 quizzes, the average RMSE is much higher, at
0.1866. Students in the NI course exhibit similar results, as
shown in Figs. 17(a) and 17(b).

Comparing the quality of IFTSNN and FTSNN allows us to
assess the value of including clickstream data in our prediction
algorithms. We find that the clickstream-based input features
of IFTSNNs help predict the CFA grade, with an average
improvement of 11.5% and 10.1% respectively on groupings A
and C (Fig. 15). We might expect that as students answer more
quiz questions, the quality of the feedback-only model will
improve [10], as the algorithm can be trained on more student
data. However, in practice, the IFTSNN model also improves
as students answer more questions; Figs. 16(c) and 17(c) show
that as the student answers more questions, the IFTSNN model
generally realizes a greater improvement. Algorithms trained
on these groupings can take advantage of more quiz responses,
preventing them from overfitting to a small sample of student
clickstream data and accompanying quiz scores.

Finally, we can compare the results of groupings A and C
to observe the difference in quality between the predictions in
NFMB and NI. The NI students tend to exhibit more consistent
improvement than the NFMB students over the naive baseline
as the number of quizzes answered increases (Fig. 16 vs.
Fig. 17). This is likely due to the larger number of NI students:
the percentage improvement for NFMB even dips below zero
for some numbers of quizzes answered, due to a small number

of students who answered that number of questions. The
IFTSNN models for the NI students also demonstrate more
consistent improvements over the FTSNN models, compared
to NFMB. This result could reflect the fact that the NI course
covered material at a more introductory level than the NFMB
course, so the NI students were likely less familiar with the
background material and may have exhibited less consistent
performance, leading the naive baseline algorithm to perform
worse and yielding better improvement in quality for our
IFTSNN and FTSNN algorithms. These students may also
have relied more on the videos to learn the material presented,
due to their inexperience; thus, the clickstream input features
could yield more insights into student performance than for
the NFMB course, resulting in more consistent improvement
in the IFTSNN compared to the FTSNN algorithms.

D. Feature Importance
While Figs. 16(c) and 17(c) show that including the click-

stream input data does improve prediction quality as students
answer more quizzes, they do not show the effect of any
individual feature. To measure this, we retrain our algorithms
with individual features excluded and compare the retrained al-
gorithms’ performance to the IFTSNN algorithm (i.e., with all
features included). Other feature selection methods can yield
similar insights [33], but excluding particular features directly
shows the impact of each feature on the network performance.
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(a) All but one feature. (b) One feature. (c) All but one feature. (d) One feature.

Fig. 18: RMSE averaged over all NFMB students with (a) individual features removed, and (b) a single feature included, compared to the
IFTSNN algorithm (far right); RMSE averaged over all NI students with (c) individual features removed, and (d) a single feature included,
compared to the IFTSNN algorithm (far right). No single feature dominates the algorithms’ RMSE. Feature names indicate the clickstream
input feature (a) and (c) removed or (b) and (d) included, with abbreviations defined in Sec. II-A.

Figures 18(a) and 18(c) show the average RMSE when each
clickstream input feature is removed; there are no significant
changes, particularly for the NI students. The largest decline
across the two courses occurred when removing the N-R
(number of rewinds) feature for the NFMB students, yielding
a near 4.5% decline. While this decline is relatively small, it
indicates that N-R plays an important role in predicting the
CFA grade: this feature indicates how frequently students re-
watch content, so it may reflect how well they understand
the material, and thus their CFA grade. From Fig. 8, N-R is
not clearly higher for CFA or non-CFA students, indicating a
significant but nonlinear relationship between this feature and
average CFA grades.

Figures 18(b) and 18(d) show the average RMSE over all
students in each course with a single clickstream input feature
(combined with feedback). We see that the RMSE in both
courses visibly increases with only one feature compared to
the IFTSNN algorithm with all clickstream features, indicating
that each feature does contain information useful for predicting
the average CFA grades. Again, no single feature overly
contributes to the improved performance, but a combination
yields measurably lower RMSE.

E. Online Prediction

In practice, our prediction algorithms will be run in an
online manner, with retraining as new student data is recorded.
Specifically, each time a student takes another quiz, the student
behavior features for that quiz and its associated video are
computed, and the neural network parameters are updated
accordingly. We can then use the updated neural network to
predict future average CFA grades for that student.

Again, this “early detection” capability, to work with data
as it is available, is one of the advantages of our system.
Fig. 19 shows the results of our online prediction for NFMB
students. Here, students are divided into groups according to
the number of quizzes they answered, i.e., Ωs0

A according to
the notation in Section III-C: Dataset Groupings. For each
student, predictions are made on his/her average CFA score
after the jth quiz response training on 1, ..., j − 1 for each
j = 6, 7, ..., s0; the model is re-trained for each j, and the
RMSE is computed for each student and averaged across the
group. We see that the achieved RMSEs are consistently low,
though they are somewhat smaller for students who answer

quizzes 12 22 32
IFTSNN 0.0627 49.2% 0.0677 16.5% 0.0627 20.2%
quizzes 42 52 62

IFTSNN 0.0732 27.7% 0.0532 69.7% 0.0570 19.7%
quizzes 72 82 92

IFTSNN 0.0460 5.5% 0.0739 9.4% 0.0512 40.8%

Fig. 19: RMSE of online prediction obtained for NFMB students.
The right column indicates the performance improvement compared
to the lasso regression.

more quizzes. We would intuitively expect this result, since
the average CFA grade stabilizes after students answer several
quizzes. Thus, our neural network models can be used for
online as well as offline prediction.

