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Abstract—To reduce their operational costs, datacenter op-
erators can schedule large jobs at datacenters in different
geographical locations with time- and location-varying electricity
and bandwidth prices. We introduce a framework and algorithms
to do so that minimize electricity and bandwidth cost subject to
job indivisibility, deadlines, priorities, and datacenter resource
constraints. In doing so, we provide a way for datacenter oper-
ators to predict their operational costs for different datacenter
placements and capacities, and thus make informed decisions
about how to expand their datacenter network. Our distributed
algorithm uses estimated job arrivals and day-ahead electricity
prices to optimize over sliding time windows. We demonstrate
its effectiveness on a Google datacenter trace and investigate the
effects of different cost and performance criteria. The algorithm
leverages heterogeneous job resource requirements and routing
and scheduling flexibility: even deadline and indivisibility con-
straints yield little cost increase, though they significantly improve
job completion times and localization at only one datacenter
respectively. We show that our algorithm reduces the cost much
more than optimizing only electricity, only bandwidth, or a
combination of resource costs and job completion times.

I. INTRODUCTION

THE expansion of the Internet has fueled a rise in cloud
computing, with computational “jobs” sent to and run

at remotely located datacenters [1]. The popularity of cloud
services is such that Google and Microsoft spent $3.4 billion
to upgrade their datacenter infrastructure in the second quarter
of 2013 [2]. As this infrastructure expands, operators need to
manage jobs arriving at many large server clusters in different
geographical locations [3]. Reducing datacenter operational
expenses promises significant savings [1], but equally impor-
tantly, operators must decide how to provision resources at
different locations in the datacenter network.

While much research on this topic has focused on reducing
electricity spending, recent studies have found comparable
electricity and bandwidth costs [1]. Thus, we consider both
electricity costs and ingress and egress bandwidth costs from
a job’s location to a given datacenter. We exploit variations
in electricity and bandwidth prices at different datacenter
locations and times by routing jobs to cheaper datacenters and
scheduling them at inexpensive times, subject to constraints
on job performance. Figure 1 illustrates this idea of routing
and scheduling jobs. We provide a framework and algorithms
to study the tradeoffs between electricity and bandwidth cost
reduction as well as performance criteria.
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Fig. 1: Jobs from different locations can be routed to datacenters with
different electricity and bandwidth cost profiles.

We demonstrate our algorithm performance on a Google
datacenter trace, finding that the operator can exploit hetero-
geneous electricity and bandwidth requirements to optimize
its costs, even when required to satisfy job deadlines or
datacenter routing constraints. These insights can help op-
erators determine where to add datacenters to its network.
By computing a given network configuration’s operational
costs and job performance for a range of plausible future job
patterns, the operator can determine the “best” configuration,
or combination of datacenter locations and capacities, for its
future needs. Our work therefore solves two problems for
datacenter operators: minimizing day-to-day operational costs
and optimally expanding their datacenter network.

Optimizing operational costs must be balanced with job
performance requirements: for instance, access requests for
web hosting, as considered in [4] and [5], require very fast
response times and might be routed so as to minimize latency,
even at the expense of large electricity costs. In this paper, we
instead focus on larger jobs like video encoding or scientific
computations. Since larger jobs are more expensive, they offer
greater potential for cost savings than do smaller jobs. In this
work we develop and numerically validate a novel framework
that minimizes the costs of large jobs using these unique
flexibilities. Our work is the first to account for and meet the
following unique challenges for large datacenter jobs:1

• Job dispatchability: Some larger jobs may be divided
into tasks that require intensive inter-task communication.
These should then be scheduled at only one datacenter, to
reduce the amount of inter-datacenter traffic and delays.
Though this constraint introduces discrete elements into
the cost minimization problem, we present an efficient
algorithm to find a near-optimal solution.

• Scheduling over long time periods: Larger jobs with
deadlines over one hour can occupy resources for a long
period of time. Our algorithm incorporates the resulting

1We do not consider lower-level performance within a datacenter, e.g.,
fairness, as our focus is on inter-datacenter job allocation.
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overlap between jobs arriving at different times, ensuring
that the datacenter has sufficient capacity to handle all of
the jobs assigned to it at a given time. To do so, we use a
sliding window optimization that incorporates predictions
of future job arrivals and resource requirements.

• Job deadlines: Larger jobs typically have runtimes over
several minutes, and thus are more concerned with overall
completion times, e.g., to satisfy service level agreements
(SLAs), than with network latency, which is on the order
of seconds. We incorporate completion time guarantees
as constraints and study their implications in Section V.

• Scalability: The large number (on the order of several
thousand or million) of jobs that must be scheduled at
any given time necessitates efficient, scalable algorithms
for computing the optimal routing and scheduling.

Our numerical evaluation shows that our proposed algo-
rithm leverages heterogeneous job resource requirements to
optimize costs, overcoming job dispatchability and deadline
constraints: relaxing these constraints significantly affects job
performance, but has little effect on cost. Comparing our
results with optimizing only bandwidth or only electricity
cost shows that we extract most of each resource’s potential
savings. Comparing the results with a heuristic that optimizes
job completion times and resource costs shows that we fully
leverage jobs’ time flexibility to reduce their total cost.

We next discuss related works in Section II. We construct
our analytical framework in Section III and develop algorithms
to minimize operators’ costs in Section IV. We evaluate the
effects of different cost and performance criteria on a Google
datacenter trace in Section V. Section VI concludes the paper.
All proofs are included in Appendix A.

II. RELATED WORK

Much recent research has considered minimizing electricity
usage in datacenters. Many approaches do not explicitly con-
sider prices [6], e.g., traffic engineering and routing [7], [8],
speed scaling techniques [9], process migration and network
virtualization [10], exploiting low power sleeping states [11],
[12], and dynamic resource provisioning [13]. Another tradeoff
often examined is that between minimizing electricity usage
and provisioning multiple servers and devices to accommodate
peak traffic loads within a given datacenter [14]. Other works
explicitly model the energy used in data communication [15].

Some research has considered reducing datacenters’ en-
vironmental impact instead of minimizing electricity costs.
For instance, [4] considers the three-way tradeoff between
environmental, latency and electricity costs, while [16] uses
intelligent routing to increase the use of renewable energy
while accounting for electricity prices at different datacenters.
A similar objective is considered in [17], which attempts to
optimize the fraction of energy that comes from renewable
sources, and in [18], which includes carbon costs in electricity
costs. Most datacenter operators, however, are likely motivated
more by cost reduction than sustainability concerns.

Other works attempt to minimize electricity cost. For ex-
ample, [19], [20] minimize a cloud service provider’s total
electricity cost under quality of service constraints, while [21]
provides a framework to decide where to build data centers.
The authors of [22] apply energy-aware routing techniques,

such as routing jobs to the cheapest data centers within a
distance threshold or to the closest data centers with electricity
prices below a given threshold. Other works consider tradeoffs
between long-term average [23] and real-time [5] electricity
and bandwidth costs for short-term job requests. We consider
similar tradeoffs, but focus on larger jobs, which may require
scheduling over multiple timeslots during which electricity
prices and overall job demands may change subject to deadline
constraints. We also show how our algorithm can be used for
longer-term resource provisioning and network planning.

III. FRAMEWORK AND PROBLEM FORMULATION

Suppose that an operator has K datacenters. We consider a
series of discrete timeslots t = 1, 2, . . ., e.g., each lasting one
hour or ten minutes. Jobs are submitted at the beginning of
each timeslot, and we associate each job i = 1, 2, . . . , N with
an arrival time si and deadline di: the job must finish pro-
cessing by time si+ di. We assume throughout the paper that
resources in a datacenter are provisioned for a job according
to its specific requirements, e.g., by dividing resources into
fine-granular virtual machines, so that each job takes up only
the resources that it requires. For instance, some jobs may be
more CPU-intensive than others.

For simplicity, we suppose that all jobs can be continuously
divided into tasks: for each job i, we use xik(t) ∈ [0, 1] to
denote the fraction of job i routed to datacenter k at time t,
and x to denote the concatenated vector of the xik(t). Infinite
divisibility is an idealized assumption, but many jobs can be
divided into several smaller tasks: in our evaluation dataset
(Section V), jobs are divided into up to 5000 tasks.

We consider two different types of jobs, dispatchable and
non-dispatchable. Dispatchable jobs can be routed to different
datacenters at different times without increasing the need
for inter-datacenter communication, e.g., computations broken
into several parallelizable tasks. Non-dispatchable jobs are
defined as those that must run at a single datacenter, e.g.,
due to intensive inter-task communication, as in computational
jobs with several sequential steps that can be started and
stopped if run in order. Thus, non-dispatchable jobs may still
be scheduled in different timeslots. We use Id to denote the set
of dispatchable and In the set of non-dispatchable jobs. We
show in Section V that our algorithm schedules most jobs,
even dispatchable ones, to complete on just one datacenter.

We take t = 0 to be the present timeslot and consider t =
1, 2, . . . , T , e.g., T = 24 for a day of one-hour timeslots. The
consequences of optimizing over only this finite time window
are discussed in greater depth in Section IV-C. The operator’s
objective is to minimize its electricity and bandwidth costs,
while ensuring that each job finishes before its deadline and
that each datacenter has sufficient resources to handle all of its
jobs in any given timeslot. Optional priority factors are used
to prioritize completion of especially important jobs.

A. Optimization Constraints

We first examine the limits of possible routing and schedul-
ing decisions by making explicit the optimization constraints.
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1) Resource Constraints: Computational jobs require many
non-substitutable resources, e.g., bandwidth, CPU, and mem-
ory. We consider two: electricity, which includes both CPU
power and associated costs like cooling and is approximately
proportional to CPU time [22]; and bandwidth, i.e., limited
capacity on the datacenter ingress/egress link [5].2 Bandwidth
can be a capacity bottleneck in practice [24], while electricity
overloads have caused many datacenter outages [25]. We use
Pk(t) and Bk(t) to denote the finite electricity and bandwidth
capacities for datacenter k at time t.

Suppose that each job has fixed requirements ei for elec-
tricity and bi for bandwidth resources. These requirements
scale linearly with the fraction of job processed; thus, job
i requires eixik(t) electricity and bixik(t) bandwidth from
datacenter k at time t.3 The bandwidth costs model a job’s
data coming into and results coming out of the datacenter
where it is processed. Processing a dispatchable job at multiple
datacenters is assumed, as in the definition of dispatchable
jobs, not to introduce additional bandwidth requirements. We
then have the resource constraints

N∑
i=1

eixik(t) ≤ Pk(t),
N∑
i=1

bixik(t) ≤ Bk(t). (1)

2) Job Deadlines: Since each job i must be completed
before its deadline si + di, we introduce the constraints

K∑
k=1

si+di∑
t=si

xik(t) = 1 (2)

for all i ∈ Id ∪ In into the operator’s scheduling and routing
problem. Essentially, each job must be scheduled completely,
with no more resources allocated than it can use.

3) Non-Dispatchable Jobs: Since a non-dispatchable job
must be scheduled only at one datacenter, we must have
xik(t) = 0 for all k 6= ki for some datacenter ki if i ∈ In.
Thus, we constrain

∑T
t=1 xik(t) ∈ {0, 1} for all datacenters k;

since
∑
t,k xik(t) = 1, these constraints ensure that job i runs

only on one (unspecified) datacenter. Equivalently, we define
variables zik =

∑T
t=1 xik(t) for job i ∈ In and datacenter k

to obtain the constraints

T∑
t=1

xik(t) = zik, zik ∈ {0, 1} ∀i ∈ In; 1 ≤ k ≤ K. (3)

B. Operator Objective

We now consider the operator’s objective, which includes
electricity cost, bandwidth cost, and job prioritization.

2We emphasize that these constraints could also represent other resources,
and that additional resource constraints do not conceptually change the model.
We do not explicitly minimize data transfer latency or propagation delay as
they are negligible compared to overall job completion times.

3Electricity costs can vary with CPU speed; however, we assume for sim-
plicity that CPU speeds are uniform. Varying speeds for different datacenters
can be easily incorporated by making the marginal costs ei depend on the
datacenter k, which does not affect our solution algorithms.