V. CONCLUSION, DISCUSSION, AND FUTURE WORK

In this paper, we used time series neural networks for
personalized prediction of students’ average CFA grade in two
MOOCs. We considered neural network prediction models that
use as inputs only past quiz performance or a combination of
past quiz performance and clickstream input data. We showed
that video-watching clickstream events can be used as learning
features to improve our prediction accuracy. In implementing
these prediction algorithms, we employed sophisticated pre-
processing to handle the sparsity of available data on student
quiz performance. We trained personalized algorithms for
individual students in order to capture unique characteristics
of each student’s learning patterns. We found that both neural
network-based algorithms consistently outperform a naive
baseline of simply averaging historical CFA data for each
student. We also found that each clickstream input feature is
equally important to the algorithms’ accuracy, with no single
feature contributing the most.
Discussion. From Figs. 16 and 17, we see that our IFTSNN
and FTSNN algorithms are especially useful for predicting the
performance of students who answer relatively few quizzes,
for whom the naive baseline algorithm does worse. Thus,
our algorithms can be used to detect students with low
average CFA grades early in the course, allowing instructors
to automatically target these potentially struggling students
with course interventions. Note that the FTSNN algorithms
tend to perform slightly better than the IFTSNN algorithms
when there are few student quiz answers available, indicating
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that feedback-only algorithms may be sufficient for designing
early-course interventions.

Identifying struggling students early in a course allows
instructors to stage a variety of possible interventions to
improve these students’ performance. Even simply alerting the
instructor to students who are predicted to have low average
CFA grades can prompt them to give these students more
individual attention. In another possible intervention, when
our algorithms forecast that a student’s average CFA grade
will fall below an instructor-specified threshold, the course
software could automatically present students with additional,
possibly personalized study material for the next course topic
[34] before the next video lecture. Instructors could prepare
this additional study material in advance based on the topics
covered in the course, and perhaps historical information
on which topics students generally struggled with. Thus, an
important step for future work would be to implement an
algorithm in a technology platform that flags students with low
predicted average CFAs and presents them with intervention
course material.
Future work. Due to the low correlation of the input features
and CFA grade and the sparsity of the available time series
data, we choose neural networks for our prediction algorithms.
However, other time series prediction methods may also be ef-
fective compared to the naive baseline; our paper demonstrates
the feasibility of using historical quiz performance and click-
stream data to predict performance, rather than definitively
establishing the “best” type of algorithm to perform these
predictions. A promising direction of future work would be to
comprehensively compare our results to the accuracy of other
types of algorithms, e.g., nearest-neighbor and other neural
network approaches, including other network configurations.

In this work, we were primarily concerned with relating
users’ video watching behavior to their quiz performance,
independent of the specific course topics each quiz covers.
Future work could augment our neural network method to be
topic specific. One possibility would be to use behavioral data
to train these recurrent neural networks based on the topics of
the particular videos a student has watched. This could be done
e.g., by applying topic extraction to the textual component
(audio track) of the video and weighing the inputs to the
network based on the similarity of these videos to upcoming
quiz questions.

Our model can easily be extended to real-world (offline)
classroom scenarios. Instead of using clickstream data inputs,
we could use in-course data such as the number of times that
students ask instructors questions, how much time they spend
studying, etc. to predict students’ average grades throughout
the course. While many traditional courses do not include
a single quiz question after each module, we could instead
predict students’ average test scores or homework grades based
on these input features. Even in a MOOC context, we could
use social learning networks (SLNs) [6], [8] to enhance predic-
tion performance by incorporating features like the number of
questions that students post in online course forums. Another
direction of future work would be to investigate whether the
students who are predicted to have low course grades perform
better after different types of instructor interventions, which

may indicate not only the efficacy of different intervention
methods but also our algorithms’ effectiveness at identifying
truly struggling students.
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[20] C. Romero, M.-I. López, J.-M. Luna, and S. Ventura, “Predicting
Students’ Final Performance from Participation in Online Discussion
Forums,” Elsevier Computers & Education, vol. 68, pp. 458–472, 2013.

[21] M. Kloft, F. Stiehler, Z. Zheng, and N. Pinkwart, “Predicting mooc
dropout over weeks using machine learning methods,” in The 2014
Conference on Empirical Methods In Natural Language Processing
Workshop on Modeling Large Scale Social Interaction In Massively
Open Online Courses, 2014, pp. 60–65.

[22] J. Qiu, J. Tang, T. X. Liu, J. Gong, C. Zhang, Q. Zhang, and Y. Xue,
“Modeling and Predicting Learning Behavior in MOOCs,” in Proceed-
ings of the Ninth ACM International Conference on Web Search and
Data Mining. ACM, 2016, pp. 93–102.

[23] Z. Ren, H. Rangwala, and A. Johri, “Predicting performance on mooc
assessments using multi-regression,” in Proceedings of the 9th Interna-
tional Conference on Educational Data Mining, 2016, pp. 484–489.

[24] M. Chiang. Networks: Friends, money, and bytes. [Online]. Available:
https://www.coursera.org/course/friendsmoneybytes

[25] C. G. Brinton and M. Chiang. Networks illustrated: principles without
calculus. [Online]. Available: https://www.coursera.org/learn/networks-
illustrated

[26] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267–288, 1996.

[27] M. Khajah, R. V. Lindsey, and M. C. Mozer, “How Deep is Knowl-
edge Tracing?” in Proceedings of the 9th International Conference on
Educational Data Mining, 2016, pp. 94–101.

[28] E. M. Azoff, Neural Network Time Series Forecasting of Financial
Markets. John Wiley and Sons, Inc. New York, NY, USA, 1994.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.
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