1) Electricity Costs: We assume, as is often the case, that
each datacenter’s regional utility company offers day-ahead
electricity prices [26], and denote datacenter k’s cost at time
t by ck(t).4 The operator then has a total electricity cost of

K∑
k=1

T∑
t=1

ck(t)

N∑
i=1

eixik(t). (4)

2) Bandwidth Costs: Different jobs may originate at dif-
ferent customer locations, introducing location-varying band-
width costs for transporting the job’s data and results from
physically distant datacenters. Letting pik denote job i’s unit
bandwidth cost for datacenter k, the bandwidth cost is

N∑
i=1

K∑
k=1

pik

T∑
t=1

bixik(t). (5)

We use job- and datacenter-specific transport costs to reflect
the location-varying bandwidth costs and assume a single
bottleneck access link for each datacenter [5]. In reality, this
link may encompass multiple equal-cost paths.

3) Job Priorities: While deadline constraints ensure sat-
isfaction of completion time requirements, the operator may
wish to additionally prioritize some jobs, e.g., to reward loyal
customers if possible given other jobs’ deadline constraints,
which may be guaranteed by SLA contracts. Thus, we in-
troduce factors γi(t) to model the priority of job i at time
t. Generally, we take γi(t1) ≥ γi(t2) if t1 ≤ t2 in order
to encourage each job i to complete as early as possible;
similarly, if γi1(t) > γi2(t), then the operator has more
incentive to complete job i1 than job i2 at time t. This
priority term is then

∑N
i=1

∑T
t=1 γi(t)

∑K
k=1 xik(t). We note

that shifting all of the γi(t) by a constant value does not affect
the optimization due to the constraint (2). In particular, taking
all the γi(t) equal to a constant is equivalent to minimizing the
electricity and bandwidth costs. If multiple cost-minimizing
solutions exist, including job priorities can bias the algorithm
to a solution with lower job completion times.

4) The Optimization Problem: The operator wishes to
maximize the sum of the priority factors, less the electricity
and bandwidth costs. Adding (4–5) to find this objective and
incorporating the constraints (1-3), the operator solves

max
xik(t),zik

N∑
i=1

T∑
t=1

γi(t)

K∑
k=1

xik(t)−

K,T∑
k,t=1

ck(t)

N∑
i=1

eixik(t)−
N,K∑
i,k=1

pik

T∑
t=1

bixik(t) (6)

s.t.

N∑
i=1

eixik(t) ≤ Pk(t),
N∑
i=1

bixik(t) ≤ Bk(t)∀ k, t (7)

K∑
k=1

si+di∑
t=si

xik(t) = 1 ∀i ∈ In ∪ Id (8)

T∑
t=1

xik(t)− zik = 0, zik ∈ {0, 1} ∀ k; i ∈ In (9)

xik(t) ∈ [0, 1]; xik(t) = 0 if t < si, t > si + di (10)

4If the utility company instead uses real-time spot prices, then the prices
over the next day can be predicted using historical price data [27].
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The constraints (10) ensure that jobs are scheduled between
their arrival and completion deadlines.

The problem (6–10) is a mixed-integer linear optimization,
with the xik(t) continuous and zik binary variables. Most
known algorithms for such problems will not scale well to
the several thousand or million xik(t) variables. We turn to
these challenges and our proposed solutions next.

IV. ROUTING AND SCHEDULING ALGORITHMS

In this section, we derive algorithms to exactly solve (6–10)
for dispatchable jobs (Section IV-A) and extend the solution to
non-dispatchable jobs (Section IV-B). Section IV-C develops
an online, sliding window version of the algorithms.

A. Distributed Optimization

We use the subgradient method [28] to distributedly solve
(6-10) when all jobs are dispatchable: such an approach is
computationally scalable to millions of jobs and requires little
information to be passed between jobs. We define Lagrange
multipliers λk(t) and µk(t) for the constraints (7) to find the
Lagrangian L(x, λ, µ) = F (x) +

∑K
k=1

∑T
t=1

(
λk(t)Pk(t) +

µk(t)Bk(t)−
∑N
i=1 (λk(t)ei + µk(t)bi)xik(t)

)
, where F de-

notes the value of (6). Following standard duality theory,
we then define the optimal multipliers as those minimizing
G (λ, µ) = maxx∈X L(x, λ, µ), where X denotes the set of x

that satisfy (8–10). We then use G’s subgradient
[
g
(0)
λ ,g

(0)
µ

]+
at each k to evolve λ and µ towards their optimal values.

The main difficulty in implementing this algorithm is to
find the subgradients g(j) at each iteration j by evaluating
∂L/∂(λ, µ) at x(j) = argmaxx∈XL(x, λ, µ). Since x is a
vector with NKT variables, this represents a large-scale op-
timization problem. In our case, however, we can decompose
the optimization into N subproblems, each with KT variables.

Since the Lagrangian is linear in x, finding its maximum
with respect to x is equivalent to solving

max
xik(t)∈X

K∑
k=1

T∑
t=1

βik(t)xik(t) (11)

where βik(t) = γi(t)− eick(t)− bipik−λk(t)ei−µk(t)bi for
each user i. Taking x(j) to be the concatenation of the solutions
to (11), we can find the solutions easily and scalably:

Lemma 1: Let x(j)
ik (t) solve (11). Then x

(j)
iκ (τ) = 1 for a

unique (κ, τ) = argmaxk,tβik(t) and 0 otherwise. Moreover,
finding the subgradients g(j) at a given iteration j has a
complexity of NKT log(KT ).

Since solving (11) can be done independently for each job
i, the complexity of each iteration for a given job is then
KT log(KT ). This quantity will be fairly low as we can
expect that K ≤ 100 with at most a few hundred timeslots.

While subgradient algorithms are fully distributed, classical
subgradient algorithms do not solve for optimal primal solu-
tions. Recently, however, it was shown that the running average
of the solution candidates used in the subgradient method

Algorithm 1: Modified subgradient algorithm.

λ
(0)
k

(t)← 0 and µ(0)
k

(t)← 0 for all k, t;
Use Prop. 1 to find the desired number of iterations J ;
for j = 0 to J do

for i = 1 to N do
Find the x(j)∗

ik
(t) that solve (11) using Lemma 1;

g(j) ← ∂L/∂(λ, µ)|x(j)∗ ;

y(j) ←
∑j−1

m=0
αm∑j

m=0
αm

y(j) +
αjx

(j)∑j

m=0
αm

;

[λk(t), µk(t)]
(j+1) ←

[
[λk(t), µk(t)]

(j) − αj [gλ,gµ](j)
]+

;

yields near-optimal primal solutions [28]. More precisely, at
each iteration j of the subgradient method, we solve for

y
(j+1)
ik (t) =

1∑j
m=0 αm

j∑
l=0

αlx
(l)
ik (t)

=

∑j−1
m=0 αm∑j
m=0 αm

y
(j)
ik (t) +

αjx
(j)
ik (t)∑j

m=0 αm
(12)

where each αj is the subgradient step size at iteration j.
Proposition 1 ( [28]): Suppose the Slater condition

holds for (6–10) with In = ∅. Let q∗ denote the opti-
mal value of (6), and consider y

(j)
ik (t) as given by (12)

for constant stepsize α. Denote violations of the con-
straints (7) by fkt(x) = Pk(t) −

∑N
i=1 eixik(t), bkt(x) =

Bk(t) −
∑N
i=1 bixik(t). If λ, µ are initialized to zero, then

V
(j)
r ≡ max

{ ∣∣fkt(y(j))
∣∣ , ∣∣bkt(y(j))

∣∣ } ≤ φ/ (αj) and
q∗ + (q∗ − F (x))V

(j)
r /γ ≥ F (y(j)) ≥ q∗ − αL2/2, where

φ = 3(q∗ − F (x))/γ + αL2/(2γ) + αL, L bounds the
subgradients g(j) and γ = mink,t {fkt(x), bkt(x)} for some
x ∈ X satisfying (7) with strict inequality.
Thus, as j → ∞, the averaged solution (12) satisfies the
constraints, and we can come arbitrarily close to the optimum
value of (6) by choosing a sufficiently small stepsize α. To
bound the constraint violations by a constant ε, each datacenter
can compute the maximum number of iterations needed to
derive a solution within a threshold ε/K. We can then solve
(6-10) using the modified subgradient method in Algorithm 1.

B. Extension to Non-Dispatchable Jobs
If we use Algorithm 1 to solve (6-10) with non-dispatchable

jobs, then some of these jobs will be routed to multiple
datacenters. While our Lagrange multiplier approach may
be combined with branch-and-bound techniques and linear
relaxations to find an optimal solution with non-dispatchability
[29], in the interests of scalability we turn to an approximation
algorithm instead of searching for an optimal solution.

We note that from Lemma 1, the solutions x(j) generated by
minimizing G(λ, ν) are in fact integer solutions. Under some
conditions, this is in fact an optimal solution:

Proposition 2: Suppose that x(j) or y(j) generated by
Algorithm 1 is feasible, i.e., it satisfies (7-10). Then if
λk(t)

(
Pk(t)−

∑N
i=1 eix

(j)
ik (t)

)
= 0 = µk(t)

(
Bk(t)−∑N

i=1 bix
(j)
ik (t)

)
for all datacenters k and times t (similarly

for y(j)), x(j)
(
y(j)

)
is an optimal solution to (6-10).

These conditions may hold for y(j) if argmaxk,tβik(t)
yields the same datacenter k at each iteration for all jobs
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Algorithm 2: Incorporating non-dispatchable jobs.
Solve (6-8) without the constraint (9) with Algorithm 1;
ki ← 0 for all i ∈ In;
while ∃ i ∈ In with ki = 0 do

forall the i ∈ In do
ki ← argmax

∑T

t=1
yik(t);

for k = 1 to K do
sk ← 0 // Indicator for feasibility of (13)
while sk < 1 do

Solve (13) at each datacenter k using Algorithm 1;
if (13) is infeasible then

ki ← 0 for i = argminki=k
∑T

t=1
yik(t);

else
sk ← 1;

s← 0 // Indicator for feasibility of (6-8)
while s < 1 do

Solve (6-8) with xik(t) = 0 for all k 6= ki if i ∈ In, ki > 0;
xik(t) = 0 for all t if ki < 0;
if (6-8) is infeasible then

(κ, τ)← argmaxk,t (λk(t), µk(t));
ι← argmaxieixiκ(τ) // Or argmaxibixiκ(τ)
kι ← −1 if ι ∈ In; remove job i otherwise;

else
s← 1;

i ∈ In. By Lemma 1, in that case job i runs only at
datacenter k. However, if argmaxk,tβik(t) changes, then non-
dispatchability is not satisfied. We thus propose Algorithm 2
to adjust y(j) “as little as possible” to find a feasible solution.

The key insight of our algorithm is that once a datacenter
ki is chosen for each job i ∈ In, we can decompose (6-10)
into separate optimization problems for non-dispatchable jobs

max
xik(t)∈X

∑
t,i:ki=k

(γi(t)− eick(t)− bipik)xik(t) (13)

s.t.
∑
i:ki=k

eixik(t) ≤ Pk(t),
∑
i:ki=k

bixik(t) ≤ Bk(t)

at each datacenter k. Thus, in the first step of our algorithm
each job i ∈ In assigns itself to the datacenter ki maximizing∑
t yik(t). Each datacenter then schedules all of its assigned

non-dispatchable jobs; if this assignment is not feasible, jobs
are routed to datacenters with spare resources in decreasing
order of

∑
t yik(t). If no feasible datacenter exists, the job

is dropped. Once each datacenter has a feasible set of jobs,
we optimize over all jobs given these assignments, using
Algorithm 1 with xik(t) = 0 for all k 6= ki, i ∈ In. In
practice, jobs are only dropped in rare cases of infeasibility.
In Section V’s evaluation, no jobs were dropped.

This algorithm is scalable: the dominant complexity at each
iteration is sorting non-dispatchable jobs at each datacenter (on
average |In| /K jobs) to decide which jobs to drop or reassign.
In the best case, sorting is unnecessary and we again have the
complexity of KT log(KT ) from Algorithm 1 (Lemma 1).

C. Online Algorithm
In reality, the job allocation problem is dynamic: at each

time t, new jobs arrive and new day-ahead electricity prices
are released, which cannot be predicted with perfect accuracy.
Thus, at each time t > 1, the operator must correct the solution
computed at time t− 1 and adjust the routing accordingly.

Similar multi-stage optimization problems under uncertainty
arise in resource provisioning problems for many industries,

Algorithm 3: Sliding time window algorithm.
Initialize predicted electricity prices ck(t) and estimated job arrivals si
and deadlines di for t = 1, 2, . . . , T ;
τ ← 1 // τ tracks the current time.
while τ > 0 do

Solve (14) for t = τ, τ + 1, . . . , T + τ − 1 using Algorithm 2;
Update the predicted job arrivals si and deadlines di for
t = τ + 1, . . . , T + τ ;
Update the resource capacities Pk(t), Bk(t) for
t = τ + 1, . . . , T + τ ;
τ ← τ + 1;

where stochastic linear programming and dynamic program-
ming approaches have been proposed. However, such ap-
proaches often lead to scalability challenges, especially for
multi-stage (i.e., multi-timeslot) problems like those consid-
ered here [30]. Thus, we instead optimize over a sliding
time window.5 We compute the optimal solution for a given
time window of length T , route jobs in the next timeslot
accordingly, and re-compute the optimal solution for the next
window of length T . Algorithm 3 formalizes this idea. We
note that at each stage τ , the computed routing for t > τ is
re-optimized in later stages of the algorithm.

This approach introduces a challenge near the end of the
time interval t = T . New jobs will arrive during this timeslot,
but many of them can be expected to have deadlines si+di >
T . Thus, constraint (8) must be modified to allow some of
these jobs to complete after time T , while ensuring that they
can start before time T . In the best case, we have periodic job
arrivals, which allows us to solve (6-10) as follows:

Proposition 3: Suppose that for each set of timeslots (j −
1)T + 1 to jT , j = 1, 2, . . ., the operator observes the same
pattern of job arrivals with the same ei and bi. Further, suppose
that all resource capacities and electricity prices are periodic,
i.e., Pk(t) = Pk(t + T ), Bk(t) = Bk(t + T ), and ck(t) =
ck(t + T ) for any timeslot t. Then if at each time t, si and
si+ di in (6–10) is interpreted as modulo T and di ≤ T (i.e.,
each job must finish within T timeslots), a solution to (6–10)
maximizes the long-term time-average of (6).

In this case, periodicity allows the operator to know exactly
how much of each job to reserve for timeslots after time T .
We do not observe perfect periodicity in practice, but strong
daily patterns do occur in electricity prices [27] and datacenter
workloads [24]. We thus propose to choose a one-day sliding
window T ; from Prop. 3, our solution will then achieve near-
optimality.6 We use historical information to estimate the
fraction of jobs to reserve for times t > T .

For each time τ = T + 1, . . . 2T , we use P k(τ) to denote
the expected electricity and Bk(τ) the expected bandwidth
capacity of datacenter k at time τ , less the resources used by
jobs arriving after T . In the periodic case, P k(τ) = Pk(τ)−∑
i:si<τ−T eixik(τ − T ), i.e., the capacity at time τ , less the

(known) electricity used by jobs arriving between times T +1
and τ . We use historical smoothed averages to calculate P k(τ)
and Bk(τ). Jobs currently being scheduled (the xik(t)), are
included, as they are the most recent arrivals and likely the

5The sliding window avoids an infinite horizon optimization, which requires
predicting electricity prices and job arrivals indefinitely far into the future.

6The operator can adjust T if the dominant periodicities change.
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Fig. 2: Datacenter electricity prices.

best predictors. Mathematically, we compute the averages

a0

(
Pk(τ)−

∑
si<τ−T

eixik(τ − T )

)
+

bτ/Tc∑
j=2

aj−1P k(τ − jT )

where the weights aj sum to 1 and are determined by the
averaging method, e.g., aj = 1/bτ/T c for uniform averaging.
Taking a0 = 1, aj = 0 for j > 1, assumes perfect periodicity.
We analogously define Bk(τ). We can now modify (6–10) to
form an online optimization problem:

Proposition 4: Suppose that a given number of jobs arrives
in each timeslot 1 ≤ t ≤ T . Then given the available capacities
P k(τ) and Bk(τ) for τ > T , the cost-minimizing xik(t) solve
the following optimization problem:

max
xik(t),zik

N∑
i=1

K∑
k=1

2T∑
t=1

(γi(t)− ck(t)ei − pikbi)xik(t) (14)

s.t.

N∑
i=1

eixik(t) ≤
{
Pk(t), t ≤ T ;P k(t), t > T

}
(15)

N∑
i=1

bixik(t) ≤
{
Bk(t), t ≤ T ;Bk(t), t > T

}
(16)

2T∑
t=1

xik(t)− zik = 0, zik ∈ {0, 1} ∀k; i ∈ In (17)

with the additional constraints (8) and (10). This optimization
problem can be solved exactly as (6–10).

V. EVALUATION

In this section, we use Section IV’s algorithms on a Google
datacenter trace. We find that job dispatchability, deadlines,
and resource prices can significantly affect job performance,
but dispatchability and deadlines have little effect on the
overall cost. We use these factors to find the cost benefits
of different datacenter placements in an operator’s network.

A. Our Dataset

We consider 4 data centers, located in California, Mas-
sachusetts, Minnesota, and New York and referred to respec-
tively as DCs 1, 2, 3, and 4. We use day-ahead electricity prices
for the four locations from February 1, 2012 [26]. Bandwidth
costs were taken from Amazon’s EC2 costs for datacenter
egress [3] and are assumed not to vary with time. Figure
2 shows the resulting electricity and Table I the bandwidth
prices.

DCs 2 and 4 have larger electricity prices than DCs 1 and
3, and DC 2 has the highest bandwidth price.

TABLE I: Bandwidth prices.
DC 1 DC 2 DC 3 DC 4

Price($/Gbps) 19 25 20 12

log(Normalized Resources Required)
-8 -6 -4 -2 0 2
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Fig. 3: Job resource requirements.

We run our algorithms on a trace of 22,383 jobs from a
Google datacenter cluster in May 2011 [31].7 Figure 3 shows
the cumulative density function (CDF) of the electricity and
bandwidth required for each job.8 Datacenter capacities were
calculated by randomly partitioning cluster machines among
the four datacenters. The resource requirements and capacities
have units of GW and Gbps. We infer jobs’ non-dispatchability
from each job’s division into homogeneous subtasks. Most
(85.6%) are non-dispatchable, though dispatchable jobs make
up 61.4% of the electricity and 44.1% of the bandwidth
requirements. We take a job’s deadline as the time between its
submission and completion. Unless otherwise noted, all jobs
are assumed to have equal priorities γi(t). We use Algorithm
3 with α0 = 1 to compute the routing and scheduling.

We first run a baseline scenario optimizing bandwidth and
electricity cost subject to deadline and non-dispatchability
constraints. Table II shows the comparative changes in cost for
four other scenarios: no job deadlines, all jobs dispatchable or
non-dispatchable, and linear priority weights on half the jobs.
No jobs were dropped in any scenario. Appendix B compares
our algorithm to three alternatives: optimizing only electricity
or only bandwidth cost and a heuristic that includes job
completion times in the objective function. Optimizing both
costs extracts most of the potential electricity and bandwidth
savings, and including completion times in the objective can
significantly increase the total cost.

B. Job Heterogeneity, Deadlines, and Non-Dispatchability
We first illustrate the effects of job heterogeneity by examin-

ing datacenter usage and cost in the baseline scenario. Figures
4a and 4b respectively show the electricity and bandwidth used
at each datacenter and timeslot. DC 2 is barely used, likely due
to its high cost of bandwidth and electricity. DC 4’s bandwidth
usage is much higher than its electricity usage and vice versa
for DC 3, likely due to DC 4’s low bandwidth and DC 3’s low
electricity prices. Thus, the algorithm leverages heterogeneous
job resource requirements: those with higher bandwidth or
electricity requirements are respectively routed to datacenters
and times with cheaper bandwidth and electricity.

Figure 4c shows the cost of electricity and bandwidth
at each hour. Electricity and bandwidth costs are generally

7Since our electricity prices are from different dates and regions, we stress
that these results are illustrative and do not exactly represent real scenarios.

8We use CPU and memory respectively as our electricity and bandwidth
requirements, since CPU and electricity usage are approximately proportional
[22] and memory roughly measures the size of a job’s data. A few jobs have
negligible requirements for one resource, which we round to zero.



IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. YY, MONTH YEAR 7

Time (hour)
0 5 10 15 20 25

E
le

c
tr

ic
it

y
 U

s
a

g
e

 (
G

W
)

0

100

200

300

400

500

600

700

800

900

DC 1
DC 2
DC 3
DC 4

(a) Electricity usage.
Time (hour)

0 5 10 15 20 25

B
a
n

d
w

id
th

 U
s
a

g
e

 (
G

b
p

s
)

0

200

400

600

800

1000

DC 1
DC 2
DC 3
DC 4

(b) Bandwidth usage.
Time (hour)

0 5 10 15 20 25

C
o

s
t 

(t
h

o
u

s
a
n

d
s
 o

f 
$
)

0

4

8

12

16

DC 1
DC 2
DC 3
DC 4

(c) Electricity and bandwidth cost.

Fig. 4: Electricity and bandwidth usage and cost. In (c), the left bar at each time is the electricity and the right bandwidth cost.

TABLE II: Change in cost (%) relative to the baseline.
Scenario Electricity Cost B/w Cost Overall Cost

All jobs dispatchable -0.46 0.40 -0.043
All jobs non-dispatchable -0.39 0.93 0.43

No deadlines -9.00 -3.37 -6.26
Linear job priorities 0.53 -0.64 -0.041
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Fig. 5: Job completion times with and without deadlines.

comparable, since jobs are routed to datacenters and timeslots
with cheaper prices for their resource requirements. Both types
of costs are higher towards the beginning of the day, likely due
to cheaper electricity prices and a large number of job arrivals
at those times: 19.7% of jobs arrive at time t = 1.

Next, we investigate the tradeoff between worse perfor-
mance and lower costs as the deadline and non-dispatchability
constraints are relaxed. Though relaxing these constraints
respectively increases our scheduling and routing flexibility, it
does not greatly affect the cost, indicating that heterogeneity
in resource requirements alone allows significant cost savings.

When all deadlines are relaxed, most jobs’ completion times
drastically increase: 90% of jobs complete after 16 hours,
while 80% complete in an hour with deadlines. Without
deadlines, jobs wait, possibly for many hours, for lower
electricity prices. Figure 5 shows the CDF of these completion
times. However, relaxing the deadlines only reduces the cost
by 6.26% due to capacity constraints at times of low prices.
Including deadlines significantly decreases job completion
times, but yields little increase in overall cost as the algorithm
can still leverage datacenter routing flexibility.

Non-dispatchability constraints have an even smaller effect
on cost. From Table II, the decrease in cost from making all
jobs dispatchable is almost negligible at −0.043%; even if
all jobs are taken as non-dispatchable, the cost increases by
0.43%. In fact, many dispatchable jobs complete at only one
datacenter. Figure 6 shows the CDF of the largest fraction
maxk

∑
t xik(t) of each job i that completes at one datacenter

when all jobs are dispatchable. About half–52%–of the jobs
run on only one datacenter, and in the baseline scenario 93% of
jobs, including over half the dispatchable jobs, complete at one
datacenter. This behavior, as noted in Section IV-B, reflects
a job’s assignment to only one datacenter unless resource

Largest Job Fraction at One Datacenter
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Fig. 6: Largest fraction of a job completed at one datacenter with all
jobs dispatchable and only some jobs dispatchable.
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Fig. 7: Average completed fraction of each job and fraction of total
jobs completed over time for jobs with and without linear priority
weights that penalize longer completion times.

constraints force a change in Lemma 1’s optimal xik(t). Thus,
the selection of a single datacenter for each non-dispatchable
job is nearly sufficient to minimize the operational cost.

We consider the effect of priority weights by linearly
penalizing longer completion times for a randomly selected
11194 jobs (i.e., the γi(t) increase linearly with each hour after
the job is submitted). Prioritized jobs then complete faster:
Figure 7 shows the completion rates for jobs with no specified
deadline with and without priorities. Both the average fraction
completed of each job and the fraction of jobs completed (out
of the total number of jobs with and without priorities) are
larger when priorities are introduced. These shorter completion
times barely change the operational cost (Table II).

C. Datacenter Provisioning

We finally show how our framework can be used to rec-
ommend the number and location of datacenters required
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Fig. 8: Completion times and maximum fraction of each job com-
pleted at one datacenter with different datacenter combinations.

by an operator. We first show the cost and performance
impact of adding more datacenters, and then consider different
placements of a fourth datacenter.

Adding more datacenters generally decreases job comple-
tion times, as we would expect since it increases the total
resources available. Figure 8a shows the job completion times
as datacenters are added. While 80% of jobs complete within
one hour with only DC 1, adding more datacenters can signifi-
cantly reduce some jobs’ completion times. Most dramatically,
adding DC 4 decreases the completion time for 3% of jobs to 6
from more than 17 hours. It also yields a 15.7% increase in the
fraction of jobs completed only at one datacenter (Figure 8b),
though some jobs are divided among more datacenters than
before. Adding more datacenters allows some jobs to be spread
among multiple datacenters, but increases the probability that
a job will find and localize at a low-cost datacenter. These
changes have a large impact on a small fraction of jobs.

Since the addition of DC 4 has the most dramatic impact on
job deadlines, we now consider the best location of this fourth
datacenter by comparing the per-job costs of adding DC 4 in
New York to adding another datacenter in Minnesota (i.e., DC
3). Figure 9a shows the CDF of the ratio of each job’s cost
with DCs 1–4 to that with only DCs 1–3. We see that 60%
of jobs decrease their total cost by up to 40% when DC 4 is
added, with no job increasing its cost. Some jobs’ electricity
cost increases, but the bandwidth cost always decreases: DC 4
has the lowest bandwidth, but highest electricity costs (Table I
and Figure 2). DC 3, however, has higher bandwidth but lower
electricity costs than DCs 1 and 2. Figure 9b shows the ratio
of each job’s cost when the DC 3 copy is added to DCs 1–3.
No job reduces its cost by more than 28%, though 23.8% of
jobs reduce their total and 31.1% their electricity costs.

Adding DC 4 saves more money than the DC 3 copy: adding
DC 4 to DCs 1–3 reduces the cost by 14.1%, but a copy of DC
3 reduces the cost by only 2.2%. However, the DC 3 copy has

lower job completion times. Figure 9c shows the distribution
of completion times for DCs 1–3, DCs 1–4, and DCs 1–3 + a
copy of DC 3. Adding DC 3 reduces the completion time by
8 hours for 4.3% of jobs relative to adding DC 4, and adding
DC 4 reduces the job completion time for about 4% of jobs
by 11 hours relative to DCs 1–3. Thus, different datacenter
configurations can lead to a tradeoff between shorter job
completion times and lower costs, as shown by the scenarios
of adding DCs 3 and 4 respectively.

VI. CONCLUSION

We consider the problem of routing and scheduling large
jobs to datacenters in different geographical locations at dif-
ferent times, taking into account time- and location-varying
electricity and bandwidth prices. Our distributed algorithm
routes and schedules jobs so as to minimize electricity and
bandwidth costs, subject to non-dispatchability and deadline
constraints. The algorithm is of low complexity, yielding
efficient and scalable solutions to this large-scale problem.
We incorporate future prices and job arrival predictions by
optimizing over a sliding time window.

We demonstrate our algorithm on a trace of 22,383 jobs
from a Google datacenter. The algorithm adapts to job non-
dispatchability and deadline constraints by respectively lever-
aging time and routing flexibility, yielding small changes in
overall cost. Including these constraints, however, improves
job completion times and localization at only one datacenter.
Prioritizing lower completion times for some jobs improves
their completion times with little increase in cost. We also
compare operational cost and job completion times with
different datacenter combinations, finding a tradeoff between
reducing costs and completion times. Our work thus provides
a framework and algorithms for operators to predict the opera-
tional costs and job performance when routing and scheduling
large jobs, allowing them to make informed decisions about
how to expand their datacenter network.
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APPENDIX A
PROOFS

A. Lemma 1

Suppose that the optimal solution has x
(j)
iκ (τ) = a < 1.

Then the optimal value of (11) would be amaxk,t αik(t)+(1−
a)max(k,t)6=(κ,τ) αik(t) ≤ maxk,t αik(t), the optimal value
with x

(j)
ik (t).

Finding the subgradient consists of finding, for each job i,
the maximum of KT scalars. Standard selection algorithms for
this search have complexity O(KT log(KT )), so the overall
complexity of finding the subgradients is O(NKT log(KT )).
Updating the multiplier values, which is done with one ad-
dition per multiplier, has complexity 3KT , so the overall
complexity is O(NKT log(KT )).

B. Proposition 2

From duality theory, G(λ∗, µ∗) is an upper
bound on the optimal value of (6). Thus, if
the difference λk(t)

(
Pk(t)−

∑N
i=1 eix

(j)
ik (t)

)
+

µk(t)
(
Bk(t)−

∑N
i=1 bix

(j)
ik (t)

)
= 0 between G(λ∗, µ∗) and

F (x(j) is zero, then x(j) is an optimal solution.

C. Proposition 3

The long-term average of (6) at the optimal solution x∗ may
be written (with slight abuse of the summation notation) as

lim
J→∞

1

J

J∑
j=1

N,K,T∑
i,k,t=1

(
γi(t)− ck(t)− fik

)
x∗ik(t+ (j − 1)T )

 .

For t = 1, 2, . . . , T and j = 1, 2, . . ., define yik(t+(j−1)T ) =
limJ→∞

1
J

∑J
j=1 x

∗
ik(t+ (j − 1)T ). The idea of the proof is

to show that y is an optimal solution.
It is straightforward to see that the objective function value

with y is the same as that with x∗. Thus, we need only check
that y satisfies all relevant constraints. We first note that (9)
and (10) are clearly satisfied. Since y is periodic with respect
to T , we need only check the resource constraints (7) for t =
1, 2, . . . , T :
N∑
i=1

fiyik(t) = lim
J→∞

1

J

J∑
j=1

N∑
i=1

fix
∗
ik(t+ (j − 1)T ) ≤ Fk(t)

and similarly for the other resource constraints. Since job
arrivals and deadlines are periodic, it also follows that (8)
is satisfied and that all jobs complete by their deadline. Thus,
there exists a periodic solution.
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Fig. 10: Electricity usage with no bandwidth costs.

It remains to show that this periodic solution solves (6–10)
if the times t are interpreted modulo T as in the proposition
statement. It is easy to see that if di ≤ T , the modulo T
interpretation is equivalent to restricting the xik(t) so that
repeating this solution for t > T is feasible. But this is simply
the feasibility condition for maximizing the long-term average
of (6). Since this long-term average objective is equal to (6)
with a periodic solution, the proposition follows.

D. Proposition 4

Conceptually, the only difference between the static opti-
mization problem (6–10) and the online one is that in the
online optimization, we allow jobs that arrive at times si ≤ T
to be scheduled after time T . Thus, we obtain (14) by adding∑N
i=1

∑K
k=1

∑2T
t=T+1 (γi(t)− ck(t)ei − pikbi)xik(t) to (6).

We now consider the modifications to the constraints (7–9).
First, we must ensure that at times t = T + 1, . . . , 2T , each
datacenter’s bandwidth and memory capacity is not exceeded;
thus, we obtain the constraints

∑N
i=1 eixik(t) ≤ P k(t) and∑N

i=1 bixik(t) ≤ Bk(t) for t = T + 1, . . . , 2T . Combined
with the capacity constraints (7), these modifications yield the
two constraints (15) and (16) respectively. The constraint that
each job be entirely scheduled between its arrival and deadline
(8) is unchanged. Finally, the indivisibility constraint (9) is
modified to (17) by summing from t = 1 to t = 2T instead of
t = T , reflecting the fact that some jobs can now be (partially)
scheduled after time T .

APPENDIX B
ALGORITHM COMPARISONS

In this appendix, we compare our algorithm’s results in
Section V-B to those obtained with three other algorithms. We
first consider variants of our algorithm when only electricity or
only bandwidth cost is optimized, and then consider a heuristic
that aims to optimize both the job completion times and
resource costs. All three comparison algorithms yield a much
higher cost. Throughout this section, for clarity of exposition
we refer to our algorithm as the TCO (Two-Cost Optimizer).

A. Minimizing Individual Resource Costs

We first optimize only electricity costs, which yields the
electricity usage in Figure 10. DC 3 is used the most due to
its low electricity costs, as with the TCO (Figure 4a). DCs 1
and 2 are used slightly more than with the TCO, due to their
high bandwidth costs (Table I).

Figure 11 shows the electricity usage when only bandwidth
costs are optimized. DC 4, which has the lowest bandwidth
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Fig. 11: Electricity usage with no electricity costs.

cost, is used the most, while DCs 2 and 3, which have the
highest bandwidth costs, are not used at all. Usage is spread
fairly evenly over time, since unlike electricity cost, bandwidth
costs do not vary over time. Similar results are obtained for
bandwidth usage.

Figure 12a compares the electricity cost per job when only
electricity, only bandwidth, or both costs are optimized. Each
CDF represents the ratio of electricity cost when only one
resource is optimized to that with the TCO. As expected,
optimizing electricity costs yields smaller ratios than opti-
mizing bandwidth costs. However, only 53% of jobs reduce
and 26% of jobs increase their electricity cost relative to the
TCO when only electricity costs are optimized, while 10.3%
of jobs lower their electricity cost when only bandwidth cost is
optimized. Thus, the TCO extracts most of the potential elec-
tricity savings: despite scheduling jobs to different timeslots
and datacenters, optimizing only electricity saves very little
(1.67%) on electricity cost, but optimizing only bandwidth
increases electricity costs by 36.54%.

We next show that the TCO can extract much of the
potential saving in bandwidth costs. Figure 12b shows the
bandwidth cost ratio when only one resource cost is optimized
relative to that with the TCO. As with electricity costs, the
CDF when only bandwidth is optimized is consistently to the
left of that when only electricity is optimized. A surprisingly
small 43.5% of jobs improve their bandwidth costs when
only bandwidth is optimized, but only 10.5% of jobs increase
their cost relative to the TCO. When only electricity is
optimized, 17.8% of jobs reduce and 57.3% of jobs increase
their bandwidth costs. As with electricity cost, optimizing
only electricity cost significantly increases the bandwidth cost
by 37.5% relative to the TCO, while optimizing bandwidth
reduces the bandwidth costs by 9.93%. Overall, optimizing
only one resource cost increases the total cost by 14 to 17%
relative to the TCO.

B. Optimizing Job Completion Times

Finally, we compare the TCO to a heuristic aiming to mini-
mize both job completion times and electricity and bandwidth
costs. In this heuristic, all arriving jobs are initially scheduled
to the cheapest datacenter in the current timeslot, which helps
to minimize resource costs. If these jobs’ required resources
exceed any datacenter’s capacity, some jobs are delayed to the
next timeslot on the same datacenter. We begin by delaying
jobs with the latest completion deadline, and continue delaying
jobs in reverse order of their deadlines until each datacenter
has sufficient capacity for its scheduled jobs. In the next
timeslot, the delayed jobs are joined by newly arrived jobs,
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(b) Bandwidth costs per job.
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Fig. 12: Cumulative distribution functions for the ratios of (a) electricity costs per job with each resource cost optimized, (b) bandwidth
costs per job with each resource cost optimized, and (c) electricity, bandwidth, and total costs per job with each resource cost optimized and
the heuristic, relative to the same costs with the TCO.

and jobs from both sets are delayed in reverse order of their
deadlines until the capacity constraints are met. Since we do
not delay jobs to reduce costs, we expect that this heuristic
will yield higher costs than the TCO.

We find that the cost improvement depends on job arrival
patterns. If many jobs arrive when electricity prices are low,
e.g., the 19.7% of jobs arriving in the first hour of the baseline
scenario, the heuristic performs quite well, with only a 0.63%
increase in cost over the TCO. However, when half of these
jobs arrive in hour 18, which has higher electricity prices,
the heuristic solution’s cost increases by 8.46%. In contrast,
the TCO shows only a 0.01% increase in cost with the new
job arrival pattern. Figure 12c shows the ratio of each job’s
heuristic and TCO costs with the new job arrival pattern.
Bandwidth costs in particular increase, as do the overall costs
for 42.51% of jobs. If we compare these costs with the new job
arrival pattern to those with full time flexibility (no deadlines),
the TCO yields a 7.39% higher cost, and the heuristic a
16.43% higher cost. Thus, even though resource costs are
considered in the heuristic, fully leveraging time flexibility is
crucial to the TCO’s ability to reduce a datacenter operator’s
costs.
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